CORRESPONDENCE.

ON THE VALUATION OF POLICIES SUBJECT TO GONTINGENT DEBTS.

To the Editor of the Journal of the Institute of Actuaries.
Sir,--In Mr. Sunderland's valuable paper in the Journal (vol. xxix, p. 419) on the subject of the issue of policies subject to a contingent debt in lieu of a rating-up in the ordinary manner, there
does not appear to be any reference to the question as to the proper method of valuing such policies at an investigation period or for purposes of surrender. I have therefore thought it might be interesting to examine this point, with the view of determining whether or not it would be sufficient for all practical purposes to value policies of this description, as if they were in force for their full face-value at the actual age of the assured. Mr. Sunderland deals only with the case where the contingent debt is a decreasing one, but I propose to consider also the case in which the debt is fixed at a constant amount for a given number of years.

The latter of these cases being the simpler, I shall take it first in order. The debt in this case is chargeable against the sum assured only in the event of death happening within a certain number of years, which may be arbitrarily fixed, but which is generally conveniently taken as the time in which the premiums payable will amount to the sum assured at the rate of interest assumed in the company's periodical valuations. This term is sometimes spoken of as the "probationary term."

Then if $\mathrm{P}_{x}^{\prime}=$ the office premium at the actual age, $\kappa_{x+n}=$ the loading per unit contained in the office premium for the rated-up age, $t=$ the number of years composing the probationary term, and $X=$ the constant contingent debt for a policy of 100 on a life of actual age x taken at an advance of n years; and if we further assume the life in question to be for all purposes exactly equivalent to one really aged $x+n$, we shall have the value of the benefit without any loading whatever for expenses, contingencies, or profits

$$
\begin{align*}
& =\frac{(100-\mathbf{X})\left(\mathbf{M}_{x+n}-\mathbf{M}_{x+n+t}\right)+100 \mathbf{M}_{x+n+t}}{\mathrm{D}_{x+n}} \tag{1}\\
& =\frac{100 \mathbf{M}_{x+n}-\mathbf{X}\left(\mathbf{M}_{x+n}-\mathbf{M}_{x+n+t}\right)}{\mathrm{D}_{x+n}} \tag{2}\\
& =\frac{(100-\mathbf{X}) \mathbf{M}_{x+n}+\mathbf{X M}_{x+n+t}}{\mathrm{D}_{x+n}} \tag{3}
\end{align*}
$$

Multiplying (3) by $1+\kappa_{x+n}$, the value of the loaded benefit will be

$$
\frac{\left(1+\kappa_{x+n}\right)\left\{(100-\mathbf{X}) \mathbf{M}_{x+n}+\mathbf{X} \mathbf{M}_{x+n+t}\right\}}{\mathbf{D}_{x+n}},
$$

and the value of the annual premiums receivable being

$$
\frac{100 \mathrm{P}_{x}^{\prime} \mathrm{N}_{x+n-1}}{\mathrm{D}_{x+n}},
$$

we have $\left(1+\kappa_{x+n}\right)\left\{(100-X) \mathbf{M}_{x+n}+\mathrm{XM}_{x+n+t}\right\}=100 \mathrm{P}_{x}^{\prime} \mathrm{N}_{x+n-1}$,
from which

$$
\begin{equation*}
\mathrm{X}=\frac{100\left(\mathrm{M}_{x+n}-\frac{\mathrm{P}_{x}^{\prime}}{1+\kappa_{x+n}} \mathrm{~N}_{x+n-1}\right)}{\mathbf{M}_{x+n}-\overline{\mathrm{M}}_{x+n+t}} \tag{4}
\end{equation*}
$$

If net premiums only were taken account of, the formula for the debt would become

$$
\begin{equation*}
\mathbf{X}=\frac{100\left(\mathbf{M}_{x+n}-\mathbf{P}_{x} \mathbf{N}_{x+n-1}\right)}{\mathbf{M}_{x+n-n} \mathbf{M}_{x+n+t}} \tag{5}
\end{equation*}
$$

P_{x} here representing the net premium at age x. Further, if we suppose the office premiums to be loaded with an equal percentage at all ages, the amount of the debt will still be that shown by formula (5).

Now, in order to illustrate the practical effect of this method in actual working I shall take an example derived from the published rates of premium of one of the Australian offices, these rates not being formed by the addition of an equal percentage of the net premiums at all ages. Take the case of a life aged 30 which has been accepted at the rate for age 35, and where it is proposed to pay the premium for the lower age with a debt upon the policy which is to remain constant during a term equal to the number of years in which the premium actually payable will amount at 4 per-cent interest to the sum assured. This probationary period will be, in the case supposed, equal to 25 years, the rates of premium being at age $30 £ 2.8 s .2 d$., and at age $35 £ 2.15 s .4 d$. per $£ 100$. The rate of loading at age 35 , the net premium being taken by the $H^{\text {M }} 4$ per-cent table, is 405 per unit. Therefore $\left(1+\kappa_{35}\right)$ in formula (4) becomes $1 \cdot 405$, and the resulting value of $X=23 \cdot 614$. In actual practice this would probably be taken to the nearest integer, but in what follows 1 shall assume that the exact value is adhered to.

The question now arises how such policies should be valued at the periodical investigations. Their value, on the common assumption that a rated-up life is always to be considered as equal to a select (or average) life so many years older, will be found as follows. In the first place it will be necessary to determine the net premium for the benefit actually granted, that is, in the case just supposed, an assurance of $76: 386$ for the first 25 years, together with a deferred assurance of 100 after the expiry of that term. Thus we have

$$
\begin{aligned}
& \frac{76 \cdot 386\left(\mathrm{M}_{35}-\mathrm{M}_{60}\right)+100 \mathrm{M}_{60}}{\mathrm{~N}_{34}} \\
= & \frac{100 \mathrm{M}_{35}-23 \cdot 614\left(\mathrm{M}_{35}-\mathrm{M}_{60}\right)}{\mathrm{N}_{34}}=1 \cdot 714=\pi^{\prime} \text { say. }
\end{aligned}
$$

This is necessarily equal to $\frac{100 \mathrm{P}_{30}^{\prime}}{1+\kappa_{35}}=\frac{2 \cdot 408}{1 \cdot 405}=1 \cdot 714$, for the transaction is equivalent to insuring the life at a rate of premium which, though charged as for age 30, contains the rate of loading involved in the rate for age 35. It follows that the value of the policy after m years ($m<t$) will be

$$
\frac{76 \cdot 386\left(\mathbf{M}_{35+m}-\mathbf{M}_{60}\right)+100 \mathbf{M}_{60}}{\mathrm{D}_{35+m}}-\left(1+a_{35+m}\right) \times 1 \cdot 714 .
$$

Of course, when the probationary period has just expired this will become

$$
\frac{100 \mathrm{M}_{60}}{\mathrm{D}_{60}}-\left(1+a_{60}\right) \times 1 \cdot 714
$$

and similarly for subsequent years.
The numerical values derived from the above formula are given in col. (3) of the subjoined table, where they are also compared with
the values of an ordinary policy for 100 on a life aged 30 at entry, and further with those of the same policy valued at the rated-up age, 35. It will be seen from this table that to value such policies as being of their full ultimate amount and at the real age of the assured will considerably understate their true values, while to value them as at the assumed age gives values which at first are slightly too great and afterwards somewhat too small. In practice such a valuation as at the rated-up ages would no doubt be sufficiently accurate, except perhaps for very long durations or where the ratingup is heavy. It will be noticed that even after the expiry of the probationary term the value of the policy still remains greater than that of an ordinary policy on a life of similar rated age. This must necessarily be so, seeing that the net premium for the benefit is less than in the case of the ordinary policy. In fact the true value then exceeds that of such a policy by an amount equal to $\left(\pi-\pi^{\prime}\right)\left(1+a_{x+n+m}\right), m$ being the duration of the policy. For instance, in the above example we have $(1.969-1.714)\left(1+a_{60}\right)=2.667$, the difference between the values in col. 2 and col. 3 for duration 25 years.

To come now to the case where the debt instead of being constant is a decreasing one, this being the case considered by Mr. Sunderland in his paper above referred to. Here if X^{\prime} be put for the initial debt we shall bave the equation

$$
\begin{aligned}
& \left(1+\kappa_{x+n}\right)\left\{\left(100-\mathrm{X}^{\prime}\right) \mathrm{M}_{x+n}+\frac{\mathrm{X}^{\prime}}{t}\left(\mathrm{R}_{x+n+1}-\mathrm{R}_{x+n+t+1}\right)\right\} \\
& \quad=100 \mathrm{P}_{x}^{\prime} . \mathrm{N}_{x+n-1}
\end{aligned}
$$

whence

$$
\mathbf{X}^{\prime}=\frac{100\left(\mathrm{M}_{x+n}-\frac{\mathrm{P}_{x}^{\prime}}{1+\kappa_{x+n}} \mathrm{~N}_{x+n-1}\right)}{\mathbf{M}_{\boldsymbol{x}+n}-\frac{1}{t}\left(\mathrm{R}_{x+n+1}-\mathbf{R}_{x+n+t+1}\right)} \quad . \quad . \quad . \quad .(6)
$$

the debt diminishing by equal annual decrements for t years, after which time the policy becomes one for its full face-value. In this case t may conveniently be taken as equal to the expectation of life for the actual age at entry. If it were taken as equal to the number of years in which the premiums at 4 per-cent interest would amount to the sum assured, the value of t would be less than the expectation, and the initial debt consequently greater than if the deduction were spread over the longer term. This would, no doubt, act as a deterrent to possible assurers under this scheme, especially if the number of years added to the age was at all considerable.

To take, as before, an actual example: Let the rates of premium be as above stated in the former illustration, and let t now be taken as the integer nearest to the expectation of life at the actual age, i.e., in this case, 35. Making the necessary substitutions in formula (6), we shall have $\mathrm{X}^{\prime}=32 \cdot 406$ and the annual decrease $=\mathrm{X}^{\prime} \div 35=926$.

To find, now, the value of a policy effected on this scale, it will be necessary, as in the former case, to calculate the true net premium for the benefit, which in this instance will be

$$
\frac{100 \mathrm{M}_{3 \overline{3}}-32 \cdot 406\left\{\mathrm{M}_{35}-\frac{1}{35}\left(\mathrm{R}_{36}-\mathrm{R}_{71}\right)\right\}}{\mathrm{N}_{34}} \frac{1.714}{}
$$

being exactly the same as was formerly arrived at in the case of the constant debt. This must necessarily be the case, seeing that the two benefits are at the inception of the policies precisely equal in present value. This equality, however, will not hold as regards the policy-values, even if the same term were taken for both the constant and the variable debt, owing to the different distribution of the debt over the subsequent years of life; but these values will, of course, be identical at any time after the expiry of the probationary term. In the case of the decreasing debt, the formula for the policy-value after m years ($m<t$) will be

$$
\begin{aligned}
& \frac{\mathbf{M}_{35+m}\left[100-32 \cdot 406\left(1-\frac{m}{35}\right)\right]+\frac{32 \cdot 406}{35}\left(\mathrm{R}_{36+m}-\mathrm{R}_{71}\right)}{\mathrm{D}_{35+m}} \\
& \quad-\left(1+a_{35+m}\right) \times 1 \cdot 714 .
\end{aligned}
$$

At the end of the 35 years probationary term this will become

$$
\frac{100 \mathrm{M}_{70}}{\mathrm{D}_{70}}-\left(1+a_{70}\right) \times 1 \cdot 714
$$

These values are shown in col. 5 of the appended table, and may be compared as before with the values of an ordinary policy valued according to either the true or the rated-up age at entry.

Had the decreasing debt been spread over the same period as the constant debt-in this case 25 years-the necessary initial debt would have been $44 \cdot 266$ and the annual decrease $1 \cdot 771$; the policy-values being shown in col. 4 of the table already referred to. In this case the values in question become identical after the expiry of the 25 years whether the policy were originally issued subject to a constant or to a decreasing debt, although during the currency of that term the policy, subject to the decreasing debt, has a somewhat larger value.

Further, if we base the formula for the debt upon net premiums, as in formula (5), or if we assume that the premiums at all ages are loaded with a uniform percentage (which, as already stated, produces exactly the same result) we shall necessarily have the net premium for the benefit equal to the ordinary net premium for the actual age. In the case of a constant delt where a life aged 30 is rated-up 5 years the debt on this assumption would be 27.784 for a period of 25 years (as against 23.614 when the loaded premiums were used), and the premium for the benefit $1 \cdot 669=\pi_{30}$. The policy-values are shown in col. 6 of the table.

If the decreasing debt be calculated on the basis of net premiums and spread over the expectation of life, then the debts will be found identical with those quoted in Mr. Sunderland's paper, that for age 30 rated-up five years, starting at $38 \cdot 090$ (annual decrease $1 \cdot 088$), as
against $32 \cdot 406$ when the premiums are loaded as stated above. The values of such a policy are given in col. 8 .

Finally, if we spread the decreasing debt over the same period as the constant one, namely, 25 years, the necessary initial amount will be 52.029 and the annual decrease 2.081 , the corresponding policy. values being given in col. 7 .

The only other point to which I wish to advert in the present communication is that as to the proper method of allotting profits to policies under the contingent debt plan. In considering this question Mr. Sunderland divides the loading on the premium into the portion required to provide for expenses and that required to provide for profits, but it does not seem to me that it is always possible thus to split up the loading into its component parts. Most if not all of the Australian offices now employ in the division of surplus what may be termed the " modified contribution method", by which each policy is first credited with the surplus arising from interest earned on the reserve held for it at the previous investigation, and the remaining surplus is then allotted in proportion to the loading on the premiums paid during the period in question. To apply this method strictly to the class of policies we are now considering it will be only necessary to determine as has been done above the true net premium in each case, treating as loading the balance of the actual premium receivable, and to value the policies in the manner I have indicated, or, if this were found too troublesome, by some convenient approximation. In the case of a policy for 100 on a life aged 30 and rated-up 5 years with a constant debt of 23.614 for 25 years, the loading would be $2 \cdot 408-1 \cdot 714=694$ as against a loading of $739(=2 \cdot 408-1 \cdot 669)$ in the case of an ordinary policy on a select life. 'The application of the method of distribution I have just described would therefore result in the allocation of smaller "bonuses from loading" in the case of contingent debt policies than those allotted to ordinary policies on select lives, although in the later years of duration this would be partly counterbalanced by the larger "interest bonuses" arising from the higher value of the policy.

Before concluding I would only repeat that in the whole of this investigation I have assumed that policies on rated-up lives may properly be treated for all purposes as if the higher age were the real age of the life, although I am of course aware that some theoretical objections have been urged against such a course. Still I believe that this method if it errs does so on the side of safety and therefore may generally with advantage be adopted in practice.

I am,
Yours \&c.,
D. CARMENT.

Sydney, N.S.W.
10 July 1893.

[Some slight alteration has been made in the notation used by Mr. Carment in this letter, in order to make it accord with that employed by Mr. Sunderland in his paper above referred to.-Ev. J.I.A.]
Table of Policy-Values-H ${ }^{\mathrm{M}} 4$ per-cent.

$\begin{aligned} & \text { Durdtion } \\ & \quad=m . \end{aligned}$	${ }_{n} \mathrm{~V}_{30}$	${ }_{m} \mathrm{~V}_{35}$	Using Londed Premiums in the Caloulation of the Debis			Using Net Premiums in ihe Calculation of rhe Debis		
			$\begin{aligned} & \text { Constant Debt } \\ & 23 \text { b14 } \\ & \text { for } \\ & 25 \text { Years } \end{aligned}$	$\begin{aligned} & \text { Decreasing Debt } \\ & \text { begnnining at } \\ & 44 \cdot 266 \\ & \text { for } \\ & 25 \text { Yeals } \end{aligned}$	$\begin{gathered} \text { Decreasing Debt } \\ \text { beginning at } \\ 32 \text { for } \\ \text { for } \\ 35 \text { Years } \end{gathered}$	$\begin{gathered} \text { Constant Debt } \\ 27784 \\ \text { for } \\ 25 \text { Years } \end{gathered}$	$\begin{gathered} \text { Decreasing Debt } \\ \text { beginning at } \\ 52.029 \\ \text { for } \\ 25 \text { Years } \end{gathered}$	$\begin{aligned} & \text { Decreasing Debt } \\ & \text { begnning at } \\ & 38 \text { fog0 } \\ & \text { for } \\ & 35 \text { Years } \end{aligned}$
	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
2	1.970	$2 \cdot 386$	$2 \cdot 275$	$2 \cdot 643$	2.429	$2 \cdot 256$	$2 \cdot 685$	$2 \cdot 436$
5	$5 \cdot 152$	$6 \cdot 176$	5.936	6.840	$6 \cdot 230$	$5 \cdot 895$	6.955	6.326
10	11.010	13.353	12.990	14.654	13.601	12.927	$14 \cdot 881$	13.646
15	$17 \cdot 817$	21.288	$21 \cdot 136$	$23 \cdot 261$	$21 \cdot 752$	21-108	$23 \cdot 601$	$21 \cdot 236$
20	$25 \cdot 343$	29.972	30632	$32 \cdot 506$	30•749	$30 \cdot 747$	32.944	30.891
25	33.580	$39 \cdot 181$	41.848	$41 \cdot 848$	$40 \cdot 389$	42:314	42:314	$40 \cdot 601$
30	$42 \cdot 314$	$48 \cdot 419$	50.681	$50 \cdot 681$	$50 \cdot 115$	51-077	51.077	$50 \cdot 412$
35	$51 \cdot 076$	57.591	$59 \cdot 452$	59.452	$59 \cdot 452$	$59 \cdot 776$	59.776	$59 \cdot 776$

