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Trees and the Composition of Generating
Functions

5.1 The Exponential Formula

If F(x) and G(x) are formal power series with G(0) = 0, then we have seen
(after Proposition 1.1.9) that the composition F(G(x)) is a well-defined formal
power series. In this chapter we will investigate the combinatorial ramifications
of power series composition. In this section we will be concerned with the case
where F(x) and G(x) are exponential generating functions, and especially the
case F(x) = ex.

Let us first consider the combinatorial significance of the product F(x)G(x)
of two exponential generating functions

F(x) =
∑
n≥0

f (n)
xn

n!
,

G(x) =
∑
n≥0

g(n)
xn

n!
.

Throughout this chapter K denotes a field of characteristic 0 (such as C
with some indeterminates adjoined). We also denote by Ef (x) the exponential
generating function of the function f : N→ K, that is,

Ef (x) =
∑
n≥0

f (n)
xn

n!
.

5.1.1 Proposition. Given functions f , g : N → K, define a new function h :
N→ K by the rule

h(#X ) =
∑
(S,T)

f (#S)g(#T), (5.1)

1
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2 Trees and the Composition of Generating Functions

where X is a finite set, and where (S,T) ranges over all weak ordered partitions
of X into two blocks, that is, S ∩ T = ∅ and S ∪ T = X . Then

Eh(x) = Ef (x)Eg(x). (5.2)

Proof. Let #X = n. There are (n
k) pairs (S, T) with #S = k and #T = n− k, so

h(n) =
n∑

k=0

(n

k

)
f (k)g(n− k).

From this equation (5.2) follows.

One could also prove Proposition 5.1.1 by using Theorem 3.18.41 applied to
the binomial poset B of Example 3.18.3.

We have stated Proposition 5.1.1 in terms of a certain relationship (5.1)
among functions f , g and h, but it is important to understand its combinato-
rial significance. Suppose we have two types of structures, say α and β, which
can be put on a finite set X . We assume that the allowed structures depend only
on the cardinality of X . A new “combined” type of structure, denoted α ∪ β,
can be put on X by placing structures of type α and β on subsets S and T ,
respectively, of X such that S ∪ T = X , S ∩ T = ∅. If f (k) (respectively g(k))
are the number of possible structures on a k-set of type α (respectively, β),
then the right-hand side of (5.1) counts the number of structures of type α ∪ β
on X . More generally, we can assign a weight w(0) to any structure 0 of type
α or β. A combined structure of type α ∪ β is defined to have weight equal
to the product of the weights of each part. If f (k) and g(k) denote the sum of
the weights of all structures on a k-set of types α and β, respectively, then the
right-hand side of (5.1) counts the sum of the weights of all structures of type
α ∪ β on X .

5.1.2 Example. Given an n-element set X , let h(n) be the number of ways to
split X into two subsets S and T with S∪T = X , S∩T = ∅; and then to linearly
order the elements of S and to choose a subset of T . There are f (k) = k! ways
to linearly order a k-element set, and g(k) = 2k ways to choose a subset of a
k-element set. Hence∑

n≥0

h(n)
xn

n!
=

∑
n≥0

n!
xn

n!

∑
n≥0

2n xn

n!


=

e2x

1− x
.

1 All references to Volume 1 are to the second edition.
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5.1 The Exponential Formula 3

Proposition 5.1.1 can be iterated to yield the following result.

5.1.3 Proposition. Fix k ∈ P and functions f1, f2, . . . , fk : N → K. Define a
new function h : N→ K by

h(#S) =
∑

f1(#T1)f2(#T2) · · · fk(#Tk),

where (T1, . . . , Tk) ranges over all weak ordered partitions of S into k blocks,
that is, T1, . . . , Tk are subsets of S satisfying: (i) Ti ∩ Tj = ∅ if i 6= j, and (ii)
T1 ∪ · · · ∪ Tk = S. Then

Eh(x) =
k∏

i=1

Efi (x).

We are now able to give the main result of this section, which explains
the combinatorial significance of the composition of exponential generating
functions.

5.1.4 Theorem (the Compositional Formula). Given functions f : P → K
and g : N→ K with g(0) = 1, define a new function h : N→ K by

h(#S) =
∑

π={B1,...,Bk}∈5(S)

f (#B1)f (#B2) · · · f (#Bk)g(k), #S > 0,

h(0) = 1,

where the sum ranges over all partitions (as defined in Section 1.9) π =
{B1, . . . , Bk} of the finite set S. Then

Eh(x) = Eg(Ef (x)).

(Here Ef (x) =
∑

n≥1 f (n) xn

n! , since f is only defined on positive integers.)

Proof. Suppose #S = n, and let hk(n) denote the right-hand side of (5.3) for
fixed k. Since B1, . . . , Bk are nonempty they are all distinct, so there are k!ways
of linearly ordering them. Thus by Proposition 5.1.3,

Ehk (x) =
g(k)

k!
Ef (x)k . (5.3)

Summing (5.3) over all k ≥ 1 yields the desired result.

Theorem 5.1.4 has the following combinatorial significance. Many struc-
tures on a set, such as graphs or posets, may be regarded as disjoint unions
of their connected components. In addition, some additional structure may be
placed on the components themselves, for example, the components could be
linearly ordered. If there are f ( j) connected structures on a j-set and g(k) ways
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Figure 5.1 A circular arrangement of lines

to place an additional structure on k components, then h(n) is the total num-
ber of structures on an n-set. There is an obvious generalization to weighted
structures, such as was discussed after Proposition 5.1.1.

The following example should help to elucidate the combinatorial meaning
of Theorem 5.1.4; more substantial applications are given in Section 5.2.

5.1.5 Example. Let h(n) be the number of ways for n persons to form into
nonempty lines, and then to arrange these lines in a circular order. Figure 5.1
shows one such arrangement of nine persons. There are f ( j) = j! ways to
linearly order j persons, and g(k) = (k − 1)! ways to circularly order k ≥ 1
lines. Thus

Ef (x) =
∑
n≥1

n!
xn

n!
=

x

1− x
,

Eg(x) = 1+
∑
n≥1

(n− 1)!
xn

n!
= 1+ log(1− x)−1,

so

Eh(x) = Eg(Ef (x))

= 1+ log
(

1−
x

1− x

)−1

= 1+ log(1− 2x)−1
− log(1− x)−1

= 1+
∑
n≥1

(2n
− 1)(n− 1)!

xn

n!
,

whence h(n) = (2n
− 1)(n − 1)!. Naturally such a simple answer demands a

simple combinatorial proof. Namely, arrange the n persons in a circle in (n−1)!
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Figure 5.2 An equivalent form of Figure 5.1

ways. In each of the n spaces between two persons, either do or do not draw a
bar, except that at least one bar must be drawn. There are thus 2n

− 1 choices
for the bars. Between two consecutive bars (or a bar and itself if there is only
one bar) read the persons in clockwise order to obtain their order in line. See
Figure 5.2 for this method of representing Figure 5.1.

The most common use of Theorem 5.1.4 is the case where g(k)= 1
for all k. In combinatorial terms, a structure is put together from “con-
nected” components, but no additional structure is placed on the components
themselves.

5.1.6 Corollary (the Exponential Formula). Given a function f : P → K,
define a new function h : N→ K by

h(#S) =
∑

π={B1,...,Bk}∈5(S)

f (#B1)f (#B2) · · · f (#Bk), #S > 0, (5.4)

h(0) = 1.

Then

Eh(x) = exp Ef (x). (5.5)

Let us say a brief word about the computational aspects of equation (5.5).
If the function f (n) is given, then one can use (5.4) to compute h(n). However,
there is a much more efficient way to compute h(n) from f (n) (and conversely).

5.1.7 Proposition. Let f : P → K and h : N → K be related by Eh(x) =
exp Ef (x) (so in particular h(0) = 1). Then we have for n ≥ 0 the recurrences
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6 Trees and the Composition of Generating Functions

h(n+ 1) =
n∑

k=0

(n

k

)
h(k)f (n+ 1− k), (5.6)

f (n+ 1) = h(n+ 1)−
n∑

k=1

(n

k

)
h(k)f (n+ 1− k). (5.7)

Proof. Differentiate Eh(x) = exp Ef (x) to obtain

E′h(x) = E′f (x)Eh(x). (5.8)

Now equate coefficients of xn/n! on both sides of (5.8) to obtain (5.6). (It
is also easy to give a combinatorial proof of (5.6).) Equation (5.7) is just a
rearrangement of (5.6).

The compositional and exponential formulas are concerned with structures
on a set S obtained by choosing a partition of S and then imposing some “con-
nected” structure on each block. In some situations it is more natural to choose
a permutation of S and then impose a “connected” structure on each cycle.
These two situations are clearly equivalent, since a permutation is nothing more
than a partition with a cyclic ordering of each block. However, permutations
arise often enough to warrant a separate statement. Recall that S(S) denotes
the set (or group) of all permutations of the set S.

5.1.8 Corollary (the Compositional Formula, permutation version). Given
functions f : P → K and g : N → K with g(0) = 1, define a new function
h : P→ K by

h(#S) =
∑

π∈S(S)

f (#C1)f (#C2) · · · f (#Ck)g(k), #S > 0, (5.9)

h(0) = 1,

where C1, C2, . . . , Ck are the cycles in the disjoint cycle decomposition of π .
Then

Eh(x) = Eg

∑
n≥1

f (n)
xn

n

 .

Proof. Since there are (j − 1)! ways to cyclically order a j-set, equation (5.9)
may be written

h(#S) =
∑

π={B1,...,Bk}∈5(S)

[(#B1 − 1)!f (#B1)] · · · [(#Bk − 1)!f (#Bk)]g(k),
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5.1 The Exponential Formula 7

so by Theorem 5.1.4,

Eh(x) = Eg

∑
n≥1

(n− 1)!f (n)
xn

n!


= Eg

∑
n≥1

f (n)
xn

n

.

5.1.9 Corollary (the Exponential Formula, permutation version). Given a
function f : P→ K, define a new function h : N→ K by

h(#S) =
∑

π∈S(S)

f (#C1)f (#C2) · · · f (#Ck), #S > 0,

h(0) = 1,

where the notation is the same as in Corollary 5.1.8. Then

Eh(x) = exp
∑
n≥1

f (n)
xn

n
.

In Chapter 3.18 (see Example 3.18.3(b)) we related addition and multiplica-
tion of exponential generating functions to the incidence algebra of the lattice
of finite subsets of N. There is a similar relation between composition of expo-
nential generating functions and the incidence algebra of the lattice 5n of
partitions of [n] (or any n-set). More precisely, we need to consider simulta-
neously all 5n for n ∈ P. Recall from Section 3.10 that if σ ≤ π in 5n, then
we have a natural decomposition

[σ ,π ] ∼= 5a1
1 ×5

a2
2 × · · · ×5

an
n , (5.10)

where |σ | =
∑

iai and |π | =
∑

ai. Let 5 = (51,52, . . . ). For each n ∈ P,
let fn ∈ I(5n, K), the incidence algebra of 5n. Suppose that the sequence f =
( f1, f2, . . . ) satisfies the following property: There is a function (also denoted
f ) f : P→ K such that if σ ≤ π in 5n and [σ ,π ] satisfies (5.10), then

fn(σ ,π ) = f (1)a1 f (2)a2 · · · f (n)an . (5.11)

We then call f a multiplicative function on 5.
For instance, if ζn is the zeta function of 5n, then ζ = (ζ1, ζ2, . . . ) is mul-

tiplicative with ζ (n) = 1 for all n ∈ P. If µn is the Möbius function of 5n,
then by Proposition 3.8.2 and equation (3.37) we see that µ = (µ1,µ2, . . . ) is
multiplicative with µ(n) = (−1)n−1(n− 1)!.

https://doi.org/10.1017/9781009262538.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009262538.003


8 Trees and the Composition of Generating Functions

Let f = ( f1, f2, . . . ) and g = (g1, g2, . . . ), where fn, gn ∈ I(5n, K). We can
define the convolution fg = (( fg)1, ( fg)2, . . . ) by

( fg)n = fngn (convolution in I(5n, K)). (5.12)

5.1.10 Lemma. If f and g are multiplicative on 5, then so is fg.

Proof. Let P and Q be locally finite posets, and let u ∈ I(P, K), v ∈ I(Q, K).
Define u× v ∈ I(P× Q, K) by

u× v((x, x′), (y, y′)) = u(x, y)v(x′, y′).

Then a straightforward argument as in the proof of Proposition 3.8.2 shows
that (u× v)(u′ × v′) = uu′ × vv′. Thus from (5.10) we have

( fg)n(σ ,π ) = f1g1(0̂, 1̂)a1 · · · fngn(0̂, 1̂)an

= fg(1)a1 · · · fg(n)an .

It follows from Lemma 5.1.10 that the set M(5) = M(5, K) of multipli-
cative functions on 5 forms a semigroup under convolution. In fact, M(5)
is even a monoid (= semigroup with identity), since the identity function
δ = (δ1, δ2, . . . ) is multiplicative with δ(n) = δ1n. (CAVEAT: M(5) is not
closed under addition!)

5.1.11 Theorem. Define a map φ : M(5) → xK[[x]] (the monoid of power
series with zero constant term under composition) by

φ( f ) = Ef (x) =
∑
n≥1

f (n)
xn

n!
.

Then φ is an anti-isomorphism of monoids, that is, φ is a bijection and

φ( fg) = Eg(Ef (x)).

Proof. Clearly φ is a bijection. Since fg is multiplicative by Lemma 5.1.10, it
suffices to show that ∑

n≥1

fg(n)
xn

n!
= Eg(Ef (x)).
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5.1 The Exponential Formula 9

By definition of fg(n), we have in I(5n, K)

fg(n) =
∑

π={B1,...,Bk}∈5n

fn(0̂,π )gn(π , 1̂)

=

∑
π

f (#B1) · · · f (#Bk)g(k). (5.13)

Since (5.13) agrees with (5.3), the proof follows from Theorem 5.1.4.

The next result follows from Theorem 5.1.11 in the same way that Prop-
osition 3.18.5 follows from Theorem 3.18.4 (using Proposition 5.4.1), so the
proof is omitted. (A direct proof avoiding Theorem 5.1.11 can also be given.)
If f = ( f1, f2, . . . ) where fn ∈ I(5n, K) and each f −1

n exists in I(5n, K), then
we write f −1

= ( f −1
1 , f −1

2 , . . . ).

5.1.12 Proposition. Suppose f is multiplicative and f −1 exists. Then f −1 is
multiplicative.

5.1.13 Example. Let ζ , δ,µ ∈ M(5) have the same meanings as above, so
ζµ = µζ = δ. Now

Eζ (x) =
∑
n≥1

xn

n!
= ex
− 1

Eδ(x) = x,

so by Theorem 5.1.11

[exp Eµ(x)]− 1 = x

⇒ Eµ(x) = log(1+ x)

=

∑
n≥1

(−1)n−1(n− 1)!
xn

n!

⇒ µ(n) = (−1)n−1(n− 1)!.

Thus we have another derivation of the Möbius function of 5n (equa-
tion (3.37)).

5.1.14 Example. Let h(n) be the number of ways to partition the set [n], and
then partition each block into blocks of odd cardinality. We are asking for the
number of chains 0̂ ≤ π ≤ σ ≤ 1̂ in 5n such that all block sizes of π are odd.
Define f ∈ M(5) by

f (n) =
{

1, n odd
0, n even.
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10 Trees and the Composition of Generating Functions

Then clearly h = f ζ 2, so by Theorem 5.1.11,

Eh(x) = Eζ (Eζ (Ef (x)))

= exp

exp
∑
n≥0

x2n+1

(2n+ 1)!

− 1

− 1

= exp(esinh x
− 1)− 1.

We have discussed in this section the combinatorial significance of multiply-
ing and composing exponential generating functions. Three further operations
are important to understand combinatorially: addition, multiplication by x
(really a special case of arbitrary multiplication, but of special significance),
and differentiation.

5.1.15 Proposition. Let S be a finite set. Given functions f , g : N→ K, define
new functions h1, h2, h3, and h4 as follows:

h1(#S) = f (#S)+ g(#S) (5.14)

h2(#S) = (#S)f (#T), where #T = #S − 1 (5.15)

h3(#S) = f (#T), where #T = #S + 1 (5.16)

h4(#S) = (#S)f (#S). (5.17)

Then

Eh1 (x) = Ef (x)+ Eg(x) (5.18)

Eh2 (x) = xEf (x) (5.19)

Eh3 (x) = E′f (x) (5.20)

Eh4 (x) = xE′f (x). (5.21)

Proof. Easy.

Equation (5.14) corresponds to a choice of two structures to place on S, one
enumerated by f and one by g. In equation (5.15), we “root” a vertex v of S
(i.e., we choose a distinguished vertex v, often called the root) and then place a
structure on the remaining vertices T = S − {x}. Equation (5.16) corresponds
to adjoining an extra element to S and then placing a structure enumerated by
f . Finally in equation (5.17) we are simply placing a structure on S and rooting
a vertex.

As we will see in subsequent sections, many structures have a recursive
nature by which we can obtain from the results of this section functional equa-
tions or differential equations for the corresponding exponential generating
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5.2 Applications of the Exponential Formula 11

function. Let us illustrate these ideas here by interpreting combinatorially the
formula E′h(x) = E′f (x)Eh(x) of equation (5.8). The left-hand side corresponds
to the following construction: take a (finite) set S, adjoin a new element t, and
then place on S ∪ {t} a structure enumerated by h (or “h-structure”). The right-
hand side says: choose a subset T of S, adjoin an element t to T , place on T∪{t}
an f -structure, and place on S− T an h-structure. Clearly if h and f are related
by (5.4) (so that h-structures are unique disjoint unions of f -structures) then
the combinatorial interpretations of E′h(x) and E′f (x)Eh(x) are equivalent.

5.2 Applications of the Exponential Formula

The most straightforward applications of Corollary 5.1.6 concern structures
which have an obvious decomposition into “connected components.”

5.2.1 Example. The number of graphs (without loops or multiple edges) on
an n-element vertex set S is clearly 2(

n
2). (Each of the

(n
2

)
pairs of vertices may

or may not be joined by an edge.) Let c(#S) = c(n) be the number of connected
graphs on the vertex set S. Since a graph on S is obtained by choosing a parti-
tion π of S and then placing a connected graph on each block of π , we see that
equation (5.5) holds for h(n) = 2(

n
2) and f (n) = c(n). Hence by Corollary 5.1.6,

Eh(x) =
∑
n≥0

2(
n
2)

xn

n!

= exp Ec(x)

= exp
∑
n≥1

c(n)
xn

n!
.

Equivalently, ∑
n≥1

c(n)
xn

n!
= log

∑
n≥0

2(
n
2)

xn

n!
. (5.22)

Note that the generating functions Eh(x) and Ec(x) have zero radius of
convergence; nevertheless, they still have combinatorial meaning.

Of course there is nothing special about graphs in the above example. If, for
instance, h(n) is the number of posets (or digraphs, topologies, triangle-free
graphs, . . . ) on an n-set and c(n) is the number of connected posets (digraphs,
topologies, triangle-free graphs, . . . ) on an n-set, then the fundamental rela-
tion Eh(x) = exp Ec(x) continues to hold. In some cases (such as graphs
and digraphs) we have an explicit formula for h(n), but this is an incidental
“bonus.”
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12 Trees and the Composition of Generating Functions

5.2.2 Example. Suppose we are interested in not just the number of connected
graphs on an n-element vertex set, but rather the number of such graphs with
exactly k components. Let ck(n) denote this number, and define

F(x, t) =
∑
n≥0

∑
k≥0

ck(n)tk
xn

n!
. (5.23)

There are two ways to obtain this generating function from Theorem 5.1.4 and
Corollary 5.1.6. We can either set f (n) = c(n) and g(k) = tk in (3), or set
f (n) = c(n)t in (5.5). In either case we have

h(n) =
∑
k≥0

ck(n)tk .

Thus

F(x, t) = exp t
∑
n≥1

c(n)
xn

n!

=

∑
n≥0

2(
n
2)

xn

n!

t

.

Again the same reasoning works equally as well for posets, digraphs, topolo-
gies, . . . In general, if Eh(x) is the exponential generating function for the total
number of structures on an n-set (where of course each structure is a unique
disjoint union of connected components), then Eh(x)t also keeps track of the
number of components, as in (5.23). Equivalently, if h(n) is the number of
structures on an n-set and ck(n) the number with k components, then∑

k≥0

tkEck (x) = Eh(x)t

= exp tEc1 (x)

=

∑
k≥0

tk
Ec1 (x)k

k!
, (5.24)

so

Eck (x) =
1

k!
Ec1 (x)k

=
1

k!
(log Eh(x))k ,

where we set ck(0) = δ0k and h(0) = 1. In particular, if h(n) = n! (the number
of permutations of an n-set) then Eh(x) = (1− x)−1 while ck(n) = c(n, k), the
number of permutations of an n-set with k cycles. In other words, c(n, k) is a
signless Stirling number of the first kind (see Chapter 1.3); and we get∑

n≥0

c(n, k)
xn

n!
=

1

k!

[
log(1− x)−1

]k
. (5.25)
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5.2 Applications of the Exponential Formula 13

Let us give one further “direct” application, concocted for the elegance of the
final answer.

5.2.3 Example. Suppose we have a room of n children. The children gather
into circles by holding hands, and one child stands in the center of each circle.
A circle may consist of as few as one child (clasping his or her hands), but
each circle must contain a child inside it. In how many ways can this be done?
Let this number be h(n). An allowed arrangement of children is obtained by
choosing a partition of the children, choosing a child c from each block B to
be in the center of the circle, and arranging the other children in the block B in
a circle about c. If #B = i ≥ 2, then there are i · (i− 2)! ways to do this, and no
ways if i = 1. Hence (setting h(0) = 1),

Eh(x) = exp
∑
i≥2

i · (i− 2)!
xi

i!

= exp x
∑
i≥1

xi

i

= exp x log(1− x)−1

= (1− x)−x.

Similarly, if ck(n) denotes the number of arrangements of n children with
exactly k circles, then ∑

n≥0

∑
k≥0

ck(n)tk
xn

n!
= (1− x)−xt.

We next consider some problems concerned with successively partitioning
the blocks of a partition.

5.2.4 Example. Let B(n) = B1(n) denote the nth Bell number, that is, B(n) =
#5n (Chapter 1.9). Setting each f (i) = 1 in (5.4), we obtain

EB(x) =
∑
n≥0

B(n)
xn

n!
= exp(ex

− 1).

(See equation (1.94f).) Now let B2(n) be the number of ways to partition an n-
set S, and then partition each block. Equivalently, B2(n) is the number of chains
0̂ ≤ π1 ≤ π2 ≤ 1̂ in5n. Putting each f (i) = B(i) in (5.4), or equivalently using
Theorem 5.1.11 to compute φ(ζ 3), we obtain∑

n≥0

B2(n)
xn

n!
= exp[exp(ex

− 1)− 1].
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14 Trees and the Composition of Generating Functions

123456789

14689
3

257

2 5 7
1

469 8

49

4 9

Figure 5.3 A total partition of [9] represented as a tree

Continuing in this manner, if Bk(n) denotes the number of chains 0̂ ≤ π1 ≤

π2 ≤ · · · ≤ πk ≤ 1̂ in 5n, then∑
n≥0

Bk(n)
xn

n!
= 1+ e〈k+1〉(x),

where e(x) = e〈1〉(x) = ex
− 1 and e〈k+1〉(x) = e(e〈k〉(x)).

5.2.5 Example. The preceding example was quite straightforward. Consider
now the following variation. Begin with an n-set S, and for n ≥ 2 partition S
into at least two blocks. Then partition each non-singleton block into at least
two blocks. Continue partitioning each non-singleton block into at least two
blocks, until only singletons remain. Call such a procedure a total partition
of S. A total partition can be represented in a natural way by an (unordered)
tree, as illustrated in Figure 5.3 for S = [9]. Notice that only the endpoints
(leaves) need to be labelled; the other labels are superfluous. Let t(n) denote
the number of total partitions of S (with t(0) = 0). Thus t(1) = 1, t(2) =
1, t(3) = 4, t(4) = 26.

Consider what happens when we choose a partition π of S and then a total
partition of each block of π . If |π | = 1, then we have done the equivalent
of choosing a total partition of S. On the other hand, partitioning S into at
least two blocks and then choosing a total partition of each block is equivalent
to choosing a total partition of S itself. Thus altogether we obtain each total
partition of S twice, provided #S ≥ 2. If #S = 1, then we obtain the unique
total partition of S only once. If #S = 0 (i.e., S = ∅) then our procedure can
be done in one way (i.e., do nothing), but by our convention there are no total
partitions of S. Hence from Corollary 5.1.6 we obtain
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5.2 Applications of the Exponential Formula 15

Figure 5.4 A binary total partition represented as a tree

exp Et(x) = 2Et(x)− x+ 1. (5.26)

In other words, writing F〈−1〉(x) for the compositional inverse of F(x) = ax+
bx2
+ · · · where a 6= 0, that is,

F(F〈−1〉(x)) = F〈−1〉(F(x)) = x,

we have

Et(x) = (1+ 2x− ex)〈−1〉. (5.27)

It does not seem possible to obtain a simpler result. In particular, in Section 5.4
we will discuss methods for computing the coefficients of compositional
inverses, but these methods don’t seem to yield anything interesting when
F(x) = 1 + 2x − ex. For some enumeration problems closely related to total
partitions, see Exercises 26 and 40.

5.2.6 Example. Consider the variation of the preceding example where each
non-singleton block must be partitioned into exactly two blocks. Call such a
procedure a binary total partition of S, and denote the number of them by
b(#S). As with total partitions, set b(0) = 0. The tree representing a binary
total partition is a complete (unordered) binary tree, as illustrated in Figure 5.4.
(Thus b(n) is just the number of (unordered) complete binary trees with n
labelled endpoints.) It now follows from Theorem 5.1.4 (with g(k) = δ2k)
or just by (5.3) (with k = 2 and g(2) = 1), in a similar way to how we obtained
(5.26), that

1

2
Eb(x)2

= Eb(x)− x. (5.28)
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16 Trees and the Composition of Generating Functions

Figure 5.5 A decreasing labelled tree corresponding to a binary total partition

Solving this quadratic equation yields

Eb(x) = 1−
√

1− 2x

= 1−
∑
n≥0

(
1/2

n

)
(−2)nxn

=

∑
n≥1

1 · 3 · 5 · · · (2n− 3)
xn

n!
,

whence

b(n) = 1 · 3 · 5 · · · (2n− 3).

As usual, when such a simple answer is obtained a direct combinatorial proof
is desired. Now 1 ·3 ·5 · · · (2n−3) is easily seen to be the number of partitions
of [2n− 2] of type (2n−1), that is, with n− 1 2-element blocks. Given a binary
total partition β of [n], we obtain a partition π of [2n − 2] of type (2n−1) as
follows. In the tree representing β (such as Figure 5.4), delete all the labels
except the endpoints (leaves). Now iterate the following procedure until all
vertices are labelled except the root. If labels 1, 2, . . . , m have been used, then
label by m + 1 the vertex v satisfying: (a) v is unlabelled and both successors
of v are labelled, and (b) among all unlabelled vertices with both successors
labelled, the vertex having the successor with the least label is v. Figure 5.5
illustrates this procedure carried out for the tree in Figure 5.4. Finally let the
blocks of π consist of the vertex labels of the two successors of a non-endpoint
vertex. Thus from Figure 5.5 we obtain

π = {{1, 4}, {2, 9}, {3, 10}, {5, 7}, {6, 8}, {11, 12}}.

We leave the reader to check (not entirely trivial) that this procedure yields the
desired bijection.
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5.2 Applications of the Exponential Formula 17

Certain problems involving symmetric matrices are well-suited for use of the
exponential formula. (Analogous results for arbitrary matrices are discussed in
Section 5.5.) The basic idea is that a symmetric matrix A = (auv) whose rows
and columns are indexed by a set V may be identified with a graph G = GA

on the vertex set V , with an edge uv connecting u and v labelled by auv. (If
auv = 0, then we simply omit the edge uv, rather than labelling it by 0. More
generally, if auv ∈ P then it is often convenient to draw auv (unlabelled) edges
between u and v.) Sometimes the connected components of GA have a simple
structure, so that the exponential formula can be used to enumerate all the
graphs (or matrices).

5.2.7 Example. As in Proposition 4.6.21, let Sn(2) denote the number of n×n
symmetric N-matrices A with every row (and hence every column) sum equal
to two. The graph GA has every vertex of degree two (counting loops once
only). Hence the connected components of GA must be (a) a single vertex with
two loops, (b) a double edge between two vertices, (c) a cycle of length ≥ 3, or
(d) a path of length≥ 1 with a loop at each end. There are 1

2 (n−1)! (undirected)
cycles on n ≥ 3 vertices, and 1

2 n! (undirected) paths on n ≥ 2 vertices with a
loop at each end. Hence by Corollary 5.1.6,

∑
n≥0

Sn(2)
xn

n!
= exp

x+
x2

2!
+

1

2

∑
n≥3

(n− 1)!
xn

n!
+

1

2

∑
n≥2

n!
xn

n!


= exp

x2

4
+

1

2

∑
n≥1

xn

n
+

1

2

∑
n≥1

xn


= exp

(
x2

4
+

1

2
log(1− x)−1

+
x

2(1− x)

)

= (1− x)−1/2 exp
(

x2

4
+

x

2(1− x)

)
.

Using the technique of Exercise 24(c), we obtain the recurrence (writing Sm =

Sm(2))

Sn+1 = (2n+ 1)Sn − (n)2 Sn−1 − (n)2 Sn−2 +
1

2
(n)3 Sn−3, n ≥ 0.

5.2.8 Example. Suppose that in the previous example A must be a 0–1 matrix
(i.e., the entry two is not allowed). Now the components of GA of type (a) or
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18 Trees and the Composition of Generating Functions

(b) above are not allowed. If we let S∗n (2) denote the number of such matrices,
it follows that∑

n≥0

S∗n (2)
xn

n!
= e−x− x2

2
∑
n≥0

Sn(2)
xn

n!

= (1− x)−1/2 exp
(
−x−

x2

4
+

x

2(1− x)

)
.

As a further variation, suppose we again allow two as an entry, but that tr A = 0
(i.e., all main diagonal entries are zero). Now the components of GA cannot
have loops, so are of type (b) or (c). Hence, letting Tn(2) be the number of such
matrices, we have

∑
n≥0

Tn(2)
xn

n!
= exp

x2

2!
+

1

2

∑
n≥3

(n− 1)!
xn

n!


= (1− x)−1/2 exp

(
−

x

2
+

x2

4

)
.

Similarly, if T∗n (2) denotes the number of traceless symmetric n×n 0-1 matrices
with line sum 2, then

∑
n≥0

T∗n (2)
xn

n!
= exp

1

2

∑
n≥3

(n− 1)!
xn

n!


= (1− x)−1/2 exp

(
−

x

2
−

x2

4

)
. (5.29)

The recurrence relations for S∗n (2), Tn(2), and T∗n (2) turn out to be (using the
technique of Exercise 24(c))

S∗n+1(2) = 2nS∗n (2)− n(n− 2) S∗n−1(2)−
1

2
(n)3 S∗n−3(2)

Tn+1(2) = nTn(2)+ nTn−1(2)−
(n

2

)
Tn−2(2)

T∗n+1(2) = nT∗n (2)+
(n

2

)
T∗n−2(2),

all valid for n ≥ 0.

The next example is an interesting variation of the preceding two, where it
is not a priori evident that the exponential formula is relevant.

5.2.9 Example. Let Xn = (xij) be an n × n symmetric matrix whose entries
xij are independent indeterminates (over R, say), except that xij = xji. Let L(n)
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5.2 Applications of the Exponential Formula 19

be the number of terms (i.e., distinct monomials) in the expansion of det Xn,
where we use only the variables xij for i ≤ j. For instance,

det X3 = x11x22x33 + 2x12x23x13 − x2
13x22 − x11x2

23 − x2
12x33.

Hence L(3) = 5, since the above sum has five terms. One might ask whether
we should count a monomial which does arise in the expansion of det Xn but
whose coefficient because of cancellation turns out to be zero. But we will soon
see that no cancellation is possible; all occurrences of a given monomial have
the same sign. Suppose now that π ∈ Sn. Define

Mπ = x1,π (1)x2,π (2) · · · xn,π (n),

where we set xji = xij if j > i. Thus Mπ is the monomial corresponding
to π in the expansion of det Xn. Define a graph Gπ whose vertex set is [n],
and with an (undirected) edge between i and π (i) for 1 ≤ i ≤ n. Thus the
components of Gπ are cycles of length ≥ 1. (A cycle of length 1 is a loop,
and of length 2 is a double edge.) The crucial observation, whose easy proof
we omit, is that Mπ = Mσ if and only if Gπ = Gσ . Since a permutation π
is even (respectively, odd) if and only if Gπ has an even number (respectively,
odd number) of cycles of even length, it follows that if Mπ = Mσ then Mπ

and Mσ occur in the expansion of det Xn with the same sign. In other words,
there is no cancellation in the expansion of det Xn. Also note that a graph G on
[n], every component of which is a cycle, is equal to Gπ for some π ∈ Sn. (In
fact, the number of such π is exactly 2d(π ), where π has d(π ) cycles of length
≥ 3.) It follows that L(n) is simply the number of graphs on [n] for which every
component is a cycle (including loops and double edges). Hence

∑
n≥0

L(n)
xn

n!
= exp

x+
x2

2!
+

1

2

∑
n≥3

(n− 1)!
xn

n!


= (1− x)−1/2 exp

(
x

2
+

x2

4

)
.

Note also that if Pπ is the permutation matrix corresponding to π ∈ Sn, then
Gπ = Gσ if and only if Pπ + P−1

π = Pσ + P−1
σ . Hence L(n) is the number

of distinct matrices of the form Pπ + P−1
π , where π ∈ Sn. Equivalently, if we

define π , σ ∈ Sn to be equivalent if every cycle of π is a cycle or inverse of a
cycle of σ , then L(n) is the number of equivalence classes.

We conclude this section with some examples where it is more natural to use
the permutation version of the exponential formula (Corollary 5.1.9).
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20 Trees and the Composition of Generating Functions

5.2.10 Example. Let π ∈ Sn be a permutation. Suppose that π has ci = ci(π )
cycles of length i, so

∑
ici = n. Form a monomial

Z(π ) = Z(π , t) = tc1
1 tc2

2 · · · t
cn
n

in the variables t = (t1, t2, . . . ). We call Z(π ) the cycle index (or cycle indicator
or cycle monomial) of π . Define the cycle index or cycle index polynomial (or
cycle indicator, etc.) Z(Sn) (also denoted ZSn (t), PSn (t), Cyc(Sn, t), etc.) of
Sn by

Z(Sn) = Z(Sn, t) =
1

n!

∑
π∈Sn

Z(π ).

(In Chapter 7.7.24 we will consider the cycle index of other permutation
groups.) It is sometimes more convenient to work with the augmented cycle
index

Z̃(Sn) = n!Z(Sn) =
∑
π∈Sn

Z(π ).

For instance

Z̃(S1) = t1
Z̃(S2) = t21 + t2
Z̃(S3) = t31 + 3t1t2 + 2t3
Z̃(S4) = t41 + 6t21t2 + 8t1t3 + 3t22 + 6t4.

Clearly if we define f : P→ K by f (n) = tn, then

Z̃(Sn) =
∑
π∈Sn

f (#C1)f (#C2) · · · f (#Ck),

where C1, C2, · · · , Ck are the cycles of π . Hence by Corollary 5.1.9,∑
n≥0

Z̃(Sn)
xn

n!
= exp

∑
i≥1

ti
xi

i
. (5.30)

There are many interesting specializations of (5.30) related to enumerative
properties of Sn. For instance, fix r ∈ P and let er(n) be the number of π ∈ Sn

satisfying π r
= id. A permutation π satisfies π r

= id if and only if cd(π ) = 0
whenever d6 |r. Hence

er(n) = Z̃(Sn)

∣∣∣∣∣∣∣∣td = { 1, d|r
0, d6 |r.
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5.2 Applications of the Exponential Formula 21

It follows that

∑
n≥0

er(n)
xn

n!
= exp

∑
d≥1

td
xd

d


∣∣∣∣∣∣∣∣td=

 1, d|r
0, d6 |r

= exp

∑
d|r

xd

d

 . (5.31)

In particular, the number e2(n) of involutions in Sn satisfies∑
n≥0

e2(n)
xn

n!
= exp

(
x+

x2

2

)
. (5.32)

This is the same generating function encountered way back in equation (1.11).
Now we are able to understand its combinatorial significance more clearly.

There is a surprising connection between (a) Corollary 5.1.9, (b) the rela-
tionship between linear and circular words obtained in Proposition 4.7.13, and
(c) the bijection π 7→ π̂ discussed in Chapter 1.3 between permutations writ-
ten as products of cycles and as words. Basically, such a connection arises from
a formula of the type∑

n≥0

n! f (n)
xn

n!
= exp

∑
n≥1

(n− 1)! g(n)
xn

n!

because n! is the number of linear words (permutations) on [n], while (n− 1)!
is the number of circular words (cycles). The next example may be regarded as
the archetype for this line of thought.

5.2.11 Example. Let

F(x) =
∏

k

(1− tkx)−1, (5.33)

where k ranges over some index set, say k ∈ P. Thus

log F(x) =
∑

k

log(1− tkx)−1

=

∑
k

∑
n≥1

tnk
xn

n

=

∑
n≥1

pn(t)
xn

n
, (5.34)
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22 Trees and the Composition of Generating Functions

where pn(t) =
∑

k

tnk . On the other hand, it is clear from (5.33) that

F(x) =
∑
n≥0

hn(t)xn, (5.35)

where hn(t) is the sum of all monomials of degree n in t = (t1, t2, · · · ), that is,

hn(t) =
∑

a1+a2+···=n
ai∈N

ta1
1 ta2

2 · · · .

(In Chapter 7 we will analyze the symmetric functions pn(t) and hn(t), as well
as many others, in much greater depth.) From (5.34) and (5.35) we conclude∑

n≥0

n! hn(t)
xn

n!
= exp

∑
n≥1

pn(t)
xn

n
. (5.36)

We wish to give a direct combinatorial proof. By Corollary 5.1.9, the right-
hand side is the exponential generating function for the following structure:
Choose a permutation π ∈ Sn, and weight each cycle C of π by a monomial
t#C
k for some k. Define the total weight of π to be the product of the weights of

each cycle. For instance the list of structures of weight u2v (where u = t1 and
v = t2, say) is given by

(1)

u

(2)

u

(3)

v

(12)

uu

(3)

v

(1)

u

(2)

v

(3)

u

(13)

uu

(2)

v
(5.37)

(1)

v

(2)

u

(3)

u

(1)

v

(23)

uu

Moreover, the left-hand side of (5.36) is clearly the exponential generating
function for pairs (π , ta), where π ∈ Sn and ta is a monomial of degree n in t.
Thus the structures of weight u2v are given by

123, u2v 231, u2v

132, u2v 312, u2v (5.38)

213, u2v 321, u2v.

In both (5.37) and (5.38) there are six items.
In general, in order to prove (5.36) bijectively, we need to do the following.

Given a monomial ta of degree n, find a bijection φ : Ca → Sn, where Ca

is the set of all permutations π in Sn, with each cycle C weighted by t#C
j for

some j = j(C), such that the total weight 5Ct#C
j(C) is equal to ta. To describe φ,
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5.3 Enumeration of trees 23

first impose some linear ordering on the tj’s, say t1 < t2 < · · · . For fixed j, take
all the cycles C of π with weight t#C

j and write their standard representation (in
the sense of Proposition 1.3.1), that is, the largest element of each cycle is writ-
ten first in the cycle, and the cycles are written left-to-right in increasing order
of their largest elements. Remove the parentheses from this standard represen-
tation, obtaining a word wj. Finally set φ(π ) = (w, ta), where w = w1w2 · · ·

(juxtaposition of words). For instance, suppose π is the weighted permutation

π =
(19)

vv

(82)

uu

(3)

v

(547)

uuu

(6)

u

where u < v. The cycles weighted by u’s and v’s, respectively, have standard
form

(6)(754)(82) (weight u6)
(3)(91) (weight v3).

Hence

w1 = 675482, w2 = 391,

φ(π ) = (675482391, u6v3).

It is easy to check that φ is a bijection. Given (w, ta), the monomial ta deter-

mines the words wj with their weights t
|wj|

j . Each word wj then corresponds to

a collection of cycles C (with weight t|C|j ) using the inverse of the bijection
π 7→ π̂ of Chapter 1.3.

A similar argument leads to a direct combinatorial proof of equation (4.41);
see Exercise 21.

5.3 Enumeration of trees

Trees have a recursive structure which makes them highly amenable to the
methods of this chapter. We will develop in this section some basic properties
of trees as a prelude to the Lagrange inversion formula of the next section.
Trees are also fascinating objects of study for their own sake, so we will cover
some topics not strictly germane to the composition of generating functions.

For the basic definitions and terminology concerning trees, see Appendix
A of Volume 1. We also define a planted forest (also called a rooted forest or
forest of rooted trees) to be a graph for which every connected component is
a (rooted) tree. We begin with an investigation of the total number pk(n) of
planted forests with k components on the vertex set [n]. Note that p1(n) is just
the number r(n) of rooted trees on [n]. If S ⊆ [n] and #S = k, then define pS(n)
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24 Trees and the Composition of Generating Functions

Figure 5.6 A plane tree built from the subtrees of its root

to be the number of planted forests on [n] with k components, whose set of

roots is S. Thus pk(n) =
(n

k

)
pS(n), since clearly pS(n) = pT (n) if #S = #T .

5.3.1 Proposition. Let

y = R(x) =
∑
n≥1

r(n)
xn

n!
,

where r(n) as above is the number of rooted trees on the vertex set [n] (with
r(0) = 0). Then y = xey, or equivalently (since x = ye−y),

y = (xe−x)〈−1〉. (5.39)

Moreover, for k ∈ P we have

1

k!
yk
=

∑
n≥1

pk(n)
xn

n!
. (5.40)

Proof. By Corollary 5.1.6, ey is the exponential generating function for
planted forests on the vertex set [n]. By equation (5.19), xey is the expo-
nential generating function for the following structure on [n]. Choose a root
vertex i, and place a planted forest F on the remaining vertices [n] − {i}. But
this structure is equivalent to a tree with root i, whose subtrees of the root
are the components of F. (See Figure 5.6.) Thus xey is just the exponential
generating function for trees, so y = xey. Equation (5.40) then follows from
Proposition 5.1.3.

In the functional equation y = xey of Proposition 5.3.1, substitute xey for the
occurrence of y on the right-hand side to obtain

y = xexey
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5.3 Enumeration of trees 25

Again making the same substitution yields

y = xexexey

.

Iterating this procedure yields the “formula”

y = xexexex··
·

. (5.41)

The precise meaning of (5.41) is the following. Define y0 = x and for k ≥ 0,
yk+1 = xeyk . Then limk→∞ yk = y, where the limit exists in the formal power
series sense of Chapter 1.1. Moreover, by Corollary 5.1.6 and the second case
of Proposition 5.1.15, we see that

yk =
∑
n≥1

rk(n)
xn

n!
,

where rk(n) in the number of rooted trees on [n] of length ≤ k. For instance,

y1 = xex
=

∑
n≥1

n
xn

n!
,

so r1(n) = n (as is obvious from the definition of r1(n)).
The following quantities are closely related to the number r(n) of rooted

trees on the vertex set [n]:

t(n) = number of free trees on [n]

f (n) = number of free forests (i.e., disjoint unions of free trees) on [n]

p(n) = number of planted forests on [n].

We set t(0) = 0, f (0) = 1, p(0) = 1. Also write T(x) = Et(x), F(x) = Ef (x),
and P(x) = Ep(x). It is easy to verify the following relations:

r(n) = np(n− 1) = nt(n), p(n) = t(n+ 1)

F(x) = eT(x), P(x) = eR(x) (5.42)

P(x) = T ′(x), R(x) = xP(x).
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26 Trees and the Composition of Generating Functions

Figure 5.7 Constructing the Prüfer sequence of a labelled forest

5.3.2 Proposition. We have pS(n) = knn−k−1 for any S ∈
([n]

k

)
. Thus

pk(n) = k

(
n

k

)
nn−k−1

=

(
n− 1

k − 1

)
nn−k

r(n) = nn−1

t(n) = nn−2

p(n) = (n+ 1)n−1.

First proof. The case n = k is trivial, so assume n ≥ k + 1. The number of
sequences s = (s1, . . . , sn−k) with si ∈ [n] for 1 ≤ i ≤ n− k − 1 and sn−k ∈ S
is equal to knn−k−1. Hence we seek a bijection γ : Tn,S → [n]n−k−1

×S, where
Tn,S is the set of planted forests on [n] with root set S. Given a forest σ ∈ Tn,S ,
define a sequence σ1, σ2, . . . , σn−k+1 of subforests (all with root set S) of σ as
follows: Set σ1 = σ . If i < n − k + 1 and σi has been defined, then define
σi+1 to be the forest obtained from σi by removing its largest nonroot endpoint
vi (and the edge incident to vi). Then define si to be the unique vertex of σi

adjacent to vi, and let γ (σ ) = (s1, s2, . . . , sn−k). The sequence γ (σ ) is called
the Prüfer sequence or Prüfer code of the planted forest σ . Figure 5.7 illustrates
this construction with a forest σ = σ1 ∈ T11,{2,7} and the subforests σi, with
vertex vi circled. Hence for this example γ (σ ) = (5, 11, 5, 2, 9, 2, 7, 5, 7).

We claim that the map γ : Tn,S → [n]n−k−1
× S is a bijection. The cru-

cial fact is that the largest element of [n] − S missing from the sequence
(s1, . . . , sn−k) must be v1 [why?]. Since v1 and s1 are adjacent, we are reduced
to computing σ2. But γ (σ2) = (s2, s3, . . . , sn−k) (keeping in mind that the ver-
tex set of σ2 is [n]− {v1}, and not [n− 1]). Hence by induction on n (the case
n = k+1 being easy) we can recover σ uniquely from any (s1, . . . , sn−k), so the
proof is complete.

5.3.3 Example. Let S = {2, 7} and (s1, . . . , s9) = (5, 11, 5, 2, 9, 2, 7, 5, 7), so
n − k = 9 and n = 11. The largest element of [11] missing from (s1, . . . , s9)
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5.3 Enumeration of trees 27

is 10. Hence 10 is an endpoint of σ adjacent to s1 = 5. The largest element of
[11] − {10} missing from (s2, . . . , s9) = (11, 5, 2, 9, 2, 7, 5, 7) is 8. Hence 8 is
an endpoint of σ2 adjacent to s2 = 11. The largest element of [11] − {8, 10}
missing from (s3, . . . , s9) = (5, 2, 9, 2, 7, 5, 7) is 11. Hence 11 is an endpoint
of σ3 adjacent to s3 = 5. Continuing in this manner, we obtain the sequence
of endpoints 10, 8, 11, 6, 4, 9, 3, 1, 5. By beginning with the roots 2 and 7, and
successively adding the endpoints in reverse order to the vertices (s9, . . . , s1) =
(7, 5, 7, 2, 9, 2, 5, 11, 5), we obtain the forest σ = σ1 of Figure 5.7.

Second proof of Proposition 5.3.2. We will show by a suitable bijection that

npk(n) = k
(n

k

)
nn−k . (5.43)

The underlying idea of the bijection is that a permutation can be represented
both as a word and as a disjoint union of cycles. The bijection can be simplified
somewhat for the case of rooted trees (k = 1), so we will present this special
case first. Given a rooted tree τ on the vertex set [n], circle a vertex s ∈ [n].
Let w = w1w2 · · ·wk be the sequence (or word) of vertices in the unique path
P in τ from the root r to s. Regard w as a permutation of its elements written in
increasing order. For instance, if w = 57283, then w represents the permutation
given by w(2) = 5, w(3) = 7, w(5) = 2, w(7) = 8, w(8) = 3, which in
cycle notation is (2, 5)(3, 7, 8). Let Dw be the directed graph with vertex set
A = {w1, . . . , wk}, and with an edge from j to w(j) for all j ∈ A. Thus Dw is a
disjoint union of (directed) cycles. When we remove from τ the edges of the
path from r to s, we obtain a disjoint union of trees. Attach these trees to Dw by
identifying vertices with the same label, and direct all the edges of these trees
toward Dw. We obtain a digraph D(τ , s) for which all vertices have outdegree
one. Moreover, the rooted tree τ , together with the distinguished vertex s, can
be uniquely recovered from D(τ , s) by reversing the above steps. Since there
are n choices for the vertex s, it follows that nr(n) is equal to the number of
digraphs on the vertex set [n] for which every vertex has outdegree one. But
such a digraph is just the digraph Df of a function f : [n]→ [n] (i.e., for each
j ∈ [n] draw an edge from j to f ( j)). Since there are nn such functions, we get
nr(n) = nn, so r(n) = nn−1 as desired.

If we try the same idea for arbitrary planted forests σ , we end up at the
end needing to count functions f from some subset B of [n] to [n] such that
the digraph Df with vertex set [n] and edges j → f ( j) is nonacyclic (i.e.,
has at least one directed cycle). Since there is no obvious way to count such
functions, some modification of the above bijection is needed. Note that the
nonacyclicity condition is irrelevant when k = 1, since when B = [n] the
digraph Df is always nonacyclic.
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Figure 5.8 An illustration of the second proof of Proposition 5.3.2

4

10 8

58 5 10 4

P

Dw

Figure 5.9 Two graphical representations of a permutation

We now proceed to the correct bijection in the general case. Let σ be a
planted forest on [n] with k components. Circle a vertex i of σ . Figure 5.8
illustrates the case n = 16, k = 2, i = 14. The vertex i belongs to a com-
ponent τ of σ . Remove from τ the complete subtree τi with root i (keeping i
circled). If i is not the root of τ then let i′ be the unique predecessor of i in τ .
(If i is a root, then ignore all steps below involving i′.) Let w = w1w2 · · ·wk

be the sequence (or word) of vertices in the unique path P in τ − τi from the
root r to i′. Let A = {w1, . . . , wk} be the set of vertices of P. In the example
of Figure 5.8, we have w = 8, 5, 10, 4. Regard w as a permutation of its ele-
ments written in increasing order. For our example, the permutation is given
by w(4) = 8, w(5) = 5, w(8) = 10, w(10) = 4, which in cycle notation is
(4, 8, 10)(5). Let Dw be the directed graph with vertex set A, and with an edge
from j to w(j) for all j ∈ A. (See Figure 5.9.)
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Figure 5.10 The digraph D(σ , i)

When we remove from τ − τi the edges of the path P, we obtain a collection
of (rooted) trees whose roots are the vertices in P. Attach these trees to Dw

by identifying vertices with the same label. Direct all the edges of these trees
toward Dw. For each component of σ other than τ , and for τi, direct their edges
toward the root. We obtain a digraph D(σ , i) on [n] for which k vertices have
outdegree zero and the remaining n−k vertices have outdegree one. Moreover,
one of the vertices of outdegree zero is circled. (See Figure 5.10.) If i is a root
of τ , then D(σ , i) is just σ with all edges directed toward roots.

Let B be the set of vertices of D(σ , i) of outdegree one. We may identify
D(σ , i) with the function f : B→ [n] defined by f (a) = b if a→ b is an edge
of D(σ , i). Moreover, the circled vertex i belongs to [n]− B.

It is not difficult to reverse all the steps and obtain the pair (σ , i) from ( f , i).
There are npk(n) pairs (σ , i). We can choose B to be any (n−k)-subset of [n] in(n

k

)
ways, then choose i ∈ [n]−B in k ways, and finally choose f : B→ [n] in

nn−k ways. Hence (5.43) follows.
The surprising formula

R(xe−x) =
∑
n≥1

nn−1 (xe−x)n

n!
= x (5.44)

inherent in equation (5.39) and the formula r(n) = nn−1 of Proposition 5.3.2,
can be proved directly as follows:∑

n≥1

nn−1 (xe−x)n

n!
=

∑
n≥1

nn−1xn

n!

∑
k≥0

(−nx)k

k!

=

∑
m≥1

xm

m!

m∑
j=1

(
m

j

)
(−1)m+jjm−1

=

∑
m≥1

xm

m!

(
1m0m−1

− (−1)m0m−1
)

, (5.45)
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30 Trees and the Composition of Generating Functions

by applying (1.98) to the function f ( j) = jm−1. Here we must interpret 00
= 1.

Then by Proposition 1.9.2(a), the sum in (5.45) collapses to the single term x.
The two proofs of Proposition 5.3.2 lead to an elegant refinement of the

formula r(n) = nn−1. Given a vertex v of a planted forest σ , define the degree
deg v of v to be the number of successors of v. Thus v is an endpoint of σ if
and only if deg v = 0. If the vertex set of σ is [n], then define the ordered
degree sequence 1(σ ) = (δ1, . . . , δn), where δi = deg i. It is easy to see that
a sequence (δ1, . . . , δn) ∈ Nn is the ordered degree sequence of some planted
forest σ on [n] with k components if and only if

n∑
i=1

δi = n− k. (5.46)

5.3.4 Theorem. Let δ = (δ1, . . . , δn) ∈ Nn with
∑
δi = n − k. The number

N(δ) of planted forests σ on the vertex set [n] (necessarily with k components)
with ordered degree sequence 1(σ ) = δ is given by

N(δ) =
(

n− 1

k − 1

)(
n− k

δ1, δ2, . . . , δn

)
.

Equivalently,∑
σ

xdeg 1
1 · · · xdeg n

n =

(
n− 1

k − 1

)
(x1 + · · · + xn)n−k , (5.47)

where σ ranges over all planted forests on [n] with k components.

First proof. Consider the first proof of Proposition 5.3.2. The number of
times j ∈ [n] appears in the sequence γ (σ ) is clearly equal to deg j, since j is
the predecessor of exactly deg j vertices vi. Hence for fixed root set S,

∑
σ∈Tn,S

xdeg 1
1 · · · xdeg n

n = (x1 + · · · + xn)n−k−1

(∑
i∈S

xi

)
.

Now sum over all S ∈
([n]

k

)
to obtain (5.47).

Second proof. Now consider the second proof of Proposition 5.3.2. The key
observation here is that for each j ∈ [n], the degree of vertex j in the planted
forest σ is equal to the indegree of j in the digraph D(σ , i), or equivalently,
deg j = #f −1(j). Hence

n
∑
σ

xdeg 1
1 · · · xdeg n

n = k
∑
B⊆[n]

#B=n−k

∑
f :B→[n]

x#f −1(1)
1 · · · x#f −1(n)

n , (5.48)
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where σ ranges over all k-component planted forests on [n]. The inner
sum in the right-hand side of (5.48) is independent of B and is equal to
(x1 + · · · + xn)n−k . Hence

n
∑
σ

xdeg 1
1 · · · xdeg n

n = k

(
n

k

)
(x1 + · · · + xn)n−k ,

which is equivalent to (5.47).
There is an alternative way of stating Theorem 5.3.4 which is sometimes

more convenient. Given a planted forest σ , define the type of σ to be the
sequence

type σ = (r0, r1, . . . ),

where ri vertices of σ have degree i. We also write type σ = (r0, r1, . . . , rm) if
rj = 0 for j > m. It follows easily from (5.46) that a sequence r = (r0, r1, . . . )
of nonnegative integers is the type of some planted forest with n vertices and k
components if and only if∑

ri = n,
∑

(i− 1)ri = −k. (5.49)

5.3.5 Corollary. Let r = (r0, r1, . . . ) be a sequence of nonnegative integers
satisfying (5.49). Then the number M(r) of planted forests σ on the vertex set
[n] (necessarily with k components) of type r is given by

M(r) =
(

n− 1

k − 1

)
(n− k)!

0!r01!r1 · · ·

(
n

r0, r1, . . .

)

=
k

n

(
n

k

)
(n− k)!

0!r01!r1 · · ·

(
n

r0, r1, . . .

)
.

We have been considering up to now the case of labelled trees, that is, trees
whose vertices are distinguishable. We next will deal with unlabelled plane
forests σ , so the vertices of σ are regarded as indistinguishable, but the subtrees
at any vertex (as well as the components themselves of σ ) are linearly ordered.
This automatically makes the vertices of σ distinguishable (in other words, an
unlabelled plane forest has only the trivial automorphism), so it really makes
no difference whether or not the vertices of σ are labelled. (An unlabelled plane
forest with n vertices has n! labellings.) Thus all plane forests will henceforth
be assumed to be unlabelled. We continue to define the degree of a vertex v to
be the number of successors (children) of v, and the type of σ is r = (r0, r1, . . . )
if ri vertices have degree i. Equation (5.49) continues to be the condition on
nonnegative integers r0, r1, . . . for there to exist a plane forest with n vertices,
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32 Trees and the Composition of Generating Functions

Figure 5.11 The ten plane trees of type (3, 1, 2)

Figure 5.12 A plane forest of type (7, 2, 2, 1)

k components, and type r = (r0, r1, . . . ). Thus, for example, Figure 5.11 shows
the ten plane trees of type (3, 1, 2), while Figure 5.12 illustrates a plane forest
with 12 vertices, 3 components, and type (7, 2, 2, 1).

Our goal here is to enumerate unlabelled plane forests of a given type. This
result will be used in the next section to prove the Lagrange inversion formula.
It is convenient to work in the context of words in free monoids, as discussed
in Section 4.7. Our alphabet A will consist of letters x0, x1, x2, . . . (For plane
forests with maximum degree m, it will suffice to take A = {x0, . . . , xm}.)
The empty word is denoted by 1. Define the weight φ(xi) of the letter xi by
φ(xi) = i− 1, and extend φ to A∗ by

φ(w1w2 · · ·wj) = φ(w1)+ φ(w2)+ · · · + φ(wj),

where each wi ∈ A. (Set φ(1) = 0.) Define a subset B ⊂ A∗ by

B = {w ∈ A∗ : φ(w) = −1; and if w = uv where v 6= 1, then φ(u) ≥ 0}.
(5.50)

The elements of B are called Łukasiewicz words; see Example 6.6.7 for further
information.

5.3.6 Lemma. The monoid B∗ generated by B is very pure (and hence free)
with basis B. (See Chapter 4.7 for relevant definitions.)
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Proof. Let w = w1 · · ·wm ∈ B∗, where wi ∈ A. Let j be the least integer for
which φ(w1 · · ·wj) < 0, so in fact φ(w1 · · ·wj) = −1 and u = w1 · · ·wj ∈ B.
Clearly if w = vv′ with v ∈ B then u = v. Thus by induction on the length of
w, we obtain a unique factorization of w into elements of B, so B∗ is free with
basis B.

To show that B∗ is very pure, it suffices to show [why?] that we cannot have
u, v, w ∈ A+ := A∗ − {1} with uv ∈ B and vw ∈ B. But if uv ∈ B then
φ(u) ≥ 0 and φ(u)+ φ(v) = −1, so φ(v) < 0. This contradicts vw ∈ B, so B∗
is very pure.

Recall from Chapter 4.7 that if w = w1w2 · · ·wm ∈ A∗ with wi ∈ A,
then a cyclic shift wiwi+1 · · ·wmw1 · · ·wi−1 of w is called a conjugate (or
A-conjugate if there is a possibility of confusion) of w. (The reason for this ter-
minology is that in a group G, the elements w1w2 · · ·wm and wiwi+1 · · ·wi−1

are conjugate in the usual group-theoretic sense.)

5.3.7 Lemma. A word w ∈ A∗ is a conjugate of a word in B∗ if and only if
φ(w) < 0.

First proof. Since φ(w) is unaffected by conjugation, clearly φ(w) < 0 for
every conjugate of a word in B∗. We show the converse by induction on the
length (in A∗) `(w) of w. The assertion is clear for `(w) = 0 (so w = 1),
so assume it for words of length < m and let w = w1 · · ·wm where wi ∈ A
and φ(w) < 0. Since φ(w1) + · · · + φ(wm) < 0 and since φ(wi) < 0 only
when φ(wi) = −1, it is easily seen that some conjugate w′ of w has the form
w′ = xs+1xs

0v for some s ≥ 0. Since φ(v) = φ(w′) < 0, it follows by induction
that some conjugate v′ of v lies in B∗. Specifically, say that v = yz where
zy ∈ B∗ and y 6= 1 (so that if v itself is in B∗, then we take y = v and z = 1).
But then it is easily seen that zxs+1xs

0y ∈ B∗. Since zxs+1xs
0y is a conjugate of

w, the proof follows by induction.
Second proof (sketch). The previous proof was straightforward but not

particularly enlightening. We sketch another proof based on geometrical con-
siderations which is more intuitive. Given any word u = u1 · · · um ∈ A∗, with
ui ∈ A, associate with u a lattice path LP(u) with m steps in R2 as follows.
Begin at (0, 0), and let the i-th step, for 1 ≤ i ≤ m, be (1,φ(ui)). Now suppose
w ∈ A∗ and φ(w) < 0, and consider the path LP(w2). Figure 5.13 illustrates
LP(w2) for w = x0x1x2

0x2x2
0x2x0x3. Suppose φ(w) = −k. Let B be the leftmost

lowest point on LP(w2), and let A be the leftmost point which is exactly k levels
higher than B. (See Figure 5.13.) The horizontal distance between A and B is
exactly m. If we translate the part of LP(w2) between A and B so that A is at
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Figure 5.13 A lattice path LP(w2)

the origin, then the resulting path is equal to LP(v), where v is a conjugate of w
belonging to B∗.

5.3.8 Example. Let w = x0x1x2
0x2x2

0x2x0x3 as in the second proof above. From
Figure 5.13 we see that if A is translated to (0, 0) then the path between A
and B is LP(v) where v= x2x0x3x0x1x2

0x2x2
0. The unique factorization of v into

elements of B is

v = (x2x0x3x0x1x2
0)(x2x2

0).

Since φ(w) = −2 and B∗ is very pure, there are precisely two conjugates of w
which belong to B∗, namely, v and

u = (x2x2
0)(x2x0x3x0x1x2

0).

In general, if φ(w)=−k then precisely k conjugates of w belong to B∗. How-
ever, these conjugates might not be all distinct elements of A∗. For instance, if
w = xk

0 then all k conjugates of w are equal to w.
We now wish to associate with an unlabelled plane forest σ with n vertices a

word w(σ ) in A∗ of length n (and weight φ(w(σ )) = −k, where σ has k com-
ponents). To do this, we first need to define a certain canonical linear ordering
on the vertices of σ , called depth first order or preorder, and denoted ord(σ ).
It is defined recursively as follows:

(a) If σ has k ≥ 2 components τ1, . . . , τk (listed in the order defining σ as a
plane forest), then set

ord(σ ) = ord(τ1), . . . , ord(τk) (concatenation of words).

(b) If σ has one component, then let τ1, . . . , τj be the subtrees of the root v
(listed in the order defining σ as a plane tree). Set

ord(σ ) = v, ord(τ1), . . . , ord(τj) (concatenation of words).
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Figure 5.14 A plane tree traversed in preorder

The preorder on a plane tree has an alternative informal description as fol-
lows. Imagine that the edges of the tree are wooden sticks, and that a worm
begins just left of the root and crawls along the outside of the sticks until (s)he
(or it) returns to the starting point. Then the order in which vertices are seen
for the first time is preorder. Figure 5.14 shows the path of the worm on a plane
tree τ , with the vertices labelled 1 to 11 in preorder.

Given a plane forest σ , let ord(σ ) = (v1, . . . , vn), and set δi = deg vi (the
number of successors of vi). Now define a word w(σ ) ∈ A∗ by

w(σ ) = xδ1xδ2 · · · xδn .

For the forest σ of Figure 5.12 we have

w(σ ) = x2x3x5
0x2

1x2x2
0,

while for the tree τ of Figure 5.14,

w(τ ) = x3x1x2x3
0x2x0x2x2

0.

The following fundamental lemma has a fairly straightforward proof by
induction and will be omitted here.

5.3.9 Lemma. The map σ 7→ w(σ ) is a bijection from the set of plane forests
σ to B∗.

We now have all the ingredients necessary for our main result on plane
forests.
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5.3.10 Theorem. Let r = (r0, r1, . . . , rm) ∈ Nm+1, with
∑

ri = n and
∑

(1−
i)ri = k > 0. Then the number P(r) of plane forests (necessarily with n vertices
and k components) of type r (i.e., ri vertices have i successors) is given by

P(r) =
k

n

(
n

r0, r1, . . . , rm

)
.

First proof. The proof is an immediate consequence of Lemma 4.7.14, but
for convenience we repeat the argument here. By Lemma 5.3.9, P(r) is equal
to the number of words w ∈ B∗ with ri xi’s for all i. (Regard ri = 0 for i > m.)
Denote by B∗r the set of all P(r) such words, and similarly let A∗r be the set of
all words in A∗ with ri xi’s for all i. Define a map ψ : B∗r × [n]→ A∗r × [k] as
follows. Let w = w1w2 · · ·wn = u1u2 · · · uk ∈ B∗r , where wi ∈ A and ui ∈ B.
Choose i ∈ [n] and suppose wi is a letter of uj. Then set

ψ(w, i) = (wiwi+1 · · ·wi−1, j).

By Lemma 5.3.6 ψ is injective, while by Lemma 5.3.7 (and the fact that
φ(w) = −k if w ∈ B∗r ) ψ is surjective. Hence

nP(r) = k(#A∗r ).

But clearly by the formula (1.22) for #S(M) we have

#A∗r =
(

n

r0, r1, . . . , rm

)
, (5.51)

and the proof follows.
Second proof. Let w ∈ A∗r (as defined in the first proof), and let C(w)

be the set of all distinct conjugates of w. If #C(w) = m then m divides
n, and every element of C(w) occurs exactly n/m times among the n con-
jugates of w. It follows from Lemma 5.3.6 that exactly k conjugates of
w belong to B∗. Hence there are exactly (k/n)m distinct conjugates of w
belonging to B∗, so the total number of distinct conjugates of elements of
A∗r belonging to B∗ is (k/n)(#A∗r ). The proof follows from Lemma 5.3.9
and (5.51).

The situation of the previous proof is simplest when k = 1. Here the
n conjugates wiwi+1 · · ·wi−1 of w = w1w2 · · ·wn ∈ A∗r are all distinct,
and exactly one of them lies in B∗. Thus P(r) = (1/n)(#A∗r ). The fact that
the conjugates of w are all distinct may be seen directly from the formula∑

(i− 1)ri = −k, since if w = vp then p|ri for all i, so p|k.
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5.4 The Lagrange inversion formula 37

5.3.11 Example. How many plane trees have three endpoints, one vertex of
degree one, and two of degree two? This is the case r = (3, 1, 2). Since

∑
(i−

1)ri = −1 · 3+ 0 · 1+ 1 · 2 = −1, such trees exist; and

P(r) =
1

6

(
6

3, 1, 2

)
= 10,

in agreement with Figure 5.11.

5.3.12 Example. How many plane binary trees τ have n + 1 endpoints?
(“Binary” means here that every non-endpoint vertex has two successors.
Without the adjective “plane”, “binary” has a different meaning as explained
in Appendix A of Volume 1.) One sees easily that τ has exactly n vertices of
degree two. Hence r = (n+ 1, 0, n), and

P(r) =
1

2n+ 1

(
2n+ 1

n

)
=

1

n+ 1

(
2n

n

)
,

a Catalan number. These numbers made several appearances in Volume 1 and
will be discussed in more detail in the next chapter (see in particular Exercise
6.19). Note that in the context of the second proof of Theorem 5.3.10, we obtain
the expression 1

2n+1

(2n+1
n

)
because there are

(2n+1
n

)
sequences of n 1’s and

n + 1−1’s, and each of them have 2n+1 distinct conjugates of which exactly
one has all its partial sums (except for the last sum) nonnegative. Alternatively,
there are

(2n
n

)
sequences of n 1’s and n + 1 −1’s that end with a −1. Each

of them has n + 1 distinct conjugates ending with a −1, of which exactly one
has all partial sums nonnegative except for the last partial sum. This gives
directly the expression 1

n+1

(2n
n

)
for the number of plane binary trees with n+1

endpoints.

5.4 The Lagrange inversion formula

The set xK[[x]] of all formal power series a1x+ a2x2
+ · · · with zero constant

term over a field K forms a monoid under the operation of functional compo-
sition. The identity element of this monoid is the power series x. Recall from
Example 5.2.5 that if f (x) = a1x + a2x2

+ · · · ∈ K[[x]], then we call a power
series g(x) a compositional inverse of f if f (g(x)) = g( f (x)) = x, in which case
we write g(x) = f 〈−1〉(x). The following simple proposition explains when f (x)
has a compositional inverse.

5.4.1 Proposition. A power series f (x) = a1x + a2x2
+ · · · ∈ K[[x]] has a

compositional inverse f 〈−1〉(x) if and only if a1 6= 0, in which case f 〈−1〉(x) is
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38 Trees and the Composition of Generating Functions

unique. Moreover, if g(x) = b1x + b2x2
+ · · · satisfies either f (g(x)) = x or

g( f (x)) = x, then g(x) = f 〈−1〉(x).

Proof. Assume that g(x) = b1x+ b2x2
+ · · · satisfies f (g(x)) = x. We then

have

a1(b1x+b2x2
+b3x3

+· · · )+a2(b1x+b2x2
+· · · )2

+a3(b1x+· · · )3
+· · · = x.

Equating coefficients on both sides yields the infinite system of equations

a1b1 = 1

a1b2 + a2b2
1 = 0

a1b3 + 2a2b1b2 + a3b3
1 = 0

·
·
·

We can solve the first equation (uniquely) for b1 if and only if a1 6= 0. We can
then solve the second equation uniquely for b2, the third for b3, etc. Hence g(x)
exists if and only if a1 6= 0, in which case it is unique. The remaining assertions
are special cases of the fact that in a group every left or right inverse is a two-
sided inverse. For the present situation, suppose for instance that f (g(x)) = x
and h( f (x)) = x. Substitute g(x) for x in the second equation to get h(x) = g(x),
etc. �

In some cases the equation y = f (x) can be solved directly for x, yielding
x = f 〈−1〉( y). For instance, one can verify in this way that

(ex
− 1)〈−1〉

= log(1+ x)(
a+ bx

c+ dx

)〈−1〉

=
−a+ cx

b− dx
, if ad 6= bc.

In most cases, however, a simple explicit formula for f 〈−1〉(x) will not exist.
We can still ask if there is a nice formula or combinatorial interpretation of the
coefficients of f 〈−1〉(x). For instance, from (5.44) we have

(xe−x)〈−1〉
=

∑
n≥1

nn−1 xn

n!
. (5.52)

Recall that we are always assuming that char K= 0. With this assumption,
the Lagrange inversion formula will express the coefficients of f 〈−1〉(x) in
terms of coefficients of certain other power series. This will allow us to derive
results such as (5.52) in a routine, systematic way. Somewhat more generally,
we obtain an expression for the coefficients of ( f 〈−1〉(x))k for any k ∈ Z. In
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effect this determines g( f 〈−1〉(x)) for any g(x), since if g(x) =
∑

bkxk then
g( f 〈−1〉(x)) =

∑
bk( f 〈−1〉(x))k .

We will give three proofs of the Lagrange inversion formula. The first
proof is a direct algebraic argument. The second proof regards power series
as ordinary generating functions and is based on our enumeration of plane
forests (Theorem 5.3.10). Our final proof regards power series as exponential
generating functions and is based on our enumeration of planted forests (Theo-
rem 5.3.4). Thus we will give two combinatorial proofs of Lagrange inversion,
one using (unlabelled) plane forests and the other (labelled) planted forests.

5.4.2 Theorem (the Lagrange inversion formula). Let F(x) = a1x + a2x2
+

· · · ∈ xK[[x]], where a1 6= 0 (and char K = 0), and let k, n ∈ Z. Then

n[xn]F〈−1〉(x)k
= k[xn−k]

(
x

F(x)

)n

= k[x−k]F(x)−n. (5.53)

(The second equality is trivial.) Equivalently, suppose G(x)∈K[[x]] with
G(0) 6= 0, and let f (x) be defined by

f (x) = xG( f (x)). (5.54)

Then

n[xn] f (x)k
= k[xn−k]G(x)n. (5.55)

NOTE 1. If k < 0 then F〈−1〉(x)k and f (x)k are Laurent series of the form∑
i≥k pixi. Note also that if n < k then both sides of (5.53) and (5.55) are 0.

NOTE 2. Equations (5.53) and (5.55) are equivalent since the statement that
f (x) = F〈−1〉(x) is easily seen to mean the same as f (x) = xG( f (x)) where
G(x) = x/F(x).

First proof of Theorem 5.4.2. The first proof is based on the following
innocuous observation: If y =

∑
n∈Z cnxn is a Laurent series, then

[x−1]y′ = 0, (5.56)

that is, the derivative of a Laurent series has no x−1 term.
Now set

F〈−1〉(x)k
=

∑
i≥k

pix
i,

so

xk
=

∑
i≥k

piF(x)i.
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40 Trees and the Composition of Generating Functions

Differentiate both sides to obtain

kxk−1
=

∑
i≥k

ipiF(x)i−1F′(x)

⇒
kxk−1

F(x)n =
∑
i≥k

ipiF(x)i−n−1F′(x). (5.57)

Here we are expanding both sides of (5.57) as elements of K((x)), that is, as
Laurent series with finitely many negative exponents. For instance,

kxk−1

F(x)n =
kxk−1

(a1x+ a2x2 + · · · )n

= kxk−n−1(a1 + a2x+ · · · )−n.

We wish to take the coefficient of x−1 on both sides of (5.57). Since

F(x)i−n−1F′(x) =
1

i− n

d

dx
F(x)i−n, i 6= n,

it follows from (5.56) that the coefficient of x−1 on the right-hand side of (5.57)
is

[x−1]npnF(x)−1F′(x) = [x−1]npn

(
a1 + 2a2x+ · · ·

a1x+ a2x2 + · · ·

)

= [x−1]npn

(
1

x
+ · · ·

)
= npn.

Hence

[x−1]
kxk−1

F(x)n = npn = n[xn]F〈−1〉(x)k ,

which is equivalent to (5.53). �
Second proof (only for k ≥ 1). Let t0, t1, . . . be (commuting) indetermi-

nates, and set

G(x) = t0 + t1x+ · · · .

If σ is a plane forest, set

tσ =
∏
i≥0

tri(σ )
i , (5.58)

where ri(σ ) is the number of vertices of σ of degree i. Now set

sn =
∑
τ

tτ ,
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5.4 The Lagrange inversion formula 41

summed over all plane trees with n vertices. For instance,

s1 = t0, s2 = t0t1, s3 = t0t21 + t20t2.

Let

f (x) =
∑
n≥1

snxn. (5.59)

If τ is a plane tree whose root has j subtrees, then τ is obtained by choosing j
(nonempty) plane trees, arranging them in linear order, and adjoining a root of
degree j attached to the roots of the j plane trees. Thus

tjxf (x) j
=

∑
n≥1

(∑
τ

tτ
)

xn (5.60)

where τ runs over all plane trees with n vertices whose root is of degree j.
Summing over all j ≥ 1 yields

xG( f (x)) = f (x). (5.61)

Now let k ∈ P. By the definition (5.59) of f (x), we have

f (x)k
=

∑
n≥1

(∑
σ

tσ
)

xn, (5.62)

where σ runs over all plane forests with n vertices and k components. On the
other hand, from Theorem 5.3.10 we have

[xn] f (x)k
=

∑
σ

tσ =
k

n

∑
r0,r1,...

(
n

r0, r1, . . .

)
tr0
0 tr1

1 · · · ,

summed over all N-sequences r0, r1, . . . satisfying
∑

ri= n and
∑

(i − 1)ri

= − k, or equivalently
∑

ri = n and
∑

iri = n− k. But

G(x)n
= (t0 + t1x+ · · · )n

=

∑
r0+r1+···=n

(
n

r0, r1, . . .

)
tr0
0 tr1

1 · · · x
6iri .

Thus

[xn] f (x)k
=

k

n
[xn−k]G(x)n,

which is equivalent to (5.55). Since G(x) has “general coefficients” (i.e., inde-
pendent indeterminates), the proof follows.

Note that this proof yields an explicit combinatorial formula (5.62) for the
coefficients of F〈−1〉(x)k

= f (x)k in terms of the coefficients of x/F(x) = G(x).
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42 Trees and the Composition of Generating Functions

Third proof of Theorem 5.4.2 (again only for k ≥ 1). This proof is analogous
to the previous proof, but instead of plane forests we use planted forests on
[n]. Since the vertices are labelled (by elements of [n]), it is necessary to use
exponential rather than ordinary generating functions. Thus we set

G(x) =
∑
n≥0

tn
xn

n!
.

If σ is a planted forest on [n], then let ri(σ ) be the number of vertices of degree
i, and as in (5.58) set tσ = 5tri(σ )

i . Now set

sn =
∑
τ

tτ ,

summed over all rooted trees on [n], and let

f (x) =
∑
n≥1

sn
xn

n!

= t0x+ 2t0t1
x2

2!
+ (6t0t21 + 3t20t2)

x3

3!
+ · · · .

If τ is a rooted tree on [n] whose root has degree k, then τ is obtained
by choosing a root r ∈ [n] and then placing k rooted trees on the remaining
vertices [n]− {r}. By Proposition 5.1.3, we have

f (x)k
=

∑
n≥1

∑
ζ

tζ

xn

n!
,

where ζ runs over all ordered k-tuples of rooted trees with total vertex set [n].
Thus (since rooted trees are nonempty, so there are k! ways to order k of them
on [n]),

1

k!
f (x)k

=

∑
n≥1

(∑
σ

tσ
)

xn

n!
, (5.63)

where σ runs over all planted forests on [n] with k components. Hence by
Proposition 5.1.15 (equations (5.15) and (5.19)), we have that

tk
k!

xf (x)k
=

∑
n≥1

∑
ζ

tζ

 xn

n!
,

where now ζ runs over all rooted trees on [n] whose root has degree k.
Summing over all k ≥ 1 yields, as in (5.61), f (x) = xG( f (x)).
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Now let k ∈ P. We have from (5.63) and Corollary 5.3.5 that

[
xn

n!

]
1

k!
f (x)k

=
k

n

(
n

k

) ∑
r0,r1,...

(n− k)!tr0
0 tr1

1 · · ·

0!r01!r1 · · ·

(
n

r0, r1, . . .

)
,

summed over all N-sequences r0, r1, . . . satisfying
∑

ri = n and
∑

iri = n−k.
Equivalently,

[xn] f (x)k
=

k

n

∑
r0,r1,...
6ri=n

6iri=n−k

(
n

r0, r1, . . .

)
tr0
0 tr1

1 · · ·

0!r01!r1 · · ·
.

But

G(x)n
=

(
t0 + t1

x

1!
+ t2

x2

2!
+ · · ·

)n

=

∑
r0+r1+···=n

(
n

r0, r1, . . .

)
tr0
0 tr1

1 · · ·

0!r01!r1 · · ·
x6iri .

Thus

[xn] f (x)k
=

k

n
[xn−k]G(x)n,

as desired.

5.4.3 Corollary. Preserve the notation of Theorem 5.4.2. Then for any power
series H(x) ∈ K[[x]] (or Laurent series H(x) ∈ K((x))) we have

n[xn]H(F〈−1〉(x)) = [xn−1]H ′(x)
(

x

F(x)

)n

. (5.64)

Equivalently,

n[xn]H( f (x)) = [xn−1]H ′(x)G(x)n, (5.65)

where f (x) = xG( f (x)).

Proof. By linearity (for infinite linear combinations) it suffices to prove
(5.64) or (5.65) for H(x) = xk . But this is equivalent to (5.53) or (5.55).

Let us consider some simple examples of the use of the Lagrange inversion
formula. Additional applications appear in the exercises.

5.4.4 Example. We certainly should be able to deduce the formula

(xe−x)〈−1〉
=

∑
n≥1

nn−1 xn

n!
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44 Trees and the Composition of Generating Functions

(equation (5.52)) directly from Theorem 5.4.2. Indeed letting F(x) = xe−x and
k = 1 in (5.53) gives

[xn](xe−x)〈−1〉
=

1

n
[xn−1]enx

=
1

n

nn−1

(n− 1)!
=

nn−1

n!
.

More generally, for any k ∈ Z we get

[xn]
(

(xe−x)〈−1〉
)k
=

k

n
[xn−k]enx

=
k

n
·

nn−k

(n− k)!
. (5.66)

Thus the number of k-component planted forests on [n] is equal to

n!

k!
·

k

n
·

nn−k

(n− k)!
=

(
n− 1

k − 1

)
nn−k ,

agreeing with Proposition 5.3.2. Note also that setting k = −1 in (5.66) yields

[xn]
1

(xe−x)〈−1〉 = −
nn

(n+ 1)!
, n ≥ −1 (with 00

= 1).

Hence ∑
n≥1

nn−1 xn

n!

−1

= −

∑
n≥−1

nn xn

(n+ 1)!
.

A little rearranging yields the interesting identity1−
∑
n≥1

(n− 1)n−1 xn

n!

−1

=

∑
n≥0

(n+ 1)n−1 xn

n!
. (5.67)

Compare Exercise 42.

5.4.5 Example. Let A be a subset of {2, 3, . . . }. Let tA(n) denote the number
of ways of beginning with an n-set S, then partitioning S into k blocks where
k ∈ A, then partitioning each nonsingleton block into k blocks where k ∈ A,
etc., until only singleton blocks remain. (In particular, we can never have a
block whose cardinality is strictly between 1 and min A.) Set tA(0) = 0, and set
y = EtA (x). Then, as a generalization of both (5.26) and (5.28), we have∑

n∈A

yn

n!
= y− x.
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Hence

y =

(
x−

∑
k∈A

xk

k!

)〈−1〉

,

so by Theorem 5.4.2,

tA(n) =
[

xn

n!

]
y =

[
xn−1

(n− 1)!

](
1−

∑
k∈A

xk−1

k!

)−n

.

When A consists of a single element k, then we have(
1−

xk−1

k!

)−n

=

∑
j≥0

(
n+ j− 1

j

)
xj(k−1)

k! j

=

∑
j≥0

(
n+ j− 1

j

)
( j(k − 1))!

k! j
xj(k−1)

( j(k − 1))!
.

Thus (writing tk for t{k}) tk(n) = 0 unless n = j(k− 1)+ 1 for some j ∈ N, and

tk( j(k − 1)+ 1) =
(

jk

j

)
(j(k − 1))!

k!j

=
(jk)!

j! k!j
.

A combinatorial proof can be given along the lines of Example 5.2.6.

5.5 Exponential structures

There are many possible generalizations of the compositional and exponential
formulas (Theorem 5.1.4 and Corollary 5.1.6). We will consider here a gener-
alization involving partially ordered sets much in the spirit of binomial posets
(Chapter 3.18).

5.5.1 Definition. An exponential structure is a sequence Q = (Q1, Q2, . . . ) of
posets satisfying the following three axioms:

(E1) For each n∈P, Qn is finite and has a unique maximal element 1̂n (denoted
simply by 1̂), and every maximal chain of Qn has n elements (or length
n− 1).

(E2) If π ∈Qn, then the interval [π , 1̂] is isomorphic to 5k (the lattice of par-
titions of [k]) for some k. We then write |π | = k. Thus if |π | = k, then
every saturated chain from π to 1̂ has k elements.
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46 Trees and the Composition of Generating Functions

(E3) Suppose π ∈ Qn and ρ is a minimal element of Qn satisfying ρ ≤ π .
Thus by (E1) and (E2), [ρ, 1̂] ∼= 5n. It follows from Example 3.10.4
that [ρ,π ] ∼= 5

a1
1 × 5

a2
2 × · · · × 5

an
n for unique a1, a2, . . . , an ∈ N

satisfying
∑

iai = n (and
∑

ai = |π |). We require that the subposet
3π = {σ ∈ Qn : σ ≤ π} of Qn be isomorphic to Qa1

1 ×Qa2
2 × · · · ×Qan

n .
In particular, if ρ′ is another minimal element of Qn satisfying ρ′ ≤ π ,
then [ρ,π ] ∼= [ρ′,π]. We call (a1, a2, . . . , an) the type of π .

Intuitively, one should think of Qn as forming a set of “decompositions” of
some structure Sn of “size” n into “pieces” which are smaller Si’s. Then (E2)
states that given a decomposition of Sn, one can take any partition of the pieces
of the decomposition and join together the pieces in each block in a unique
way to obtain a coarser decomposition. Moreover, (E3) states that each piece
can be decomposed independently to form a finer decomposition.

If Q = (Q1, Q2, . . . ) is an exponential structure, then let M(n) denote the
number of minimal elements of Qn. As will be seen below, all the basic com-
binatorial properties of Q can be deduced from the numbers M(n). We call the
sequence M = (M(1), M(2), . . . ) the denominator sequence of Q. M(n) turns
out to play a role for exponential structures analogous to that of the factorial
function of a binomial poset (see Definition 3.18.2(c)).

We now proceed to some examples of exponential structures.

5.5.2 Example. (a) The prototypical example of an exponential structure is
given by Qn = 5n. In this case we have M(n) = 1.

(b) Let Vn = Vn(q) be an n-dimensional vector space over the finite field Fq.
Let Qn consist of all collections {W1, W2, . . . , Wk} of subspaces of Vn such that
dim Wi > 0 for all i, and such that Vn = W1 ⊕ W2 ⊕ · · · ⊕ Wk (direct sum).
An element of Qn is called a direct sum decomposition of Vn. We order Qn in
an obvious way by refinement, namely, {W1, W2, . . . , Wk} ≤ {W ′1, W ′2, . . . , W ′j }
if each Wr is contained in some W ′s. It is easily seen that (Q1, Q2, . . . ) is an
exponential structure with

M(n) = q( n
2 )(n)!/n!,

where (n)! = (1+ q)(1+ q+ q2) · · · (1+ q+ · · · + qn−1) as in Chapter 1.3.
(c) Let Q = (Q1, Q2, . . . ) be an exponential structure with denominator

sequence M = (M(1), M(2), . . . ). Fix r ∈ P, and define Q(r)
n to be the subposet

of Qrn consisting of all π ∈ Qrn of type (a1, a2, . . . , arn) such that ai = 0
unless r divides i. Then Q(r)

= (Q(r)
1 , Q(r)

2 , . . . ) is an exponential structure with
denominator sequence M (r)

= (Mr(1), Mr(2), . . . ) given by
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Mr(n) =
M(rn)(rn)!

M(r)n n! r!n
. (5.68)

(Equation (5.68) can be seen by a direct argument and is also a special case of
Lemma 5.5.3.) For instance, if Q = 5 = (51,52, . . . ), then 5(r)

n consists of
all partitions of [rn] whose block sizes are divisible by r.

(d) Let r ∈ P, and let S be an n-set. An r-partition of S is a set

π = {(B11, B12, . . . , B1r), (B21, B22, . . . , B2r), . . . , (Bk1, Bk2, . . . , Bkr)}

satisfying:

(i) For each j ∈ [r], the set πj = {B1j, B2j, . . . , Bkj} forms a partition of S (into
k blocks), and

(ii) For fixed i, #Bi1 = #Bi2 = · · · = #Bir.

The set Qn = Qn(S) of all r-partitions of S has an obvious partial order-
ing by refinement which makes (Q1, Q2, . . . ) into an exponential structure
with M(n) = n!r−1. (A minimal element ρ of Qn(S) may be identified with
an (r − 1)-tuple (w1, . . . , wr−1) of permutations wi ∈S(S) (the group of all
permutations of the set S) via

ρ = {(x, w1(x), . . . , wr−1(x)), (y, w1( y), . . . , wr−1( y)), . . . },

where S = {x, y, . . . }, and where we abbreviate a one-element set {z} as z.) The
type (a1, a2, . . . , an) of π ∈ Qn is equal to the type of any of the partitions πj,
that is, πj has ai blocks of size i. (By (ii), all the πj’s have the same type.)

The basic combinatorial properties of exponential structures will be
obtained from the following lemma.

5.5.3 Lemma. Let Q = (Q1, Q2, . . . ) be an exponential structure with
denominator sequence (M(1), M(2), . . . ). Then the number of π ∈Qn of type
(a1, a2, . . . , an) is equal to

n!M(n)

1!a1 · · · n!ana1! · · · an!M(1)a1 · · ·M(n)an
.

Proof. Let N = N(a1, . . . , an) be the number of pairs (ρ,π ) where ρ is a
minimal element of Qn such that ρ ≤ π and type π = (a1, . . . , an). On the
one hand we can pick ρ in M(n) ways, and then pick π ≥ ρ. The num-
ber of choices for π is the number of elements of 5n of type (a1, . . . , an),
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48 Trees and the Composition of Generating Functions

which is easily seen to equal (e.g., by a simple variation of Proposition 1.3.2)
n!/ (1!a1 · · · n!ana1! · · · an!). Hence

N =
n!M(n)

1!a1 · · · n!ana1! · · · an!
. (5.69)

On the other hand, if K is the desired number of π ∈ Qn of type (a1, . . . , an),
then we can pick π in K ways and then choose ρ ≤ π . Since Qn has M(n)
minimal elements, the poset 3π ∼= Qa1

1 × · · · × Qan
n has M(1)a1 · · ·M(n)an

minimal elements. Hence there are M(1)a1 · · ·M(n)an choices for ρ, so

N = K ·M(1)a1 · · ·M(n)an . (5.70)

The proof follows from (5.69) and (5.70).

We come to the main result of this section.

5.5.4 Theorem (the compositional formula for exponential structures).
Let (Q1, Q2, . . . ) be an exponential structure with denominator sequence
(M(1), M(2), . . . ). Given functions f : P→ K and g : N→ K with g(0) = 1,
define a new function h : N→ K by

h(n) =
∑
π∈Qn

f (1)a1 f (2)a2 · · · f (n)ang(|π |), n ≥ 1,

h(0) = 1,

where type π = (a1, a2, . . . , an)(so |π | = a1 + a2 + · · · + an). Define formal
power series F, G, H ∈ K[[x]] by

F(x) =
∑
n≥1

f (n)
xn

n!M(n)

G(x) = Eg(x) =
∑
n≥0

g(n)
xn

n!

H(x) =
∑
n≥0

h(n)
xn

n!M(n)
.

Then H(x) = G(F(x)).

Proof. By Theorem 5.1.4, we have

[
xn

n!M(n)

]
G(F(x)) = M(n)

∑
π∈5n

(
f (1)

M(1)

)a1

· · ·

(
f (n)

M(n)

)an

g(|π |), (5.71)
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where type π = (a1, . . . , an). Write t(Qn; a1, a2, . . . ) for the number of π ∈ Qn

of type (a1, a2, . . . ). By Lemma 5.5.3 we have

t(Qn; a1, a2, . . . )

t(5n; a1, a2, . . . )
=

M(n)

M(1)a1 · · ·M(n)an
.

Hence (5.71) may be rewritten[
xn

n!M(n)

]
G(F(x)) =

∑
π∈Qn

f (1)a1 · · · f (n)ang(|π |),

as desired.

Putting g(n) = 1 for all n ≥ 0 yields:

5.5.5 Corollary (the exponential formula for exponential structures).
Let (Q1, Q2, . . . ) be an exponential structure with denominator sequence
(M(1), M(2), . . . ). Given a function f :P→ K, define a new function h : N→
K by

h(n) =
∑
π∈Qn

f (1)a1 · · · f (n)an , n ≥ 1,

h(0) = 1,

where type π = (a1, . . . , an). Define F(x) and H(x) as in Theorem 5.5.4. Then

H(x) = exp F(x).

Let us turn to some examples of the use of Corollary 5.5.5.

5.5.6 Example. Let (Q1, Q2, . . . ) be an exponential structure with denomina-
tor sequence (M(1), M(2), . . . ), and write q(n) = #Qn. Letting f (i) = 1 for all
i in Corollary 5.5.5 yields h(n) = q(n), so∑

n≥0

q(n)
xn

n!M(n)
= exp

∑
n≥1

xn

n!M(n)
.

For instance, if n!M(n) = q( n
2 )(n)!, then by Example 5.5.2(b) we have that q(n)

is the number of ways to express Vn(q) as a direct sum (without regard to order)
of nontrivial subspaces.

More generally, let SQ(n, k) denote the number of π ∈ Qn satisfying |π | = k
(so for Q = 5, SQ(n, k) becomes the Stirling number S(n, k) of the second
kind). Define a polynomial

Wn(t) =
∑
π∈Qn

t|π | =
n∑

k=1

SQ(n, k)tk , (5.72)
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with W0(t) = 1. Putting f (i) = 1 and g(k) = tk in Theorem 5.5.4 (or f (i) = t
in Corollary 5.5.5) leads to

∑
n≥0

Wn(t)
xn

n!M(n)
= exp

t
∑
n≥1

xn

n!M(n)

 , (5.73)

which is analogous to Example 5.2.2.

5.5.7 Example. We now consider a generalization of the previous example.
Let r ∈ P, and define a polynomial

Pn(r, t) =
∑

π1≤···≤πr

t|πr|, n ≥ 1,

P0(r, t) = 1,

where the sum ranges over all r-element multichains in Qn. In particular,
Pn(1, t) = Wn(t) and Pn(r, 1) = Z(Qn, r + 1), where Z(Qn, ·) is the zeta poly-
nomial of Qn (see Chapter 3.12). Now let Q̄n denote Qn with a 0̂ adjoined, and
let ζ denote the zeta function of Q̄n (as defined in Chapter 3.6). Then clearly
for n ≥ 1,

Pn(r, t) =
∑
π∈Qn

[
ζ r(0̂,π)− ζ r−1(0̂,π)

]
t|π |. (5.74)

The right-hand side makes sense for any r ∈ Z and thus yields an interpretation
of Pn(r, t) for r ≤ 0. In particular, since ζ 0(0̂,π ) = 0 for all π ∈ Qn, putting
r = 0 in (5.74) yields

Pn(0, t) = −

∑
π∈Qn

µn(0̂,π )t|π |

= tn+1
− tχ (Q̄n, t),

(5.75)

where µn denotes the Möbius function and χ the characteristic polynomial (as
defined in Chapter 3.10) of Q̄n. Note that

µn := µn(0̂, 1̂) = −[t]Pn(0, t) = −
d

dt
Pn(0, t) |t=0 . (5.76)

Now put f (i) = Pi(r − 1, 1) and g(k) = tk in Theorem 5.5.4 to deduce

∑
n≥0

Pn(r, t)
xn

n!M(n)
= exp

t
∑
n≥1

Pn(r − 1, 1)
xn

n!M(n)



=

∑
n≥0

Pn(r, 1)
xn

n!M(n)

t

. (5.77)

https://doi.org/10.1017/9781009262538.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009262538.003


5.5 Exponential structures 51

Note that from (5.75) we have

Pn(0, 1) = −

∑
π∈Qn

µn(0̂,π )

= µn(0̂, 0̂) = 1,

by the recurrence (3.15) for Möbius functions. (This also follows from putting
r = 1 in (5.77) and comparing with (5.73).) Hence setting r = 0 in (5.77)
yields

∑
n≥0

Pn(0, t)
xn

n!M(n)
=

∑
n≥0

xn

n!M(n)

t

.

Applying
d

dt
to both sides and setting t = 0 yields from (5.77) that

−

∑
n≥1

µn
xn

n!M(n)
= log

∑
n≥0

xn

n!M(n)

. (5.78)

For instance, suppose Qn = 5
(2)
n , the poset of partitions of [2n] with even

block sizes (Example 5.5.2(c)). By (5.68) we have M2(n) = (2n)!/2nn!. Hence

−

∑
n≥1

µn
2nxn

(2n)!
= log

∑
n≥0

2nxn

(2n)!

.

Put 2x = y2 to obtain

−

∑
n≥1

µn
y2n

(2n)!
= log(cosh y),

or equivalently (by applying d
dy ),

−

∑
n≥1

µn
y2n−1

(2n− 1)!
= tanh y

=

∑
n≥1

(−1)n−1E2n−1
y2n−1

(2n− 1)!
,

where E2n−1 denotes an Euler (or tangent) number (see Chapter 1.6.1). Thus
for Qn = 5

(2)
n , we have

µn = (−1)nE2n−1.
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A primary reason for our discussion of exponential structures is to provide a
general framework for extending our results on symmetric matrices with equal
row and column sums (Examples 5.2.7–5.2.8) to arbitrary square matrices. (For
rectangular matrices, see Exercise 65.) Thus let M(n, r) denote the set of all
n × n N-matrices A = (Aij) for which every row and column sums to r. For
instance, M(n, 0) consists of the n× n zero matrix, while M(n, 1) consists of
the n! n× n permutation matrices. We assume that the rows and columns of A
are indexed by [n]. By a k-component of A ∈ M(n, r), we mean a pair (S, T)
of nonempty subsets of [n] satisfying the following two properties:

(i) #S = #T = k,
(ii) Let A(S, T) be the k × k submatrix of A whose rows are indexed by S and

whose columns are indexed by T , that is, A(S, T) = (Aij), where (i, j) ∈
S × T . Then every row and column of A(S, T) sums to r, that is, A(S, T) ∈
M(k, r).

We call (S, T) a component of A if it is a k-component for some k. A com-
ponent (S, T) is irreducible if any component (S′, T ′) with S′ ⊆ S and T ′ ⊆ T
satisfies (S′, T ′) = (S, T). The matrix A(S, T) is then also called irreducible.
For instance, ({i}, { j}) is a 1-component (in which case it is irreducible) if and
only if Aij = r. It is easily seen that the set of irreducible components of A
forms a 2-partition π = πA of [n], as defined in Example 5.5.2(d). Conversely,
we obtain (uniquely) a matrix A ∈M(n, r) by choosing a 2-partition π of [n]
and then “attaching” an irreducible matrix to each block (S, T) ∈ π . There
follows from Corollary 5.5.5 in the case where Qn consists of the 2-partitions
of [n] the following result.

5.5.8 Proposition. Let hr(a1, . . . , an) denote the number of matrices A ∈
M(n, r) such that A has ai irreducible i-components (or equivalently,
typeπA = (a1, . . . , an)). Let fr(n) be the number of irreducible n × n matrices
A ∈M(n, r). Then

∑
n≥0

∑
a1,...,an

hr(a1, . . . , an)ta1
1 · · · t

an
n

xn

n!2
= exp

∑
n≥1

fr(n)tn
xn

n!2
.

5.5.9 Corollary. (a) Let H(n, r) = #M(n, r). Then

∑
n≥0

H(n, r)
xn

n!2
= exp

∑
n≥1

fr(n)
xn

n!2
.
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(b) Let H∗(n, r) denote the number of matrices in M(n, r) with no entry equal
to r. Then ∑

n≥0

H∗(n, r)
xn

n!2
= exp

∑
n≥2

fr(n)
xn

n!2

= e−x
∑
n≥0

H(n, r)
xn

n!2
. (5.79)

Proof. (a) Put each ti = 1 in Proposition 5.5.8.
(b) Since ({i}, { j}) is an (irreducible) 1-component if and only if Aij = r, the

proof follows by setting t1 = 0, t2 = t3 = · · · = 1 in Proposition 5.5.8 (and
noting that fr(1) = 1).

There is a simple graph-theoretic interpretation of the 2-partition πA associ-
ated with the matrix A ∈M(n, r). Let X = {x1, . . . , xn} and Y = {y1, . . . , yn},
and define a bipartite graph 0(A) with vertex bipartition (X , Y ) by placing Aij

edges (or a single edge weighted by Aij) between xi and yj. Thus 0(A) is reg-
ular of degree r. Then the connected components of 0(A) correspond to the
irreducible components of A. More precisely, if 0′ is a connected component
of 0, then define

S = { j : xj is a vertex of 0′}
T = { j : yj is a vertex of 0′}.

Then (S, T) is an irreducible component of A (or block of πA), and conversely
all irreducible components of A are obtained in this way. Thus an irreducible
A ∈ M(n, r) corresponds to a connected regular bipartite graph of degree r
with 2n vertices. As an example, suppose

A =



0 2 0 0 1 0
1 0 0 2 0 0
2 0 0 0 0 1
0 0 0 1 0 2
0 0 3 0 0 0
0 1 0 0 2 0


The bipartite graph 0(A) is shown in Figure 5.15. The 2-partition πA is given
by

π = {(234, 146), (16, 25), (5, 3)},

of type (1, 1, 1).
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4 1 6 5 2 3

2 4 3 6 1 5

Figure 5.15 A bipartite graph 0(A)

It is not difficult to compute f2(n). Indeed, an irreducible matrix A ∈M(n, 2)
is of the form P+ PQ, where P is a permutation matrix and Q a cyclic permu-
tation matrix. In graph-theoretic terms, 0(A) is a connected bipartite graph of
degree two (and therefore a cycle of even length ≥ 2) with vertex bipartition
(X , Y ) where #X = #Y = n. There are easily seen to be 1

2 (n−1)! n! such cycles
for n ≥ 2, and of course just one for n = 1. (Equivalently, there are n! choices
for P and (n − 1)! choices for Q. If n > 1 then P and PQ could have been
chosen in reverse order.) There follows from Proposition 5.5.8:

5.5.10 Proposition. We have

∑
n≥0

∑
a1,...,an

h2(a1, . . . , an)ta1
1 · · · t

an
n

xn

n!2
= exp

t1x+
1

2

∑
n≥2

tn
xn

n

. (5.80)

5.5.11 Corollary. We have

∑
n≥0

H(n, 2)
xn

n!2
= (1− x)−

1
2 e

1
2 x

∑
n≥0

H∗(n, 2)
xn

n!2
= (1− x)−

1
2 e−

1
2 x. (5.81)

Proof. Put ti = 1 in (5.80) to obtain

exp

x+
1

2

∑
n≥2

xn

n

 = exp

1

2
x+

1

2

∑
n≥1

xn

n


= exp

(
1

2
x+

1

2
log(1− x)−1

)
= (1− x)−

1
2 e

1
2 x.
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Similarly put t1 = 0 and t2 = t3 = · · · = 1 (or use (5.79) directly) to obtain
(5.81).

5.6 Oriented trees and the Matrix-Tree Theorem

A famous problem that goes back to Euler asks for what graphs G is there a
closed walk that uses every edge exactly once. (There is also a version for
non-closed walks.) Such a walk is called an Eulerian tour (also known as
an Eulerian cycle). A graph which has an Eulerian tour is called an Eulerian
graph. Euler’s famous theorem (the first real theorem of graph theory) states
that G is Eulerian if and only if it is connected (except for isolated vertices)
and every vertex has even degree. Here we will be concerned with the anal-
ogous theorem for directed graphs D. We want to know not just whether an
Eulerian tour exists, but how many there are. We reduce this problem to that
of counting certain subtrees of D called “oriented trees.” We will prove an
elegant determinantal formula for this number, and from it derive a determi-
nantal formula, known as the Matrix-Tree Theorem, for the number of spanning
trees of any (undirected) graph. An application of the enumeration of Eulerian
tours is given to the enumeration of de Bruijn sequences. For the case of undi-
rected graphs no analogous formula is known for the number of Eulerian tours,
explaining why we consider only the directed case.

We will use the terminology and notation associated with directed graphs
introduced at the beginning of Chapter 4.7. Let D = (V , E,ϕ) be a digraph
with vertex set V = {v1, . . . , vp} and edge set E = {e1, . . . , eq}. We say that
D is connected if it is connected as an undirected graph. A tour in D is a
sequence e1, e2, . . . , er of distinct edges such that the final vertex of ei is the
initial vertex of ei+1 for all 1 ≤ i ≤ r − 1, and the final vertex of er is the
initial vertex of e1. A tour is Eulerian if every edge of D occurs at least once
(and hence exactly once). A digraph that has no isolated vertices and contains
an Eulerian tour is called an Eulerian digraph. Clearly an Eulerian digraph
is connected. (Even more strongly, there is a directed path between any pair
of vertices.) The outdegree of a vertex v, denoted outdeg(v), is the number of
edges of G with initial vertex v. Similarly the indegree of v, denoted indeg(v),
is the number of edges of D with final vertex v. A loop (edge of the form (v, v))
contributes one to both the indegree and outdegree. A digraph is balanced if
indeg(v) = outdeg(v) for all vertices v.

5.6.1 Theorem. A digraph D without isolated vertices is Eulerian if and only
if it is connected and balanced.
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Proof. Assume D is Eulerian, and let e1, . . . , eq be an Eulerian tour. As we
move along the tour, whenever we enter a vertex v we must exit it, except that
at the very end we enter the final vertex v of eq without exiting it. However,
at the beginning we exited v without having entered it. Hence every vertex is
entered as often as it is exited and so must have the same outdegree as indegree.
Therefore D is balanced, and as noted above D is clearly connected.

Now assume that D is balanced and connected. We may assume that D has
at least one edge. We first claim that for any edge e of D, D has a tour (not
necessarily Eulerian) for which e = e1. If e1 is a loop we are done. Otherwise
we have entered the vertex fin(e1) for the first time, so since D is balanced
there is some exit edge e2. Either fin(e2) = init(e1) and we are done, or else
we have entered the vertex fin(e2) once more than we have exited it. Since D
is balanced there is a new edge e3 with fin(e2) = init(e3). Continuing in this
way, either we complete a tour or else we have entered the current vertex once
more than we have exited it, in which case we can exit along a new edge. Since
D has finitely many edges, eventually we must complete a tour. Thus D does
have a tour for which e = e1.

Now let e1, . . . , er be a tour C of maximum length. We must show that r = q,
the number of edges of D. Assume to the contrary that r < q. Since in moving
along C every vertex is entered as often as it is exited (with init(e1) exited at
the beginning and entered at the end), when we remove the edges of C from D
we obtain a digraph H which is still balanced, though it need not be connected.
However, since D is connected, at least one connected component H1 of H
contains at least one edge and has a vertex v in common with C. Since H1

is balanced, there is an edge e of H1 with initial vertex v. See Figure 5.16,
where the edges of a tour C are drawn as solid lines, and the remaining edges
as dotted lines. The argument of the previous paragraph shows that H1 has a
tour C′ of positive length beginning with the edge e. But then when moving
along C, when we reach v we can take the “detour” C′ before continuing with
C. This gives a tour of length longer than r, a contradiction. Hence r = q, and
the theorem is proved.

Our primary goal is to count the number of Eulerian tours of a connected
balanced digraph. A key concept in doing so is that of an oriented tree. An
oriented tree with root v is a (finite) digraph T with v as one of its vertices,
such that there is a unique directed path from any vertex u to v. In other words,
for every vertex u there is a unique sequence of edges e1, . . . , er such that (a)
init(e1) = u, (b) fin(er) = v, and (c) fin(ei) = init(ei+1) for 1 ≤ i ≤ r − 1. It is
easy to see that this means that the underlying undirected graph (i.e., “erase” all
the arrows from the edges of T) is a tree, and that all arrows in T “point toward”
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e1

e2

e
e4

3e5

e6

e7

v e

Figure 5.16 A nonmaximal tour in a balanced digraph

v. There is a surprising connection between Eulerian tours and oriented trees,
given by the next result.

5.6.2 Theorem. Let D be a connected balanced digraph with vertex set V . Fix
an edge e of D, and let v = init(e). Let τ (D, v) denote the number of oriented
(spanning) subtrees of D with root v, and let ε(D, e) denote the number of
Eulerian tours of D starting with the edge e. Then

ε(D, e) = τ (D, v)
∏
u∈V

(outdeg(u)− 1)!. (5.82)

Proof. Let e = e1, e2, . . . , eq be an Eulerian tour E in D. For each vertex
u 6= v, let e(u) be the “last exit” from u in the tour, that is, let e(u) = ej where
init(ej) = u and init(ek) 6= u for any k > j.

Claim #1. The vertices of D, together with the edges e(u) for all vertices
u 6= v, form an oriented subtree of D with root v.

Proof of Claim #1. This is a straightforward verification. Let T be the span-
ning subgraph of D with edges e(u), u 6= v. Thus if #V = p, then T has p
vertices and p− 1 edges. We now make the following three observations.

(a) T does not have two edges f and f ′ satisfying init( f ) = init( f ′). This is
clear since both f and f ′ can’t be last exits from the same vertex.

(b) T does not have an edge f with init( f ) = v. This is clear since by definition
the edges of T consist only of last exits from vertices other than v, so no
edge of T can exit from v.

(c) T does not have a (directed) cycle C. For suppose C were such a cycle.
Let f be that edge of C which occurs after all the other edges of C in the
Eulerian tour E. Let f ′ be the edge of C satisfying fin( f ) = init( f ′) (= u,
say). We can’t have u = v by (b). Thus when we enter u via f , we must exit
u. We can’t exit u via f ′ since f occurs after f ′ in E. (Note that we cannot
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have f = f ′ since then f would be a loop and therefore not a last exit.)
Hence f ′ is not the last exit from u, contradicting the definition of T .

It is easy to see that conditions (a)–(c) imply that T is an oriented tree with root
v, proving the claim.

Claim #2. We claim that the following converse to Claim #1 is true. Given a
connected balanced digraph D and a vertex v, let T be an oriented (spanning)
subtree of D with root v. Then we can construct an Eulerian tour 1 as follows.
Choose an edge e1 with init(e1) = v. Then continue to choose any edge possi-
ble to continue the tour, except we never choose an edge f of T unless we have
to, that is, unless it’s the only remaining edge exiting the vertex at which we
stand. Then we never get stuck until all edges are used, so we have constructed
an Eulerian tour 1. Moreover, the set of last exits of 1 from vertices u 6= v of
D coincides with the set of edges of the oriented tree T .

Proof of Claim #2. Since D is balanced, the only way to get stuck is to end
up at v with no further exits available, but with an edge still unused. Suppose
this is the case. At least one unused edge must be a last exit edge, that is, an
edge of T . Let u be a vertex of T closest to v in T such that the unique edge f
of T with init( f ) = u is not in the tour. Let y = fin( f ). Suppose y 6= v. Since
we enter y as often as we leave it, we don’t use the last exit from y. Thus y = v.
But then we can leave v, a contradiction. This proves Claim #2.

We have shown that every Eulerian tour 1 beginning with the edge e has
associated with it a “last exit” oriented subtree T = T(1) with root v = init(e).
Conversely, we have also shown that given an oriented subtree T with root v,
we can obtain all Eulerian tours 1 beginning with e and satisfying T = T(1)
by choosing for each vertex u 6= v the order in which the edges from u, except
the edge of T , appear in1; as well as choosing the order in which all the edges
from v except for e appear in1. Thus for each vertex u we have (outdeg(u)−1)!
choices, so for each T we have

∏
u(outdeg(u) − 1)! choices. Since there are

τ (D, v) choices for T , the proof follows.

5.6.3 Corollary. Let D be a connected balanced digraph, and let v be a vertex
of D. Then the number τ (D, v) of oriented subtrees with root v is independent
of v.

Proof. Let e be an edge with initial vertex v. By equation (5.82), we need to
show that the number ε(G, e) of Eulerian tours beginning with e is independent
of e. But e1e2 · · · eq is an Eulerian tour if and only if eiei+1 · · · eqe1e2 · · · ei−1

is also an Eulerian tour, and the proof follows.
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In order for Theorem 5.6.2 to be of use, we need a formula for τ (G, v). To
this end, define the Laplacian matrix L = L(D) of a directed graph D with
vertex set V = {v1, . . . , vp} to be the p× p matrix

Lij =


−mij, if i 6= j and there are mij edges with

initial vertex vi and final vertex vj

outdeg(vi)− mii, if i = j.

Note that the diagonal entry outdeg(vi) − mii is just the number of nonloop
edges of D with initial vertex vi. Hence the Laplacian matrix L(D) is inde-
pendent of the loops of D. Note also that if every vertex of D has the same
outdegree d, then the adjacency matrix A (defined in Chapter 4.7) and Lapla-
cian matrix L of D are related by L = dI−A, where I denotes the p×p identity
matrix. In particular, if A has eigenvalues λ1, . . . , λp, then L has eigenvalues
d − λ1, . . . , d − λp.

5.6.4 Theorem. Let D be a loopless digraph with vertex set V = {v1, . . . , vp},
and let 1 ≤ k ≤ p. Let L be the Laplacian matrix of D, and define L0 to be L
with the k-th row and column deleted. Then

det L0 = τ (D, vk). (5.83)

Proof. Induction on q, the number of edges of D. First note that the theo-
rem is true if D is not connected, since clearly τ (D, vk) = 0, while if D1 is
the component of D containing vk and D2 is the rest of D, then det L0(D) =
det L0(D1) · det L(D2) = 0. Thus we may assume that D is connected. In this
case the least number of edges that D can have is p−1. Suppose then that D has
p − 1 edges, so that as an undirected graph D is a tree. If D is not an oriented
tree with root vk , then some vertex vi 6= vk of D has outdegree 0. Then L0 has
a zero row, so det L0 = 0 = τ (D, vk). If on the other hand D is an oriented tree
with root vk , then there is an ordering of the set V − {vk} so that L0 is upper
triangular with 1’s on the main diagonal. Hence det L0 = 1 = τ (D, vk).

Now suppose that D has q > p − 1 edges, and assume the theorem for
digraphs with at most q − 1 edges. We may assume that no edge f of D has
initial vertex vk , since such an edge belongs to no oriented tree with root vk

and also makes no contribution to L0. It then follows, since D has at least p
edges, that there exists a vertex u 6= vk of D of outdegree at least two. Let
e be an edge with init(e) = u. Let D1 be D with the edge e removed. Let
D2 be D with all edges e′ removed such that init(e) = init(e′) and e′ 6= e.
(Note that D2 is strictly smaller than D since outdeg(u) ≥ 2.) By induction, we
have det L0(D1) = τ (D1, vk) and det L0(D2) = τ (D2, vk). Clearly τ (D, vk) =
τ (D1, vk)+ τ (D2, vk), since in an oriented tree T with root vk , there is exactly
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one edge whose initial vertex coincides with that of e. On the other hand, it
follows immediately from the multilinearity of the determinant that

det L0(D) = det L0(D1)+ det L0(D2).

From this the proof follows by induction.

The operation of removing a row and column from L(D) may seem some-
what contrived. In the case when D is balanced (so τ (D, v) is independent of
v), we would prefer a description of τ (D, v) directly in terms of L(D). Such a
description will follow from the next lemma.

5.6.5 Lemma. Let M be a p × p matrix (with entries in a field) such that the
sum of the entries in every row and column is 0. Let M0 be the matrix obtained
from M by removing the i-th row and j-th column. Then the coefficient of x in
the characteristic polynomial det(M−xI) of M is equal to (−1)i+j+1p·det(M0).
(Moreover, the constant term of det(M − xI) is 0.)

Proof. The constant term of det(M − xI) is det(M), which is 0 since the
columns of M sum to 0.

For definiteness we prove the rest of the lemma only for removing the last
row and column, though the proof works just as well for any row and column.
Add all the rows of M−xI except the last row to the last row. This doesn’t affect
the determinant, and will change the entries of the last row all to −x (since the
columns of M sum to 0). Factor out −x from the last row, yielding a matrix
N(x) satisfying det(M − xI) = −x det(N(x)). Hence the coefficient of x in
det(M − xI) is given by − det(N(0)). Now add all the columns of N(0) except
the last column to the last column. This does not effect det(N(0)). Because
the rows of M sum to 0, the last column of N(0) becomes the column vec-
tor [0, 0, . . . , 0, p]t. Expanding the determinant by the last column shows that
det(N(0)) = p · det(M0), and the proof follows.

Suppose that the eigenvalues of the matrix M of Lemma 5.6.5 are equal to
µ1, . . . ,µp with µp = 0. Since det(M − xI) = −x

∏p−1
j=1 (µj − x), we see

that

(−1)i+j+1p · det(M0) = −µ1 · · ·µp−1. (5.84)

This equation allows Theorem 5.6.4, in the case of balanced digraphs, to be
restated as follows.
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5.6.6 Corollary. Let D be a balanced digraph with p vertices and with Lapla-
cian matrix L. Suppose that the eigenvalues of L are µ1, . . . ,µp with µp = 0.
Then for any vertex v of D,

τ (D, v) =
1

p
µ1 · · ·µp−1.

Combining Theorems 5.6.2 and 5.6.4 yields a formula for the number of
Eulerian tours in a balanced digraph.

5.6.7 Corollary. Let D be a connected balanced digraph with p vertices. Let e
be an edge of D. Then the number ε(D, e) of Eulerian tours of D with first edge
e is given by

ε(D, e) = (det L0(D))
∏
u∈V

(outdeg(u)− 1)!.

Equivalently (using Corollary 5.6.6), if L(D) has eigenvalues µ1, . . . ,µp with
µp = 0, then

ε(D, e) =
1

p
µ1 · · ·µp−1

∏
u∈V

(outdeg(u)− 1)!.

Let us consider an important special case of Corollary 5.6.7. The Laplacian
matrix L = L(G) of the undirected graph G with vertex set V = {v1, . . . , vp}

is the p× p matrix

Lij =


−mij, if i 6= j and there are mij edges between

vertices vi and vj

deg(vi)− mii, if i = j,

where deg(vi) denotes the degree (number of incident edges) of vi. Let Ĝ be
the digraph obtained from G by replacing each edge e = uv of G with a pair of
directed edges u→ v and v→ u. Clearly Ĝ is balanced and connected. Choose
a vertex v of G. There is an obvious one-to-one correspondence between span-
ning trees T of G and oriented spanning trees T̂ of Ĝ with root v, namely, direct
each edge of T toward v. Moreover, L(G) = L(Ĝ). Let c(G) denote the number
of spanning trees (or complexity) of G. Then as an immediate consequence of
Theorem 5.6.4 we obtain the following determinantal formula for c(G). This
formula is known as the Matrix-Tree Theorem.

5.6.8 Theorem (the Matrix-Tree theorem). Let G be a finite connected p-
vertex graph without loops, with Laplacian matrix L = L(G). Let 1 ≤ i ≤ p,
and let L0 denote L with the i-th row and column removed. Then

c(G) = det(L0).
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Equivalently, if L has eigenvalues µ1, . . . ,µp with µp = 0, then

c(G) =
1

p
µ1 · · ·µp−1.

Let us look at some examples of the use of the results we have just proved.

5.6.9 Example. Let G = Kp, the complete graph on p vertices. We have
L(Kp) = pI − J , where J is the p × p matrix of all 1’s, and I is the p × p
identity matrix. Since J has rank one, p − 1 of its eigenvalues are equal to 0.
Since tr(J) = p, the other eigenvalue is equal to p. (Alternatively, the column
vector of all 1’s is an eigenvector with eigenvalue p.) Hence the eigenvalues
of pI − J are p (p − 1 times) and 0 (once). By the Matrix-Tree Theorem we
get

c(Kp) =
1

p
pp−1
= pp−2,

agreeing with the formula for t(n) in Proposition 5.3.2.

5.6.10 Example. Let 0 be the group (Z/2Z)n of n-tuples of 0’s and 1’s under
componentwise addition modulo 2. Define a “scalar product” α · β on 0

by

(a1, . . . , an) · (b1, . . . , bn) =
∑

aibi ∈ Z/2Z.

Note that since (−1)m depends only on the value of the integer m modulo 2,
such expressions as (−1)α·β+γ ·δ are well-defined for α,β, γ , δ ∈ 0 whether we
interpret the addition in the exponent as taking place in Z/2Z or in Z. In par-
ticular, there continues to hold the law of exponents (−1)α+β = (−1)α(−1)β .
Let Cn be the graph whose vertices are the elements of 0, with two vertices α
and β connected by an edge whenever α+ β has exactly one component equal
to 1. Thus Cn may be regarded as the graph formed by the vertices and edges
of an n-dimensional cube. Equivalently, Cn is the Hasse diagram of the bool-
ean algebra Bn, regarded as a graph. Let V be the vector space of all functions
f : 0→ Q. Define a linear transformation 8 : V → V by

(8f )(α) = nf (α)−
∑
β

f (β),

where β ranges over all elements of 0 adjacent to α in Cn. Note that the matrix
of 8 with respect to some ordering of the basis 0 of V is just the Laplacian
matrix L(Cn) (with respect to the same ordering of the vertices of Cn). Now for
each γ ∈ 0 define a function χγ ∈ V by

χγ (α) = (−1)α·γ .
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Then

(8χγ )(α) = n(−1)α·γ −
∑
β

(−1)β·γ ,

with β as above. If γ has exactly k 1’s, then for exactly n − k values of β
do we have β · γ = α · γ , while for the remaining k values of β we have
β · γ = α · γ + 1. Hence

(8χγ )(α) = (n− ((n− k)− k)) (−1)α·γ

= 2k χγ (α).

It follows that χγ is an eigenvector of 8 with eigenvalue 2k. It is easy to see
that the χγ ’s are linearly independent, so we have found all 2n eigenvalues of
L, namely, 2k is an eigenvalue of multiplicity

(n
k

)
, 0 ≤ k ≤ n. Hence from the

Matrix-Tree Theorem there follows the remarkable result

c(Cn) =
1

2n

n∏
k=1

(2k)(
n
k)

= 22n
−n−1

n∏
k=1

k(
n
k). (5.85)

A bijective proof of this formula is not known.

5.6.11 Example (the efficient mail carrier). A mail carrier has an itinerary of
city blocks to which he (or she) must deliver mail. He wants to accomplish this
by walking along each block twice, once in each direction, thus passing along
houses on each side of the street. The blocks form the edges of a graph G,
whose vertices are the intersections of streets. The mail carrier wants simply
to walk along an Eulerian tour in the digraph Ĝ defined after Corollary 5.6.7.
Making the plausible assumption that the graph is connected, not only does an
Eulerian tour always exist, but we can tell the mail carrier how many there are.
Thus he will know how many different routes he can take to avoid boredom.
For instance, suppose G is the 3× 3 grid illustrated below.

This graph has 192 spanning trees. Hence the number of mail carrier routes
beginning with a fixed edge (in a given direction) is 192 · 1!42!43! = 18432.
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The total number of routes is thus 18432 times twice the number of edges,
namely, 18432× 24 = 442368. Assuming the mail carrier delivered mail 250
days a year, it would be 1769 years before he would have to repeat a route!

5.6.12 Example (binary de Bruijn sequences). A binary sequence is just a
sequence of 0’s and 1’s. A (binary) de Bruijn sequence of degree n is a
binary sequence A = a1a2 · · · a2n such that every binary sequence b1 · · · bn of
length n occurs exactly once as a “circular factor” of A, that is, as a sequence
aiai+1 · · · ai+n−1, where the subscripts are taken modulo 2n if necessary. Note
that there are exactly 2n binary sequences of length n, so the only possible
length of a de Bruijn sequence of degree n is 2n. Clearly any conjugate (cyclic
shift) aiai+1 · · · a2na1a2 · · · ai−1 of a de Bruijn sequence a1a2 · · · a2n is also
a de Bruijn sequence, and we call two such sequences equivalent. This rela-
tion of equivalence is obviously an equivalence relation, and every equivalence
class contains exactly one sequence beginning with n 0’s. Up to equivalence,
there is one de Bruijn sequence of degree two, namely, 0011. It’s easy to check
that there are two inequivalent de Bruijn sequences of degree three, namely,
00010111 and 00011101. However, it’s not clear at this point whether de Bruijn
sequences exist for all n. By a clever application of Theorems 5.6.2 and 5.6.4,
we will not only show that such sequences exist for all positive integers n, but
we will also count the number of them. It turns out that there are lots of them.
For instance, the number of inequivalent de Bruijn sequences of degree eight
is equal to

1329227995784915872903807060280344576.

Our method of enumerating de Bruijn sequences will be to set up a corre-
spondence between them and Eulerian tours in a certain directed graph Dn,
the de Bruijn graph of degree n. The graph Dn has 2n−1 vertices, which we
will take to consist of the 2n−1 binary sequences of length n − 1. A pair
(a1a2 · · · an−1, b1b2 · · · bn−1) of vertices forms an edge of Dn if and only if
a2a3 · · · an−1 = b1b2 · · · bn−2, that is, e is an edge if the last n − 2 terms of
init(e) agree with the first n−2 terms of fin(e). Thus every vertex has indegree
two and outdegree two, so Dn is balanced. The number of edges of Dn is 2n.
Moreover, it’s easy to see that Dn is connected (see Lemma 5.6.13). The graphs
D3 and D4 are shown in Figure 5.17.

Suppose that E = e1e2 · · · e2n is an Eulerian tour in Dn. If fin(ei) is the
binary sequence ai1ai2 · · · ai,n−1, then replace ei in E by the last bit ai,n−1. It is
easy to see that the resulting sequence β(E) = a1,n−1a2,n−1 · · · a2n,n−1 is a de
Bruijn sequence, and conversely every de Bruijn sequence arises in this way.
In particular, since Dn is balanced and connected there exists at least one de
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Figure 5.17 The de Bruijn graphs D3 and D4

Bruijn sequence. In order to count the total number of such sequences, we need
to compute det L0(Dn). One way to do this is by a clever but messy sequence of
elementary row and column operations which transforms the determinant into
triangular form. We will give instead an elegant computation of the eigenvalues
of L(Dn) (and hence of det L0) based on the following simple lemma.

5.6.13 Lemma. Let u and v be any two vertices of Dn. Then there is a unique
(directed) walk from u to v of length n− 1.

Proof. Suppose u = a1a2 · · · an−1 and v = b1b2 · · · bn−1. Then the unique
path of length n− 1 from u to v has vertices

a1a2 · · · an−1, a2a3 · · · an−1b1, a3a4 · · · an−1b1b2, . . . ,

an−1b1 · · · bn−2, b1b2 · · · bn−1.
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5.6.14 Lemma. The eigenvalues of L(Dn) are 0 (with multiplicity one) and 2
(with multiplicity 2n−1

− 1).

Proof. Let A(Dn) denote the directed adjacency matrix of Dn, that is, the rows
and columns are indexed by the vertices, with

Auv =

{
1, if (u, v) is an edge
0, otherwise.

Now Lemma 5.6.13 is equivalent to the assertion that An−1
= J , the 2n−1

×

2n−1 matrix of all 1’s. If the eigenvalues of A are λ1, . . . λ2n−1 , then the eigen-
values of J = An−1 are λn−1

1 , . . . , λn−1
2n−1 . By Example 5.6.9, the eigenvalues of

J are 2n−1 (once) and 0 (2n−1
− 1 times). Hence the eigenvalues of A are 2ζ

(once, where ζ is an (n− 1)-st root of unity to be determined), and 0 (2n−1
− 1

times). Since the trace of A is 2, it follows that ζ = 1, and we have found all
the eigenvalues of A.

Now L(Dn) = 2I − A(Dn). Hence the eigenvalues of L are 2− λ1, . . . , 2−
λ2n−1 , and the proof follows from the above determination of λ1, . . . , λ2n−1 .

5.6.15 Corollary. The number B0(n) of de Bruijn sequences of degree n begin-
ning with n 0’s is equal to 22n−1

−n. The total number B(n) of de Bruijn
sequences of degree n is equal to 22n−1

.

Proof. By the above discussion, B0(n) is the number of Eulerian tours in Dn

whose first edge is the loop at vertex 00 · · · 0. Moreover, the outdegree of every
vertex of Dn is two. Hence by Corollary 5.6.7 and Lemma 5.6.14 we have

B0(n) =
1

2n−1 22n−1
−1
= 22n−1

−n.

Finally, B(n) is obtained from B0(n) by multiplying by the number 2n of edges,
and the proof follows.

Notes2

The compositional formula (Theorem 5.1.4) and the exponential formula (Cor-
ollary 5.1.6) had many precursors before blossoming into their present form. A
purely formal formula for the coefficients of the composition of two exponen-
tial generating functions goes back to Faà di Bruno [86][87] in 1855 and 1857,

2 A reference such as [3.13] refers to reference 13 of the Notes section to Volume 1, Chapter 3. A
reference such as [13] refers to the References of the present volume.
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and is known as Faà di Bruno’s formula. For additional references on this for-
mula, see [2.3, p. 137]. An early precursor of the exponential formula is due to
Jacobi [159]. The idea of interpreting the coefficients of eF(x) combinatorially
was considered in certain special cases by Touchard [329] and by Riddell and
Uhlenbeck [270]. Touchard was concerned with properties of permutations
and obtained our equation (5.30), from which he derived many consequences.
Equation (5.30) was earlier obtained by Pólya [250, Sect. 13] but he was not
interested in general combinatorial applications. It is also apparent from the
work of Frobenius (see [104, bottom of p. 152 of GA]) and Hurwitz [156, §4]
that they were aware of (5.30), even if they did not state it explicitly. Riddell
and Uhlenbeck, on the other hand, were concerned with graphical enumeration
and obtained our Example 5.2.1 and related results.

It was not until the early 1970s that a general combinatorial interpretation
of eF(x) was developed independently by Foata–Schützenberger [91], Bender–
Goldman [3.3], and Doubilet–Rota–Stanley [3.12]. The approach most like the
one taken here is that of Foata–Schützenberger. Doubilet–Rota–Stanley use an
incidence algebra approach and prove a result (Theorem 5.1) equivalent to our
Theorem 5.1.11. The most sophisticated combinatorial theory of power series
composition is the theory of species, which is based on category theory and
which was developed after the above three references by A. Joyal [3.23] and his
collaborators. For further information on species, see [16]. Another category
theory approach to the exponential formula was given by A. W. M. Dress and
T. Müller [73]. The exponential formula has been frequently rediscovered in
various guises; an interesting example is [251]. A q-analogue has been given
by Gessel [117].

Let us turn to the applications of the exponential formula given in Section 2.
Example 5.2.3 first appeared in [4.36, Example 6.6]. The generating functions
(5.27) and (5.28) for total partitions and binary total partitions, as well as the
explicit formula b(n) = 1 · 3 · 5 · · · (2n− 3), are given by E. Schröder [291] as
the fourth and third problems of his famous “vier combinatorische Probleme.”
(We will discuss the first two problems in Chapter 6.) A minor variation of the
combinatorial proof given here of the formula for b(n) appears in [82, Cor. 2],
though there may be earlier proofs of a similar nature. See Exercise 43 for a
generalization and further references. For further work related to Schröder’s
fourth problem, see the solution to Exercise 40. The generating functions and
recurrence relations for Sn(2) and S∗n (2) in Examples 5.2.7 and 5.2.8 were
found (with a different proof from ours) by H. Gupta [133, (6.3), (6.4), (6.7),
and (6.8)]. For a generalization, see R. Grimson [132]. Example 5.2.9 is due to
I. Schur [293] and is also discussed in [253, Problem VII.45]. Schur considers
some variants, one of which leads to the generating function for Tn(2) given

https://doi.org/10.1017/9781009262538.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009262538.003


68 Trees and the Composition of Generating Functions

in Example 5.2.8. On the other hand, the generating function for T∗n (2) (equa-
tion (5.29)) essentially appears (again in a different context, discussed here in
Exercise 23) in [77].

We already mentioned that equation (5.30) is due to Pólya (or possibly
Frobenius or Hurwitz). It seems clear from the work of Touchard [329] that

he was aware of the generating function exp
∑

d|r
xd

d of Example 5.2.10. The
first explicit statement is due to Chowla, Herstein, and Scott [49], the earlier
cases r = 2 and r prime having been investigated by Chowla, Herstein, and
Moore [48] and by Jacobstahl [160], respectively. Comtet [2.3, Exer. 9, p. 257]
discusses this subject and gives some additional references. For a significant
generalization, see Exercise 13(a).

Example 5.2.11 was found in collaboration with I. Gessel. Similar argu-
ments appear in Exercise 21 and in the paper [226] of Metropolis and Rota.

The concept of tree as a formal mathematical object goes back to Kirchhoff
and von Staudt. Trees were first extensively investigated by Cayley, to whom
the term “tree” is due. In particular, in [43] Cayley states the formula t(n) =
nn−2 for the number of free trees on an n-element vertex set, and he gives
a vague idea of a combinatorial proof. Cayley points out, however, that an
equivalent result had been proved earlier by Borchardt [28]. Moreover, this
result appeared even earlier in a paper of Sylvester [324]. Undoubtedly Cayley
and Sylvester could have furnished a complete, rigorous proof had they the
inclination to do so. The first explicit combinatorial proof of the formula t(n) =
nn−2 is due to Prüfer [255], and is essentially the same as the case k = 1 of
our first proof of Proposition 5.3.2. The second proof of Proposition 5.3.2 (or
more precisely, the version given for trees at the beginning of the proof) is
due to Joyal [3.23, Example 12, pp. 15-16]. The more general formula for
pS(n) given in Proposition 5.3.2 was also stated by Cayley and is implicit in
the work of Borchardt. Raney [259] uses a straightforward generalization of
Prüfer sequences to give a formal solution to the functional equation∑

i

Aie
Bix = x.

A less obvious generalization of Prüfer sequences was given by Knuth [170]
and is also discussed in [231, Section 2.3].

The connection between Prüfer sequences and degree sequences of trees was
observed by Neville [240]. It was also pointed out by Moon [229][230, p. 72]
and Riordan [272], who noted that it implied the case k = 1 of Theorem 5.3.4.
The second proof of Theorem 5.3.4 is based on the paper [189] of Labelle.

The enumeration of plane (or ordered) trees by degree sequences (the
case k= 1 of Theorem 5.3.10) is due to Erdélyi and Etherington [81]; their
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basic tool is essentially the Lagrange inversion formula. (Erdélyi and Ether-
ington work with “non-associative combinations” rather than trees, but in
[84] Etherington points out the connection, known to Cayley, between non-
associative combinations and plane trees.) The first combinatorial proof of
Theorem 5.3.10, essentially the proof given here, is due to Raney [258, Thm.
2.2]. (Raney works with “words” or more generally “lists of words” rather
than trees; his words are essentially the Łukasiewicz words of equation (5.50).)
Raney used his result to give a combinatorial proof of the Lagrange inversion
formula, as discussed below. The crucial combinatorial result on which the
proof of Theorem 5.3.10 is based is Lemma 5.3.7. This result (including the
statement after Example 5.3.8 that if φ(w) = −k then precisely k cyclic shifts
of w belong to B∗) is part of a circle of results known as the “Cycle Lemma.”
The first such result (which includes the case A = {x0, x−1} of Lemma 5.3.7)
is due to Dvoretzky and Motzkin [76]. For further information and references,
see [68]. For further information on the extensively developed subject of tree
enumeration, see for instance [125] [171, Section 2.3][230][231].

The Lagrange inversion formula (Theorem 5.4.2) is due, logically enough,
to Lagrange [66]. His proof is the same as our first proof. This proof is
repeated by Bromwich [30, Ch. VIII, §55.1], who gives many interesting appli-
cations (see our Exercises 53, 54, and 57). The first combinatorial proof is
due to Raney [258]. His proof is essentially the same as our second proof,
though as mentioned earlier he worked entirely with words and only implic-
itly with plane trees and forests. Streamlined versions of Raney’s proof appear
in Schützenberger [300] and Lothaire [4.21, Ch. 11]. Our third proof of The-
orem 5.4.2 is essentially the same as that of Labelle [189]. For some further
references, see [2.3, pp. 148-149] and [115].

There have been many generalizations of the Lagrange inversion formula.
For fascinating surveys of multivariable Lagrange inversion formulas and their
interconnections, see Gessel [119] and Henrici [148]. Gessel gives a combina-
torial proof which generalizes our third proof of Theorem 5.4.2. There has also
been considerable work on q-analogues of the Lagrange inversion formula.
Special cases were found by Jackson and Carlitz, followed by more general
versions and/or applications due to Andrews, Cigler, Garsia, Garsia and Rem-
mel, Gessel, Gessel and Stanton, Hofbauer, Krattenthaler, Paule, et al. A survey
of these results is given by Stanton [321]. A subsequent unified approach to q-
Lagrange inversion was given by Singer [306]. Finally, Gessel [115] gives a
generalization of Lagrange inversion to noncommutative power series (as well
as a q-analogue).

Exponential structures (Definition 5.5.1) were first considered by Stan-
ley [315]. Their original motivation was to “explain” the formula
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µn = (−1)nE2n−1 of Example 5.5.7, which had earlier been obtained by G.
Sylvester [325] by ad hoc reasoning. (An equivalent result, though not stated
in terms of posets and Möbius functions, had earlier been given by Rosen
[280, Lemma 3].) Exponential structures are closely related to the exponential
prefabs of Bender and Goldman [3.3]; see [315] for further information.

We have already encountered the function H(n, r) of Corollaries 5.5.9 and
5.5.11 in Section 4.6 (where it was denoted Hn(r)). In that section we were con-
cerned with the behavior of H(n, r) for fixed n, while here we are concerned
with fixed r. Corollary 5.5.11 was first proved by Anand, Dumir, and Gupta
[4.1, Sect. 8] using a different technique (viz., first obtaining a recurrence
relation). The approach we have taken here first appeared in [4.36, Example
6.11].

The characterization of Eulerian digraphs given by Theorem 5.6.1 is a result
of Good [124], while the fundamental connection between oriented subtrees
and Eulerian tours in a balanced digraph that was used to prove Theorem 5.6.2
was shown by van Aardenne-Ehrenfest and de Bruijn [333, Thm. 5a]. This
result is sometimes called the BEST Theorem, after de Bruijn, van Aardenne-
Ehrenfest, Smith, and Tutte. However, Smith and Tutte were not involved in
the original discovery. (In [308] Smith and Tutte give a determinantal formula
for the number of Eulerian tours in a special class of balanced digraphs. Van
Aardenne-Ehrenfest and de Bruijn refer to the paper of Smith and Tutte in a
footnote added in proof.) The determinantal formula for the number of oriented
subtrees of a directed graph (Theorem 5.6.4) is due to Tutte [331, Thm. 3.6].
The Matrix-Tree Theorem (Theorem 5.6.8) was first proved by Borchardt [28]
in 1860, though a similar result had earlier been published by Sylvester [324] in
1857. Cayley [41, p. 279] in fact in 1856 referred to the not-yet-published work
of Sylvester. For further historical information on the Matrix-Tree theorem,
see [231, p. 42]. Typically the Matrix-Tree theorem is proved using the Binet–
Cauchy formula (a formula for the determinant of the product of an m × n
matrix and an n × m matrix); see [231, §5.3] for such a proof. Additional
information on the eigenvalues of the adjacency matrix and Laplacian matrix
of a graph may be found in [51][62][61].

The fundamental reason underlying the simple product formula for c(Cn)
given by equation (5.85) is that the graph Cn has a high degree of symmetry,
namely, it is a Cayley graph of the abelian group 0 = (Z/2Z)n. This is equiv-
alent to the statement that 0 acts regularly on the vertices of Cn, that is, 0 is
transitive and only the identity element fixes a vertex. At the end of Exam-
ple 5.6.10 we said that a bijective proof of equation (5.85) is not known. On
the other hand, two combinatorial proofs (but not direct bijections) are given
by O. Bernardi [19].
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For the complexity of an arbitrary Cayley graph of a finite abelian group,
see Exercise 68. In general, it follows from group representation theory that
the automorphism group of a graph G “induces” a factorization of the charac-
teristic polynomial of the adjacency matrix of G; see for example [62, Ch. 5]
for an exposition. For further aspects of Cayley graphs of (Z/2Z)n, see [70].

The de Bruijn sequences of Example 5.6.12 are named after Nicolaas Govert
de Bruijn, who published his work on this subject in 1946 [63]. However, it was
found by Stanley in 1975 that the problem of enumerating de Bruijn sequences
had been posed by de Rivière [67] and solved by Flye Sainte-Marie in 1894
[90]. See [65] for an acknowledgment of this discovery. De Bruijn sequences
have a number of interesting applications to the design of switching networks
and related topics. For further information, see [123]. Additional references
to de Bruijn sequences may be found in [338, p. 92]. For generalizations of
de Bruijn sequences see Chung, Diaconis, and Graham [52], and for some
applications to magic see Diaconis and Graham [71].
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Exercises for Chapter 5

1. (a) [2–] Each of n (distinguishable) telephone poles is painted red, white,
blue, or yellow. An odd number are painted blue and an even number
yellow. In how many ways can this be done?

(b) [2] Suppose now the colors orange and purple are also used. The num-
ber of orange poles plus the number of purple poles is even. Now how
many ways are there?

2. (a) [3–] Write

1+
∑
n≥1

fnxn
= exp

∑
n≥1

hn
xn

n
,

where hn ∈ Q (or any field of characteristic 0). Show that the following
four conditions are equivalent for fixed N ∈ P:
(i) fn ∈ Z for all n ∈ [N].

(ii) hn ∈ Z and
∑
d|n

hd µ(n/d) ≡ 0 (mod n) for all n ∈ [N], where µ

denotes the ordinary number-theoretic Möbius function.
(iii) hn ∈ Z for all n ∈ [N], and hn ≡ hn/p (mod pr), whenever n ∈ [N]

and p is a prime such that pr
|n, pr+1

6 |n, r ≥ 1.
(iv) There exists a polynomial P(t) = 5N

1 (t − αi) ∈ Z[t] (where αi ∈

C) such that hn =
∑N

i=1 α
n
i for all n ∈ [N].

(b) [2+] (basic knowledge of finite fields required) Let S be a set of pol-
ynomial equations in the variables x1, . . . , xk over the field Fq. Let Nn

denote the number of solutions (α1, . . . ,αk) to the equations such that
each αi ∈ Fqn . Show that the generating function

Z(x) = exp
∑
n≥1

Nn
xn

n

has integer coefficients.

72
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(c) [3–] Show that if α1, . . . ,αN ∈ C and
∑N

i=1 α
n
i ∈ Z for all n ∈ P, then∏N

i=1(t − αi) ∈ Z[t].
3. (a) [2–] Let f (n) = 1 · 3 · 5 · · · (2n − 1) and g(n) = 2nn!. Show that

Eg(x) = Ef (x)2.
(b) [3–] Give a combinatorial proof based on Proposition 5.1.1.

4. (a) [2] A threshold graph is a simple (i.e., no loops or multiple edges)
graph which may be defined inductively as follows:

(i) The empty graph is a threshold graph.
(ii) If G is a threshold graph, then so is the disjoint union of G with a

one-vertex graph.
(iii) If G is a threshold graph, then so is the (edge) complement of G.
Let t(n) denote the number of threshold graphs with vertex set [n]
(with t(0) = 1), and let s(n) denote the number of such graphs with
no isolated vertex (so s(0) = 1, s(1) = 0). Set

T(x) = Et(x) = 1+ x+ 2
x2

2!
+ 8

x3

3!
+ 46

x4

4!
+ · · ·

S(x) = Es(x) = 1+
x2

2!
+ 4

x3

3!
+ 23

x4

4!
+ · · · .

Show that T(x) = exS(x) and T(x) = 2S(x)+ x− 1 to deduce

T(x) = ex(1− x)/(2− ex)

S(x) = (1− x)/(2− ex). (5.86)

(b) [2] Let c(n) denote the number of ordered partitions (or preferential
arrangements) of [n], so by Example 3.18.10 Ec(x) = 1/(2 − ex).
It follows from (5.86) that s(n) = c(n) − nc(n − 1). Give a direct
combinatorial proof.

(c) [3–] Let Tn denote the set of all hyperplanes xi + xj = 0, 1 ≤ i <
j ≤ n, in Rn. The hyperplane arrangement Tn is called the threshold
arrangement. Show that the number of regions of Tn (i.e., the number
of connected components of the space Rn

−
⋃

H∈Tn
H) is equal to t(n).

(d) [3–] Let Ln be the intersection poset of Tn, as defined in Chapter 3.11.2.
Show that the characteristic polynomial of Ln is given by

∑
n≥0

(−1)nχ (Ln,−q)
xn

n!
= (1− x)

(
ex

2− ex

) q+1
2

.

This result generalizes (c), since by Theorem 3.11.7 the number of
regions of Ln is equal to |χ (Ln,−1)|.
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5. [2+] Let bk(n) be the number of bipartite graphs (without multiple edges)
with k edges on the vertex set [n]. For instance, b0(3) = 1, b1(3) = 3,
b2(3) = 3, and b3(3) = 0. Show that

∑
n≥0

∑
k≥0

bk(n)qk xn

n!
=

∑
n≥0

(
n∑

i=0

(1+ q)i(n−i)
(

n

i

))
xn

n!

1/2

.

6. [2] Let χ (Kmn, q) denote the chromatic polynomial (as defined in Exer-
cise 3.108) of the complete bipartite graph Kmn. Show that∑

m,n≥0

χ (Kmn, q)
xm

m!

yn

n!
= (ex

+ ey
− 1)q.

7. In this exercise we develop the rudiments of the theory of “combinatorial
trigonometry.” Let En be the number of alternating permutations π of [n],
as discussed in Chapter 1.6.1. Thus π = a1a2 · · · an, where a1 > a2 <

a3 > · · · an.
(a) [2] Using the fact (Propostion 1.6.1) that∑

n≥0

En
xn

n!
= tan x+ sec x,

give a combinatorial proof that 1+ tan2 x = sec2 x.
NOTE. This identity is equivalent to sin2 x+cos2 x = 1, which in turn is
equivalent to the Pythagorean theorem. Thus we have a combinatorial
proof of the Pythagorean theorem. Of the hundreds of known proofs of
this result, our combinatorial proof is perhaps the worst.

(b) [2+] Do the same for the identity

tan(x+ y) =
tan x+ tan y

1− (tan x)(tan y)
. (5.87)

8. (a) [2] The central factorial numbers T(n, k) are defined for n, k ∈ N by

T(0, 0) = 1, T(n, 0) = T(0, k) = 0 for n, k ≥ 1, T(1, 1) = 1

T(n, k) = k2T(n− 1, k)+ T(n− 1, k − 1), for (n, k) ∈ P2
− {(1, 1)}.

Show that

T(n, k) = 2
k∑

j=1

j2n(−1)k−j

(k − j)! (k + j)!

and ∑
n≥0

T(n, k)
x2n

(2n)!
=

1

(2k)!

(
2 sinh

( x

2

))2k
. (5.88)
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(b) [2] Show that∑
n≥0

T(n, k)xn
=

xk

(1− 12x)(1− 22x) · · · (1− k2x)
.

(c) [2] Show that T(n, k) is equal to the number of partitions of the set
{1, 1′, 2, 2′, . . . , n, n′} into k blocks, such that for every block B, if i is
the least integer for which i ∈ B or i′ ∈ B, then both i ∈ B and i′ ∈ B.

(d) [2+] The Genocchi numbers Gn are defined by

2x

ex + 1
=

∑
n≥1

Gn
xn

n!

= x−
x2

2!
+

x4

4!
−

3x6

6!
+

17x8

8!
−

155x10

10!
+

2073x12

12!
− · · ·.

Show that G2n+1 = 0 if n ≥ 1, and that (−1)nG2n is an odd positive
integer. (Sometimes (−1)nG2n is called a Genocchi number.) Note also
that

x tan
x

2
=

∑
n≥1

(−1)nG2n
x2n

(2n)!
.

(e) [3] Show that

G2n+2 =

n∑
i=1

(−1)i+1(i!)2T(n, i).

(f) [3] Show that (−1)nG2n counts the following:
(i) the number of permutations π ∈ S2n−2 such that 1 ≤ π (2i−1) ≤

2n− 2i and 2n− 2i ≤ π (2i) ≤ 2n− 2.
(ii) The number of permutations π ∈ S2n−1 with descents after even

numbers and ascents after odd numbers, for example, 2143657
and 3564217. (Such permutations must end with 2n− 1.)

(iii) The number of pairs (a1, a2, . . . , an−1) and (b1, b2, . . . , bn−1) such
that ai, bi ∈ [i] and every j ∈ [n − 1] occurs at least once among
the ai’s and bi’s.

(iv) The number of reverse alternating permutations a1 < a2 > a3 <

a4 > · · · > a2n−1 of [2n − 1] whose inversion table (as defined
in Chapter 1.3) has only even entries. For example, for n = 3 we
have the three permutations 45231, 34251, 24153 with inversion
tables 42200, 42000, 20200.

9. Let S be a “structure” that can be put on a finite set by choosing a partition
of S and putting a “connected” structure on each block, so that the expo-
nential formula (Corollary 5.1.6) is applicable. Let f (n) be the number of
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structures that can be put on an n-set, and let F(x) = Ef (x), the exponential
generating function of f .
(a) [2–] Let g(n) be the number of structures that can be put on an n-set so

that every connected component has even cardinality. Show that

Eg(x) =
√

F(x)F(−x).

(b) [2] Let e(n) be the number of structures that can be put on an n-set so
that the number of connected components is even. Show that

Ee(x) =
1

2

(
F(x)+

1

F(x)

)
.

10. (a) [2–] Let k > 2. Give a generating function proof that the number fk(n)
of permutations π ∈ Sn all of whose cycle lengths are divisible by k is
given by

12
·2 ·3 · · · (k−1)(k+1)2(k+2) · · · (2k−1)(2k+1)2(2k+2) · · · (n−1)

if k|n, and is 0 otherwise.
(b) [2] Give a combinatorial proof of (a).
(c) [2] Let k ∈ P. Give a generating function proof that the number gk(n)

of permutations π ∈ Sn none of whose cycle lengths is divisible by k
is given by

1 ·2 · · · (k−1)2(k+1) · · · (2k−2)(2k−1)2(2k+1) · · · (n−1)n, if k6 |n

1·2 · · · (k−1)2(k+1) · · · (2k−2)(2k−1)2(2k+1) · · · (n−2)(n−1)2, if k|n.

(d) [3–] Give a combinatorial proof of (c).
11. (a) [2] Let a(n) be the number of permutations w in Sn that have a square

root, that is, there exists u ∈ Sn satisfying u2
= w. Show that∑

n≥0

a(n)
xn

n!
=

(
1+ x

1− x

)1/2 ∏
k≥1

cosh(x2k/2k).

(b) [2–] Deduce from (a) that a(2n+ 1) = (2n+ 1)a(2n). Is there a simple
combinatorial proof?

12. [2+] Let f (n) be the number of pairs (u, v) of permutations in Sn satisfying
u2
= v2. Find the exponential generating function F(x) =

∑
n≥0 f (n) xn

n! .
13. (a) [2+] Let G be a finitely generated group, and let Hom(G,Sn) denote

the set of homomorphisms G → Sn. Let jd(G) denote the number of
subgroups of G of index d. Show that

∑
n≥0

#Hom(G,Sn)
xn

n!
= exp

∑
d≥1

jd(G)
xd

d

 .

Note that equation (5.31) is equivalent to the caseG = Z/rZ.
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(b) [1+] Let Fs denote the free group on s generators. Deduce from (a) that

∑
n≥0

n!s−1xn
= exp

∑
d≥1

jd(Fs)
xd

d

 . (5.89)

(c) [3–] With G as above, let ud(G) denote the number of conjugacy classes
of subgroups of G of index d. In particular, if every subgroup of G of
index d is normal (e.g., if G is abelian) then ud(G) = jd(G). Show that∑

n≥0

#Hom(G× Z,Sn)
xn

n!
=

∏
d≥1

(
1− xd

)−ud(G)
. (5.90)

(d) [1+] Let cm(n) be the number of commuting m-tuples (u1, . . . , um) ∈
Sm

n , that is, uiuj = ujui for all i and j. Deduce from (c) that∑
n≥0

cm(n)
xn

n!
=

∏
d≥1

(
1− xd

)−jd
(
Zm−1)

.

(e) [3–] Let hk(n) be the number of graphs (with multiple edges allowed)
on the vertex set [n] with edges colored 1, 2, . . . , k − 1 satisfying the
following properties:

i. For each i, the edges colored i have no vertices in common.
ii. For each i < k − 1, every connected component of the (spanning)

subgraph consisting of all edges colored i and i+1 is either a single
vertex, a path of length two, a two-cycle (that is, an edge colored i
and an edge colored i+ 1 with the same vertices), or a six-cycle.

iii. For each i, j such that j− i ≥ 2, every connected component of the
subgraph consisting of all edges colored i and j is either a single
vertex, a single edge (colored either i or j), a two-cycle, or a four-
cycle.

Show that ∑
n≥0

hk(n)
xn

n!
= exp

∑
d|k!

jd(Sk)
xd

d

 .

14. (a) [2–] Let An(t) denote an Eulerian polynomial, as defined in Chap-
ter 1.3, and set y =

∑
n≥1 An(t) xn

n! . Show that y is the unique power
series for which there exists a power series z satisfying the two
formulas

1+ y = exp(tx+ z)

1+ t−1y = exp(x+ z).
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(b) [2+] Show that the power series z of (a) is given by

z =
∑
n≥2

An−1(t)
xn

n!
.

(c) [2+] Set (1+ y)q
=
∑

n≥0 Bn(q, t) xn

n! . Show that

Bn(q, t) =
∑

w∈Sn

qm(w)t1+d(w),

where m(w) denotes the number of left-to-right minima of w, and d(w)
denotes the number of descents of w.

(d) [2–] Deduce that the coefficient of xn

n! in (1+ y)q/t is a polynomial in q
and t with integer coefficients.

15. [2] For each of the following sets of graphs, let f (n) be the number of
graphs G on the vertex set [n] such that every connected component of
G is isomorphic to some graph in the set. Find for each set Ef (x) =∑

n≥0f (n)xn/n!. (Set f (0) = 1.)

(a) cycles Ci of length i ≥ k (for some fixed k ≥ 3)
(b) stars K1i, i ≥ 1 (Krs denotes a complete bipartite graph)
(c) wheels Wi with i ≥ 4 vertices (Wi is obtained from Ci−1 by adding a

new vertex joined to every vertex of Ci−1)
(d) paths Pi with i ≥ 1 vertices (so P1 is a single vertex and P2 is a single

edge).
16. Let G be a simple graph (i.e., no loops or multiple edges) on the ver-

tex set [n]. The (ordered) degree sequence of G is defined to be d(G) =
(d1, . . . , dn), where di is the degree (number of incident edges) of vertex i.
Let f (n) be the number of distinct degree sequences of simple graphs on
the vertex set [n]. For instance, all eight graphs on [3] have different degree
sequences, so f (3) = 8. On the other hand, there are three graphs on [4]

with degree sequence (1, 1, 1, 1), so f (4) < 2(
4
2) = 64. (In fact, f (4) = 54.)

(a) [3+] Show that

f (n) =
∑

X

max
{

1, 2c(X )−1
}

, (5.91)

where X ranges over all graphs on [n] such that every connected com-
ponent is either a tree or has a single cycle, and all cycles of X are of
odd length; and where c(X ) denotes the number of (odd) cycles of X .
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(b) [3–] Let

F(x) =
∑
n≥0

f (n)
xn

n!

= 1+ x+ 2
x2

2!
+ 8

x3

3!
+ 54

x4

4!
+ 533

x5

5!
+ 6944

x6

6!
+ · · · .

Assuming (a), show that

F(x) =
1

2


1+ 2

∑
n≥1

nn xn

n!

1/2

1−
∑
n≥1

(n− 1)n−1 xn

n!

+ 1

 e
∑

n≥1 nn−2xn/n!,

where we set 00
= 1 in the term n = 1 of the second sum on the right.

17. (a) [2] Fix k, n ∈ P. In how many ways may n people form exactly k lines?
(In other words, how many ways are there of partitioning the set [n]
into k blocks, and then linearly ordering each block?) Give a simple
combinatorial proof.

(b) [2–] Deduce that

1+
∑
n≥1

n∑
k=1

n!

k!

(
n− 1

k − 1

)
xk un

n!
= exp

xu

1− u
.

(c) [2+] Let a ∈ P. Extend the argument of (a) to deduce that

1+
∑
n≥1

n∑
k=1

n!

k!

(
n+ (a− 1)k − 1

n− k

)
xk un

n!
= exp

xu

(1− u)a (5.92)

and

1+
∑
n≥1

n∑
k=1

n!

k!

(
ak

n− k

)
xk un

n!
= exp xu(1+ u)a. (5.93)

NOTE. Since these identities hold for all a ∈ P, they also hold if a is
an indeterminate.

(d) [2] Fix k, n,α ∈ N. Let A be a set of cardinality α disjoint from [n]. In
how many ways can we choose a subset S of [n], then choose a partition
π of S into exactly k blocks, then linearly order each block of π , and
finally choose an injection f : S̄ → S̄ ∪ A, where S̄ = [n]− S? Give a
simple combinatorial proof.
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(e) [2–] Deduce that∑
n≥0

n∑
k=0

(
n

k

)
(α + n)n−k xk un

n!
= (1− u)−α−1 exp

xu

1− u
.

(Note that we obtain (b) by setting α = −1.)
18. [2] Call two permutations π , σ ∈ Sn equivalent if every cycle C of π is

a power Dj (where j depends on C) of some cycle D of σ . Clearly this is
an equivalence relation; let e(n) be the number of equivalence classes (with
e(0) = 1). Show that ∑

n≥0

e(n)
xn

n!
= exp

∑
n≥1

xn

nφ(n)
,

where φ is Euler’s phi-function.
19. [3–] Define polynomials Kn(a) by∑

n≥0

Kn(a)
un

n!
= exp

(
au+

u2

2

)
.

Thus it follows from Example 5.2.10 that

Kn(a) =
∑
π

ac1(π ), (5.94)

where π ranges over all involutions (i.e., π2
= 1) in Sn, and c1(π ) is the

number of 1-cycles (fixed points) of π . Using (5.94), give a combinatorial
proof of the identity∑

n≥0

Kn(a)Kn(b)
xn

n!
= (1− x2)−1/2 exp

[
abx+ 1

2 (a2
+ b2)x2

1− x2

]
. (5.95)

20. (a) [2+] A block is a finite connected graph B (allowing multiple edges
but not loops) with at least two vertices such that the removal of any
vertex v and all edges incident to v leaves a connected graph. Let B be
a collection of nonisomorphic blocks. Let b(n) be the number of blocks
on the vertex set [n] which are isomorphic to some block in B. In other
words, if Aut B denotes the automorphism group of the block B, then

b(n) =
∑

B

n!

#(Aut B)
,

summed over all n-vertex blocks B in B. Call a graph G a B-graph if it
is connected and its maximal blocks (i.e., maximal induced subgraphs
which are blocks) are all isomorphic to members of B. For n ≥ 2,
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let f (n) be the number of rooted B-graphs on an n-element vertex set
V (i.e., a B-graph with a vertex chosen as a root). Set f (0) = 0 and
f (1) = 1, and put

B(x) = Eb(x) =
∑
n≥2

b(n)
xn

n!

F(x) = Ef (x) =
∑
n≥1

f (n)
xn

n!
.

Show that

F(x) = xeB′(F(x)), (5.96)

and hence ∑
n≥1

b(n+ 1)
xn

n!
= log

(
x

F〈−1〉(x)

)
. (5.97)

For instance, if B contains only the single block consisting of one edge,
then a B-graph is a (free) tree. Hence f (n) is the number of rooted
trees on n vertices, B(x) = x2/2!, and F(x) = xeF(x) (agreeing with
Proposition 5.3.1).

(b) [2] Let g(n) be the total number of blocks without multiple edges on
an n-element vertex set. Show that∑

n≥1

g(n+ 1)
xn

n!
= log

(
x

G(x)〈−1〉

)
,

where

G(x) =

∑
n≥1

2(
n
2)

xn

(n− 1)!∑
n≥0

2(
n
2)

xn

n!

.

21. [3–] Find a combinatorial proof of equation (4.41). More specifically, using
the notation of Chapter 4.7.4, given a pair (π , u), where π ∈ Sn and u ∈
B∗n , associate with it in bijective fashion a permutation σ ∈ Sn with a
cyclic shift vC of an element of B∗k attached to each k-cycle C of σ . The
multiset of letters in u should coincide with those in all the vC’s so that the
bijection is weight-preserving.

22. [2] Let L(n) be the function of Example 5.2.9, so in particular L(n) is the
number of graphs on the vertex set [n] for which every component is a
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cycle (including loops and double edges). Give a direct combinatorial proof
that

L(n+ 1) = (n+ 1)L(n)−
(

n

2

)
L(n− 2), n ≥ 2.

23. [2] Let1 be a set {δ1, . . . , δn} of n straight lines in the plane lying in general
position (i.e., no two are parallel and no three meet at a point). Let P be the
set of their points δi∩δj of intersection, so #P =

(n
2

)
. A cloud is an n-subset

of P containing no three collinear points. Find a bijection between clouds
and regular graphs on [n] (without loops and multiple edges) of degree two.
Hence by (5.29) if c(n) is the number of clouds for #1 = n, then∑

n≥0

c(n)
xn

n!
= (1− x)−1/2 exp

(
−

x

2
−

x2

4

)
.

24. (a) [2+] Let 6n be the convex polytope of all n × n symmetric doubly-
stochastic matrices. Show that the extreme points (vertices) of 6n

consist of all matrices 1
2 (P + Pt), where P is a permutation matrix

corresponding to a permutation with no cycles of even length ≥ 4.
(b) [2+] Let M(n) be the number of vertices of 6n. Show that

∑
n≥0

M(n)
xn

n!
=

(
1+ x

1− x

)1/4

exp
(

x

2
+

x2

2

)
. (5.98)

(c) [2+] Find polynomials p0(n), . . . , p3(n) such that

M(n+1) = p0(n)M(n)+p1(n)M(n−1)+p2(n)M(n−2)+p3(n)M(n−3),

for all n ≥ 3.
(d) [2+] Find a direct combinatorial proof of (c), analogous to Exercise 22?

25. (a) [2+] Let6∗n be the convex polytope of all n×n symmetric substochastic
matrices (i.e., the entries are ≥ 0, and all line sums are ≤ 1). Show
that the vertices of 6∗n are obtained from those of 6n (defined in the
previous exercise) by replacing some 1’s on the main diagonal by 0’s.

(b) [2] Let M∗(n) be the number of vertices of 6∗n . Show that∑
n≥0

M∗(n)
xn

n!
= ex

∑
n≥0

M(n)
xn

n!
,

where M(n) is defined in Exercise 24.
(c) [2] Find polynomials p∗0(n), . . . , p∗3(n) such that

M∗(n+1) = p∗0(n)M∗(n)+p∗1(n)M∗(n−1)+p∗2(n)M∗(n−2)+p∗3(n)M∗(n−3).
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26. [2+] Let f (n) be the number of sets S of nonempty subsets of [n] (including
S = ∅) such that any two elements of S are either disjoint or comparable
(with respect to inclusion). Let g(n) be the number of such sets S which
contain [n], with g(0) = 0. Set

F(x) = Ef (x) = 1+ 2x+ 8
x2

2!
+ 64

x3

3!
+ 832

x4

4!
+ 15104

x5

5!
+ · · ·

G(x) = Eg(x) = x+ 4
x2

2!
+ 32

x3

3!
+ 416

x4

4!
+ 7552

x5

5!
+ · · · .

Show that F(x) = 1+ 2G(x) and F(x) = ex+G(x). Hence [why?]

G(x) = (log(1+ 2x)− x)〈−1〉 (5.99)

F(x)− 1 =
(

log(1+ x)−
x

2

)〈−1〉
.

27. [2] Find the number e(n) of trees with n + 1 unlabelled vertices and n
labelled edges. Give a simple bijective proof.

28. [2+] Let k ∈ P. A k-edge colored tree is a tree whose edges are colored
from a set of k colors such that any two edges with a common vertex have
different colors. Show that the number Tk(n) of k-edge colored trees on the
vertex set [n] is given by

Tk(n) = k(nk − n)(nk − n− 1) · · · (nk − 2n+ 3) = k(n− 2)!
(

nk − n

n− 2

)
.

29. (a) [2] Let Pn be the set of all planted forests on [n]. Let uv be an edge of a
forest F ∈ Pn such that u is closer than v to the root of its component.
Define F to cover the rooted forest F′ if F′ is obtained by removing
the edge uv from F, and rooting the new tree containing v at v. This
definition of cover defines the covering relation of a partial order on
Pn. Under this partial order Pn is graded of rank n − 1. The rank of a
forest F in Pn is its number of edges. Show that an element F of Pn of
rank i covers i elements and is covered by (n− i− 1)n elements.

(b) [2] By counting in two ways the number of maximal chains of Pn,
deduce that the number r(n) of rooted trees on [n] is equal to nn−1.

(c) [2+] Let P̄n be Pn with a 1̂ adjoined. Show that

µ(0̂, 1̂) = (−1)n(n− 1)n−1,

where µ denotes the Möbius function of P̄n.
30. [2+] Let R = {1, 2, . . . , r} and S = {1′, 2′, . . . , s′} be disjoint sets of car-

dinalities r and s, respectively. A free bipartite tree with vertex bipartition
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(R, S) is a free tree T on the vertex set R ∪ S such that every edge of T is
incident to a vertex in R and a vertex in S. By modifying the two proofs of
Theorem 5.3.4, give two combinatorial proofs that

∑
T

(∏
i∈R

xdeg i
i

)∏
j′∈S

ydeg j′

j

 =
(x1 · · · xr)(y1 · · · ys)(x1+· · ·+ xr)s−1(y1+· · ·+ ys)r−1, (5.100)

summed over all free bipartite trees T with vertex bipartition (R, S). In
particular, the total number of such trees (i.e., the complexity c(Krs) of the
complete bipartite graph Krs) is rs−1sr−1, agreeing with the computation at
the end of the solution to Exercise 2.27(c).

31. (a) [1+] Let S and T be finite sets, and for each t∈T let xt be an
indeterminate. Show that∑

f :S→T

∏
s∈S

xf (s) =

(∑
t∈T

xt

)#S

,

where the first sum ranges over all functions f : S→ T .
(b) [3–] By considering the case S = [n] and T = [n+ 2], show that

(x1+· · ·+xn+2)n
=

∑
A⊆[n]

xn+1

(
xn+1 +

∑
i∈A

xi

)#A−1(
xn+2 +

∑
i∈A′

xi

)n−#A

,

where A′ = [n]− A. Note that when A = ∅, we have

xn+1

(
xn+1 +

∑
i∈A

xi

)#A−1

= 1.

(c) [2–] Deduce from (b) that

(x+ y)n
=

n∑
k=0

(
n

k

)
x(x− kz)k−1(y+ kz)n−k ,

where x, y, z are indeterminates. Note that the case z = 0 is the binomial
theorem.

(d) [2–] Deduce from (c) the identity

∑
n≥0

(n+ 1)n xn

n!
=

∑
n≥0

nn xn

n!

∑
n≥0

(n+ 1)n−1 xn

n!

 ,

where we set 00
= 1.
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1
9
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Figure 5.18 The digraph Df of a function f : [10]→ [10]

32. (a) [2+] Let f : [n] → [n], and let Df denote the digraph of f , that is,
the directed graph on the vertex set [n] with an arrow from i to j if
f (i) = j. Thus every connected component of Df contains a unique
cycle, and every vertex i of this cycle is the root of a rooted tree (pos-
sibly consisting of the single point i) directed toward i. Let wf (i) = tjk
(an indeterminate) if vertex i is at distance k from a j-cycle of Df . Let

w( f ) =
n∏

i=1

wf (i).

For instance, if Df is given by Figure 5.18, then wf (1) = t31, wf (2) =
t30, wf (3) = t30, wf (4) = t11, wf (5) = t31, wf (6) = t10, wf (7) =
t32, wf (8) = t11, wf (9) = t32, wf (10) = t30, so

w( f ) = t330t231t232t10t211.

The (augmented) cycle index or cycle indicator Z̃n(tjk) of the symmetric
semigroup 3n = [n][n] of all functions f : [n]→ [n] is the polynomial
defined by

Z̃n(tjk) =
∑
f ∈3n

w( f ).

For instance,

Z̃2 = t210 + t220 + 2t10t11.

Note that

Z̃n(tjk)|tjk=0 for k>0 = Z̃(Sn, t10, t220, t330, . . . ),

where Z̃(Sn) is defined in Example 5.2.10.
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Show that

∑
n≥0

Z̃n(tjk)
xn

n!
= exp

∑
j≥1

1

j

tj0xetj1xetj2xe·
·
·


j

. (5.101)

(b) [1+] Put each tjk = 1 to deduce (with 00
= 1) that

∑
n≥0

nn xn

n!
=

1− xexexe·
·
·

−1

=

1−
∑
n≥1

nn−1 xn

n!

−1

.

(c) [2] Fix a, b ∈ P. Let g(n) denote the number of functions f : [n]→ [n]
satisfying f a

= f a+b (exponents denote functional composition). Show
that

∑
n≥0

g(n)
xn

n!
= exp

∑
j|b

1

j

xexexe··
·
xex

︸ ︷︷ ︸
a e’s



j

(5.102)

In particular, if a = 1 then∑
n≥0

g(n)
xn

n!
= exp

∑
j|b

1

j
(xex)j. (5.103)

(d) [2] Deduce from (a) or (c) that the number h(n) of functions f : [n]→
[n] satisfying f = f 1+b for some b ∈ P is given by

h(n) =
n∑

k=1

kn−k(n)k , (5.104)

while the number g(n) of idempotent functions f : [n] → [n] (i.e.,
f 2
= f ) is given by

g(n) =
n∑

k=1

kn−k
(

n

k

)
. (5.105)
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(e) [2–] How many functions f : [n] → [n] satisfy f a
= f a+1 for some

a ∈ P?
(f) [1+] How many functions f : [n]→ [n] have no fixed points?

33. [2] Find the flaw in the following argument. Let c(n) be the total number of
chains 0̂ = x0 < x1 < · · · < xk = 1̂ in 5n. Thus from Chapter 3.6,

c(n) = (2− ζ )−1(0̂, 1̂),

where ζ is the zeta function of 5n. Since

(2− ζ )(x, y) =
{

1, x = y
−1, x < y,

we have

E2−ζ (x) = x−
∑
n≥2

xn

n!
= 1+ 2x− ex.

Thus by Theorem 5.1.11, the generating function

y := Ec(x) =
∑
n≥1

c(n)
xn

n!

satisfies

1+ 2y− ey
= x.

Equivalently,

y = (1+ 2x− ex)〈−1〉,

which is the same as (5.27).
34. (a) [2] Fix k ∈ P, and for n ∈ N define 9n to be the subposet of 5kn+1

consisting of all partitions whose block sizes are≡ 1 (mod k). Thus9n

is graded of rank n with rank function given by ρ(π ) = n− 1
k (|π |−1).

Note that if k = 1, then 9n = 5n+1. It is easy to see that if σ ≤ π in
9n, then

[σ ,π] ∼= 9a0
0 ×9

a1
1 × · · · ×9

an
n

for certain ai satisfying
∑

iai = ρ(σ ,π ) (= the length of the inter-
val [σ ,π ]) and

∑
ai = |π |. As in equations (5.11) and (5.12) we can

define a multiplicative function f : P → K on 9 = (90,91, . . . ),
and the product (convolution) fg of two multiplicative functions.
Lemma 5.1.10 remains true, so the multiplicative functions f : P→ K
on 9 form a monoid M(9) = M(9, K).
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As in Theorem 5.1.11, define a map ϕ : M(9)→ xK[[x]] by

ϕ( f ) =
∑
n≥0

f (n)
xkn+1

(kn+ 1)!
.

Show that ϕ is an anti-isomorphism of monoids, so ϕ( fg) =
ϕ(g)(ϕ( f )) (power series composition).

(b) [1+] Let qn = #9n and µn = µ9n (0̂, 1̂). Show that

∑
n≥0

qn
xkn+1

(kn+ 1)!
= ek(ek(x))

∑
n≥0

µn
xkn+1

(kn+ 1)!
= e〈−1〉

k (x),

where ek(x) =
∑
n≥0

xkn+1/(kn+ 1)!. In particular, when k = 2,

ek(x) = sinh x.

(c) [2] Let χn(t) denote the characteristic polynomial of 9n (as defined in
Chapter 3.10). Show that∑

n≥0

χn(t)
xkn+1

(kn+ 1)!
= t−1/kek(t1/ke〈−1〉

k (x)). (5.106)

Deduce that when k = 2,

χn(t) = (t − 12)(t − 32) · · · (t − (2n− 1)2). (5.107)

In particular, µn = (−1)n(1 · 3 · 5 · · · (2n− 1))2.
35. In this exercise we develop a noncrossing analogue of the exponential for-

mula (Corollary 5.1.6) and its interpretation in terms of incidence algebras
(Theorem 5.1.11).
(a) [2+] Show that the number of noncrossing partitions of [n] (the ele-

ments of the poset P1,n of Exercise 3.158) of type s1, . . . , sn (i.e., with
si blocks of size i) is equal to (n)k−1/s1! · · · sn!, where k =

∑
si.

(b) [2+] Let NCn denote the poset (actually a lattice) of noncrossing par-
titions of [n], as defined in Exercise 3.158 (where P1,n is used instead
of NCn). Let K be a field. Given a function f : P → K, define a new
function h : P→ K by

h(n) =
∑

π={B1,...,Bk}∈NCn

f (#B1) f (#B2) · · · f (#Bk).
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Let F(x) = 1+
∑

n≥1 f (n)xn and H(x) = 1+
∑

n≥1 h(n)xn. Show that

xH(x) =
(

x

F(x)

)〈−1〉

. (5.108)

(c) [3–] Let NC = (NC2, NC3, . . . ). For each n ≥ 2, let fn ∈ I(NCn, K),
the incidence algebra of NCn. It is easy to see that every interval [σ ,π ]
of NCn has a canonical decomposition

[σ ,π ] ∼= NCa2
2 × NCa3

3 × · · · × NCan
n , (5.109)

where |σ | − |π | =
∑

(i − 1)ai. Suppose that the sequence f =
( f2, f3, . . . ) satisfies the following property: there is a function (also
denoted f ) f : P → K such that if σ ≤ π in NCn and [σ ,π ] satisfies
(5.109), then

fn(σ ,π ) = f (2)a2 f (3)a3 · · · f (n)an .

We then call f a multiplicative function on NC. (This definition is in
exact analogy with the definition of a multiplicative function on 5
following Corollary 5.1.9.)
Let M(NC) denote the set of all multiplicative functions on NC. Define
the convolution fg of f , g ∈ M(NC) analogously to (5.12). It is not hard
to see that fg ∈ M(NC). Given f ∈ M(NC), set f (1) = 1 and define

0f (x) =
1

x

∑
n≥1

f (n)xn

〈−1〉

.

Show that 0fg = 0f 0g for all f , g ∈ M(NC). (In particular, M(NC) is a
commutative monoid. This fact also follows by reasoning as in Exercise
3.155 and using the fact that every interval of NCn is self-dual.)

36. (a) [2+] Find the coefficients of the power series

y =
(

1
2 (1+ 2x− ex)

)〈−1〉
− (log(1+ 2x)− x)〈−1〉 .

(b) [1+] Let t(n) be the number of total partitions of n, as defined in Exam-
ple 5.2.5. Let g(n) have the same meaning as in Exercise 26. Deduce
from (a) that g(n) = 2nt(n) for n ≥ 1.

(c) [2+] Give a simple combinatorial proof of (b).
37. (a) [2+] Let 1 = p0(x), p1(x), . . . be a sequence of polynomials (with coef-

ficients in some field K of characteristic 0), with deg pn = n for all
n ∈ N, and with pn(0) = δ0n. Show that the following four conditions
are equivalent:
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(i) pn(x+ y) =
∑

k≥0

(n
k

)
pk(x)pn−k( y), for all n ∈ N.

(ii) There exists a power series f (u) = a1u+a2u2
+· · · ∈ K[[u]] such

that ∑
n≥0

pn(x)
un

n!
= exp xf (u). (5.110)

NOTE: The hypothesis that deg pn = n implies that a1 6= 0.

(iii)
∑
n≥0

pn(x)
un

n!
=

∑
n≥0

pn(1)
un

n!

x

.

(iv) There exists a K-linear operator Q on the vector space K[x] of all
polynomials in x, with the following properties:
• Qx is a nonzero constant
• Q is a shift-invariant operator, that is, for all a ∈ K, Q com-

mutes with the shift operator Ea defined by Eap(x) = p(x +
a).
• We have

Qpn(x) = npn−1(x), for all n ∈ P. (5.111)

NOTE: A sequence p0, p1, . . . of polynomials satisfying the above
conditions is said to be of binomial type. The operator Q is called
a delta operator, and the (unique) sequence 1 = p0(x), p1(x), . . .
satisfying (5.111) is called a basic sequence for Q.

(b) [3–] Show that the following sequences are of binomial type (with
p0(x) = 1 and with n ≥ 1 below):

pn(x) = xn

pn(x) = (x)n = x(x− 1) · · · (x− n+ 1)

pn(x) = x(n)
= x(x+ 1) · · · (x+ n− 1)

pn(x) = x(x− an)n−1, for fixed a ∈ K (Abel polynomials)

pn(x) =
n∑

k=1

S(n, k)xk (exponential polynomials)

pn(x) =
n∑

k=1

n!

k!

(
n+ (a− 1)k − 1

n− k

)
xk , for fixed a ∈ K

(Laguerre polynomials at − x, for a = 1)

https://doi.org/10.1017/9781009262538.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009262538.003


Exercises 91

pn(x) =
n∑

k=1

(
n

k

)
kn−kxk .

In each case, find the power series f (u) of (a)(ii) above. What is the
operator Q of (a)(iv)?

(c) [2+] Let T be a shift-invariant operator, and let Q be a delta operator
with basic sequence pn(x). Show that

T =
∑
n≥0

an
Qn

n!
,

where

an = [Tpn(x)]x=0.

(d) [2+] Let Q be a delta operator with basic polynomials pn(x). Show that
there exists a unique power series q(u) = b1u+ · · · (b1 6= 0) satisfying
q(D) = Q, where D is the shift-invariant operator d

dx . Show also that
the power series f (u) of (5.110) is given by f (u) = q〈−1〉(u).

(e) [2+] Suppose that 1= p0, p1, . . . is a sequence of polynomials of
binomial type. Let

qn(x) =
x

x+ αn
pn(x+ αn), n ≥ 0,

where α is a parameter. Show that the sequence q0, q1, q2, . . . is also a
sequence of polynomials of binomial type.

38. (a) [2–] Let P be a binomial poset with factorial function B(n), and let
Zn(x) be the zeta polynomial of an n-interval of P. (See Chapters 3.11
and 3.15 for definitions.) Show that n!Zn(x)/B(n), n ≥ 0, is a sequence
of polynomials of binomial type, as defined in the previous exercise.

(b) [2–] Let Q = (Q1, Q2, . . . ) be an exponential structure with denomina-
tor sequence (M(1), M(2), . . . ), and let Pn(r, t) be the polynomial (in t)
of equation (5.74). Set M(0) = 1. Show that for fixed r ∈ Z (or even r
an indeterminate), the sequence of polynomials Pn(r, x)/M(n), n ≥ 0,
is a sequence of polynomials of binomial type. Note the special cases
r = 1 (equation (5.72)) and r = 0 (equation (5.75)).

39. [2+] Let f (n) be the number of partial orderings of [n] which are iso-
morphic to posets P that can be obtained from a one-element poset by
successive iterations of the operations + (disjoint union) and ⊕ (ordinal
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Figure 5.19 The eight inequivalent series-parallel posets on [3]

sum). Such posets are called series-parallel posets. For instance, all 19
partial orderings of [3] are counted by f (3). Let

F(x) =
∑
n≥1

f (n)
xn

n!
= x+3

x2

2!
+19

x3

3!
+195

x4

4!
+2791

x5

5!
+51303

x6

6!
+· · · .

Show that

1+ F(x) = exp
[

x+
F(x)2

1+ F(x)

]
. (5.112)

Hence

F(x) =
(

log(1+ x)−
x2

1+ x

)〈−1〉

=

(
x−

3

2
x2
+

4

3
x3
−

5

4
x4
+

6

5
x5
− · · ·

)〈−1〉

.

40. (a) [2+] Suppose that in the previous exercise we consider P1 ⊕ P2 and
P2⊕P1 to be equivalent. This induces an equivalence relation on the set
of series-parallel posets on [n]. The equivalence classes are equivalent
to what are called series-parallel networks. (The elements of the poset
P correspond to the edges of a series-parallel network.) Figure 5.19
shows the eight inequivalent series-parallel posets on [3]. Let s(n) be
the number of equivalence classes of series-parallel posets on [n] (or
the number of series-parallel networks on n labelled edges), and set

S(x) =
∑
n≥1

s(n)
xn

n!

= x+ 2
x2

2!
+ 8

x3

3!
+ 52

x4

4!
+ 472

x5

5!
+ 5504

x6

6!
+ · · · .

Show that

1+ S(x) = exp
(

1

2
(x+ S(x))

)
. (5.113)
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Hence

S(x) = (2 log(1+ x)− x)〈−1〉

=

(
x− x2

+
2

3
x3
−

1

2
x4
+

2

5
x5
−

1

3
x6
+ · · ·

)〈−1〉

.

(b) [3–] Two graphs G1 and G2 (without loops or multiple edges) on the
vertex set [n] are said to be switching equivalent if G2 can be obtained
from G1 by choosing a subset X of [n] and interchanging adjacency
and non-adjacency between X and its complement [n] − X , leaving
all edges within or outside X unchanged. Let t(n) be the number of
switching equivalence classes E of graphs on [n] such that no graph in
E contains an induced pentagon (5-cycle). Show that t(n) = s(n− 1).

(c) [3–] A (real) vector lattice is a real vector space V with the additional
structure of a lattice such that

x ≤ y =⇒ x+ z ≤ y+ z, for all x, y, z ∈ V

x ≥ 0 =⇒ αx ≥ 0, for all x ∈ V ,α ∈ R+.

There is an obvious notion of isomorphism of vector lattices. Show that
the number of nonisomorphic n-dimensional vector lattices is equal
to the number of nonisomorphic unlabelled equivalence classes (as
defined in (a)) of n-element series-parallel posets.

41. (a) [2+] A tree on a linearly ordered vertex set is alternating (or intransi-
tive) if for every vertex i the vertices adjacent to i are either all smaller
than i or all larger than i. Let f (n) denote the number of alternating
trees on the vertex set {0, 1, . . . , n}, and set

F(x) =
∑
n≥0

f (n)
xn

n!

= 1+ x+ 2
x2

2!
+ 7

x3

3!
+ 36

x4

4!
+ 246

x5

5!
+ 2104

x6

6!
+ 21652

x7

7!
+ · · · .

Show that F(x) satisfies the functional equation

F(x) = exp
( x

2
(F(x)+ 1)

)
.

(Compare the similar but apparently unrelated (5.113).)
(b) [2] Deduce that

f (n) =
1

2n

n∑
k=0

(
n

k

)
(k + 1)n−1.
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Figure 5.20 A local binary search tree.

(c) [2] Let fk(n) denote the number of alternating trees on {0, 1, . . . , n} such
that vertex 0 has degree k. Set

Pn(q) =
n∑

k=1

fk(n)qk .

For instance,

P0(q) = 1, P1(q) = q, P2(q) = q2
+ q, P3(q) = q3

+ 3q2
+ 3q.

Show that ∑
n≥0

Pn(q)
xn

n!
= F(x)q.

(d) [2+] Show that

Pn(q) =
q

2n

n∑
k=0

(
n

k

)
(q+ k)n−1.

(e) [3] Show that if z is a complex number for which Pn(z) = 0, then either
z = 0 or <(z) = −n/2, where < denotes real part.

(f) [2] Deduce from (e) that if Qn(q) = Pn(q)/q, then

Qn(q) = (−1)n−1Qn(−q− n).

(g) [3–] A local binary search tree is a (plane) binary tree, say with vertex
set [n], such that every left child of a vertex is less than its parent, and
every right child is greater than its parent. An example of such a tree
is shown in Figure 5.20. Show that f (n) is equal to the number of local
binary search trees with vertex set [n].

(h) [3] Let Ln denote the set of all hyperplanes xi − xj = 1, 1 ≤ i < j ≤
n, in Rn. Show that the number of regions of Ln (i.e., the number of
connected components of the space Rn

−
⋃

H∈Ln
H) is equal to f (n).
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(i) [3] Let Ln be the intersection poset of Ln, as defined in Exercise 3.56.
Show that the characteristic polynomial of Ln is given by

χ (Ln, q) = (−1)nPn(−q).

This result generalizes (h), since by Exercise 3.56(a) the number of
regions of Ln is equal to |χ (Ln,−1)|.

(j) [3–] An alternating graph on [n] is a graph (without loops or multiple
edges) on the vertex set [n] such that every vertex is either smaller than
all its neighbors or greater than all its neighbors. Let gk(n) denote the
number of alternating graphs on [n] with k edges. Show that

∑
n≥0

∑
k≥0

gk(n)qk xn

n!
= e−x

∑
n≥0

(
n∑

k=0

(
n

k

)
q+1

)
xn

n!
,

where
(n

k

)
q+1 denotes the q-binomial coefficient

(n
k

)
with the variable

q replaced by q+ 1.
(k) [2+] An edge labelled alternating tree is a tree, say with n + 1 ver-

tices, whose edges are labelled 1, 2, . . . , n such that no path contains
three consecutive edges whose labels are increasing. How many edge
labelled alternating trees have n+ 1 vertices?

42. (a) [2] Let y = R(x) =
∑
n≥1

nn−1 xn

n!
. Show from y = xey that

(1− R(x))−1
= 1+

∑
n≥1

nn xn

n!
.

(b) [2+] Give a combinatorial proof, based on the fact that nn−1 is the
number of rooted trees and nn the number of double rooted trees on
[n].

43. [2] Generalize the bijection of Example 5.2.6 to show the following. Fix
a sequence (r1, r2, . . . ), with ri ∈ N and

∑
iri = n < ∞. Let k = n +

1−
∑

ri. Then the number of (unordered) rooted trees with n+ 1 vertices
and k leaves (or endpoints), whose leaves are labelled with the integers
1, 2, . . . , k, and with ri nonleaf vertices of degree (= number of successors)
i, is equal to the number of partitions of the set [n] into n + 1 − k blocks,
with ri blocks of cardinality i.

44. [3–] Let a1, a2, . . . , ak be positive integers summing to n. Let f (a1, . . . , ak)
be the number of permutations w1w2 · · ·wn of the multiset {1a1 , . . . , kak }

such that if there is a subsequence of the form xyyx, then there must be
an x between the two y’s. More precisely, if r < s < t < u, wr = wu,
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Figure 5.21 A recursively labelled tree

and ws = wt 6= wr, then there is a s < v < t with wr = wv. Show that
f (a1, . . . , ak) = n!/(n− k + 1)!.

45. [2+] A recursively labelled tree is a tree on the vertex set [n], regarded as
a poset with root 1̂, such that the vertices of every principal order ideal
consist of consecutive integers. See Figure 5.21 for an example. Similarly
define a recursively labelled forest. Let tn (respectively, fn) denote the num-
ber of recursively labelled trees (respectively, forests) on the vertex set [n].
Show that

tn =
1

n

(
3n− 2

n− 1

)
, fn =

1

2n+ 1

(
3n

n

)
.

Note that by Theorem 5.3.10 or Proposition 6.6.2.2, fn is the number of
plane ternary trees with 3n+ 1 vertices (or, by removing the endpoints, the
number of ternary trees with n vertices). Similarly it is not hard to see that
tn is the number of ternary trees on n vertices except that the root has only
two (linearly ordered) subtrees (rather than three). Equivalently, tn is the
number of ordered pairs of ternary trees with a total of n− 1 vertices.

46. [2+] A tree on a linearly ordered vertex set is called noncrossing if ik and jl
are not both edges whenever i < j < k < l. Show that the number f (n) of
noncrossing trees on [n] is equal to 1

2n−1

(3(n−1)
n−1

)
, which by Theorem 5.3.10

or Proposition 6.6.2.2 is the number of ternary trees with n− 1 vertices.
47. (a) [2+] Show that the number of ways to write the cycle (1, 2, . . . , n) ∈

Sn as a product of n − 1 transpositions (the minimum possible) is
nn−2. For instance (multiplying right-to-left), (1, 2, 3) = (1, 2)(2, 3) =
(2, 3)(1, 3) = (1, 3)(1, 2).
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(b) [3–] Define two factorizations of (1, 2, . . . , n) into n − 1 transpo-
sitions to be equivalent if one can be obtained from the other by
allowing transpositions with no common elements to commute. Thus
the three factorizations of (1, 2, 3) are all inequivalent, while the fac-
torization (1, 5)(2, 4)(2, 3)(1, 4) of (1, 2, 3, 4, 5) is equivalent to itself
and (2, 4)(1, 5)(2, 3)(1, 4), (1, 5)(2, 4)(1, 4)(2, 3), (2, 4)(1, 5)(1, 4)(2, 3),
and (2, 4)(2, 3)(1, 5)(1, 4). Show that the number g(n) of equivalence
classes is equal to the number of noncrossing trees on the vertex set
[n], as defined in Exercise 46, and hence is equal to 1

2n−1

(3(n−1)
n−1

)
.

(c) [3] Let λ = (λ1, λ2, . . . ) be a partition of n, and let w be a permutation
of 1, 2, . . . , n of cycle type λ. Let f (λ) be the number of ways to write
w = t1t2 · · · tk where the ti’s are transpositions that generate all of Sn,
and where k is minimal with respect to the condition on the ti’s. (It is
not hard to see that k = n + `(λ) − 2, where `(λ) denotes the number
of parts of λ.) Show that (writing ` for `(λ))

f (λ) = (n+ `− 2)! n`−3
∏̀
i=1

λ
λi+1
i

λi!
.

48. (a) [3–] Let τ be a rooted tree with vertex set [n] and root 1. An inversion
of τ is a pair (i, j) such that 1 < i < j and the unique path in τ from
1 to i passes through j. For instance, the tree τ of Figure 5.22 has the
inversions (3, 4), (2, 4), (2, 6), and (5, 6). Let i(τ ) denote the number of
inversions of τ . Define

In(t) =
∑
τ

ti(τ ), (5.114)

summed over all nn−2 trees on [n] with root 1. For instance,

I1(t) = 1

I2(t) = 1

I3(t) = 2+ t

I4(t) = 6+ 6t + 3t2 + t3

I5(t) = 24+ 36t + 30t2 + 20t3 + 10t4 + 4t5 + t6

I6(t) = 120+ 240t + 270t2 + 240t3 + 180t4 + 120t5 + 70t6 + 35t7

+15t8 + 5t9 + t10.

Show that

tn−1In(1+ t) =
∑

G

te(G),
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Figure 5.22 A tree with four inversions

summed over all connected graphs G (without loops or multiple edges)
on the vertex set [n], where e(G) is the number of edges of G.
It follows by a simple application of the exponential formula (Corol-
lary 5.1.6) that∑

n≥0

(1+ t)(
n
2)

xn

n!
= exp

∑
n≥1

tn−1In(1+ t)
xn

n!
, (5.115)

so ∑
n≥1

In(t)
xn

n!
= (t − 1) log

∑
n≥0

t(
n
2)(t − 1)−n xn

n!
.

(b) [2] Deduce from (5.115) that

∑
n≥0

In+1(t)(t − 1)n xn

n!
=

∑
n≥0 t(

n+1
2 ) xn

n!∑
n≥0 t(

n
2) xn

n!

.

49. (a) [2] There are n parking spaces 1, 2, . . . , n (in that order) on a one-way
street. Cars C1, . . . , Cn enter the street in that order and try to park.
Each car Ci has a preferred space ai. A car will drive to its preferred
space and try to park there. If the space is already occupied, the car will
park in the next available space. If the car must leave the street without
parking, then the process fails. If α = (a1, . . . , an) is a sequence of
preferences that allows every car to park, then we call α a parking
function. Show that a sequence (a1, . . . , an) ∈ [n]n is a parking function
if and only if the increasing rearrangement b1 ≤ b2 ≤ · · · ≤ bn of
a1, a2, . . . , an satisfies bi ≤ i. In other words, α = (a1, . . . , an) is a
parking function if and only if the sequence (a1 − 1, . . . , an − 1) is a
permutation of the inversion table of a permutation π ∈ Sn, as defined
in Chapter 1.3.

(b) [2+] Regard the elements of the group G = Z/(n + 1)Z as being the
integers 0, 1, . . . , n. Let H be the (cyclic) subgroup of order n + 1 of
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the group Gn generated by (1, 1, . . . , 1). Show that each coset of H con-
tains exactly one parking function. Hence the number P(n) of parking
functions of length n is given by

P(n) = (n+ 1)n−1. (5.116)

(c) [3–] Let Pn denote the set of all parking functions α = (a1, . . . , an) of
length n, and write |α| = a1 + · · · + an. Show that∑

α∈Pn

t|α| = t(
n+1

2 )In+1(1/t),

where In(t) is defined in equation (5.114). Try to give a bijective proof.
(Note also that putting t = 1 yields (5.116).)

(d) [2] Let α = (a1, . . . , an) be a parking function. Suppose that when
the cars C1, . . . , Cn park according to α, then Ci occupies space w(i).
Hence w is a permutation of 1, 2, . . . , n, which we denote by w(α). For
instance, w(3, 1, 3, 5, 1, 3) = 314526. Given u = u1 · · · un ∈ Sn, let
ν(u) be the number of parking functions α for which w(α) = u. For
1 ≤ j ≤ n, define

τ (u, j) = 1+max{k : j− 1, j− 2, . . . , j− k precede j in u},

and set τ (u)= (τ (u, 1), . . . , τ (u, n)). For instance, τ (314526) =
(1, 2, 1, 2, 3, 6). Show that

ν(u) = τ (u, 1) · · · τ (u, n).

(e) [3–] Given σ ∈ Pn, let

Tσ = {u ∈ Sn : τ (u) = σ }.

For instance, T(1,2,1,2,1) = {53412, 35412, 53142, 35142, 31542, 51342,
15342, 13542}. Suppose that σ = (s1, . . . , sn) = τ (u) for some u ∈ Sn.
(For the characterization and enumeration of the sequences τ (u), u ∈
Sn, see Exercise 6.19(z).) Define

ti = max{ j : si+r ≤ r for 1 ≤ r ≤ j}.

(If si+1 > 1 then set ti = 0.) Show that

#Tσ =
n!

(s1 + t1)(s2 + t2) · · · (sn + tn)
.

(f) [3–] A parking function α = (a1, . . . , an) is said to be prime if for all
1 ≤ j ≤ n − 1, at least j + 1 cars want to park in the first j places.
(Equivalently, if we remove some term of α equal to 1, then we still
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have a parking function.) Show that the number Q(n) of prime parking
functions of length n is equal to (n− 1)n−1.

50. (a) [3–] Let Sn denote the set of all hyperplanes xi−xj = 0, 1 (1 ≤ i < j ≤
n) in Rn. (Hence #Sn = n(n− 1).) Show bijectively that the number of
regions of Sn (i.e., the number of connected components of the space
Rn
−
⋃

H∈Sn
H) is equal to (n+ 1)n−1.

(b) [3–] Let LSn denote the intersection poset of Sn. Use the finite field
method of Chapter 3.11.4 to show that

χ (LSn , q) = q(q− n)n−1.

By Theorem 3.11.7 this result generalizes (a).
(c) [3] Let R0 be the region of Sn defined by xi − 1 < xj < xi for all i < j.

For any region R of Sn, let d(R) be the number of hyperplanes H ∈ Sn

that separate R from R0, that is, R and R0 lie on different sides of H .
Define the polynomial

Jn(q) =
∑

R

qd(R),

summed over all regions of Sn. Show that

Jn(q) = q(
n
2)In+1(1/q),

where In(t) is defined in equation (5.114).
(d) [2+] Show that (c) is equivalent to the following result. Given a per-

mutation π ∈ Sn, let Pπ = {(i, j) : 1 ≤ i < j ≤ n, π (i) < π( j)}.
Define a partial ordering on Pπ by (i, j) ≤ (k, l) if k ≤ i < j ≤ l. Let
F(J (Pπ ), q) denote the rank-generating function of the lattice of order
ideals of Pπ . (For instance, if π = n, n − 1, . . . , 1, then Pπ = ∅ and
F(J (Pπ ), q) = 1.) Then∑

π∈Sn

F(J (Pπ ), q) = In+1(q).

(e) [3–] Show that the number of elements of rank k in the intersection
poset LSn is equal to the number of ways to partition the set [n] into
n − k blocks, and then linearly order each block. (It is easy to see that
this number is given by n!

(n−k)!

(n−1
k

)
; see Exercise 17.)

51. [2+] Let A(x) = ax + · · · , B(x) = bx + · · · , C(x) = c + · · · ∈ K[[x]]
with abc 6= 0 and [x]C(x) 6= 0. Show that the following two formulas are
equivalent:

(i) A(x)〈−1〉
= C(x)B(x)〈−1〉

(ii)
x

C(A(x))
= [xC(B(x))]〈−1〉.
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52. (a) [2] Let F(x) = x+
∑
n≥2

fn
xn

n!
∈ K[[x]]. Given k ∈ P, let

F〈k〉(x) = x+
∑
n≥2

ϕn(k)
xn

n!
. (5.117)

Show that for fixed n, the function ϕn(k) is a polynomial in k (whose
coefficients are polynomials in f2, . . . , fn). For instance,

ϕ2(k) = f2k

ϕ3(k) = f3k + 3f 2
2

(
k

2

)

ϕ4(k) = f4k +
(

10f2f3 + 3f 3
2

)(k

2

)
+ 18f 3

2

(
k

3

)

ϕ5(k) = f5k +
(

15f2f4 + 10f 2
3 + 25f 2

2 f3
)(k

2

)
+

(
130f 2

2 f3 + 75f 4
2

)(k

3

)
+ 180f 4

2

(
k

4

)
.

(b) [2] Since ϕn(k) is a polynomial in k, it can be defined for any k ∈ K
(or for k an indeterminate). Thus (5.117) allows us to define F〈k〉(x) for
any k. Show that for all j, k ∈ K, we have

F〈j+k〉(x) = F〈j〉(F〈k〉(x)),

F〈jk〉(x) = (F〈j〉)〈k〉(x).

In particular, the two ways of defining F〈−1〉(x) (viz., by putting k =
−1 in (5.117), or as the compositional inverse of F(x)) agree.

(c) [5–] Investigate the combinatorial significance of “fractional composi-
tion.” For instance, setting

(ex
− 1)〈1/2〉 =

∑
n≥1

an
xn

n!

= x +
1

2

x2

2!
+

1

23
x3

3!
+

1

25
x5

5!
−

7

27
x6

6!
+

1

27
x7

7!
+

159

28
x8

8!

−
843

28
x9

9!
−

1231

212
x10

10!
+

2359233

214
x11

11!
−

13303471

214
x12

12!

−
271566005

215
x13

13!
+

10142361989

216
x14

14!

+
126956968965

218
x15

15!
−

10502027401553

218
x16

16!
+ · · · ,
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do the coefficients an have a simple combinatorial interpretation?
(Unfortunately they are not integers, nor do their signs seem predicta-
ble.)

53. [2+] Find the sum of the first n terms in the binomial expansion of(
1−

1

2

)−n

= 1+
1

2
n+

1

4

(
n+ 1

2

)
+ · · ·.

For instance, when n = 3 we get 1 + 3
2 +

6
4 = 4. (Use the Lagrange

inversion formula.)
54. [2+] For each of the following four power series F(x), find for all n ∈ P the

coefficient of 1/x in the Laurent expansion about 0 of F(x)−n: sin x, tan x,
log(1+ x), 1+ x−

√
1+ x2.

55. (a) [2] Find the unique power series F1(x) ∈ Q[[x]] such that for all n ∈ N,
we have [xn]F1(x)n+1

= 1.
(b) [2+] Find the unique power series F2(x) ∈ Q[[x]] such that for all

n ∈ N, we have [xn]F2(x)2n+1
= 1.

(c) [2+] Let k ∈ P, k ≥ 3. What difficulty arises in trying to find an explicit
expression for the unique power series Fk(x) ∈ Q[[x]] such that for all
n ∈ N, we have [xn]Fk(x)kn+1

= 1?
56. (a) [2+] Let F(x) = a1x+ a2x2

+ · · · ∈ K[[x]] with a1 6= 0, and let n ∈ P.
Show that

n[xn] log
F〈−1〉(x)

x
= [xn]

(
x

F(x)

)n

. (5.118)

(This formula may be regarded as the “correct” case k= 0 of equa-
tion (5.53).)

(b) [2] Find the unique power series G(x) = 1+ x− 1
2 x2
+ · · · satisfying

[x]G(x) = 1 and [xn]G(x)n
= 0 for n > 1.

57. [2] Show that the coefficient of xn−1 in the power series expansion of the
rational function (1 + x)2n−1(2 + x)−n is equal to 1/2. Equivalently, the
unique power series J (x) ∈ Q[[x]] satisfying

[xn−1]
J (x)n

1+ x
=

1

2
, for all n ∈ P,

is given by J (x) = (1+ x)2/(2+ x).
58. [3–] Let f (x) and g(x) be power series with g(0) = 1. Suppose that

f (x) = g(xf (x)α), (5.119)

where α is a parameter (indeterminate). Show that
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(t + αn)[xn]f (x)t
= t[xn]g(x)t+αn,

as a polynomial identity in the two variables t and α.
59. [2+] Let f (x) ∈ K[[x]] with f (0) = 0. Let F(x, y) ∈ K[[x, y]], and suppose

that f satisfies the functional equation f =F(x, f ). Show that for every k ∈
P,

f (x)k
=

∑
n≥1

k

n
[yn−k]F(x, y)n.

60. (a) [2] Let A(x) = 1 +
∑

n≥1 anxn
∈ K[[x]]. For fixed k ∈ N, define for

n ∈ Z

qk(n) = [xk]A(x)n.

Show that qk(n) is a polynomial in n of degree ≤ k.

(b) [2] Let F(x) = x +
∑
n≥2

fn
xn

n!
∈ K[[x]] (where char K = 0). Define

functions pk(n) by

etF(x)
=

∑
n≥0

∑
k≥0

pk(n)tn
xn+k

(n+ k)!
.

Show that pk(n) is a polynomial in n (of degree ≤ 2k).
(c) [2+] Let F(x) and pk(n) be as in (b). Since pk(n) is a polynomial in n,

it is defined for all n ∈ Z. Show that

etF〈−1〉(x)
=

∑
n≥0

∑
k≥0

(−1)kpk(−n− k)tn
xn+k

(n+ k)!
.

(d) [2] What are pk(n) and pk(−n− k) in the special case F(x) = ex
− 1?

(e) [2] Find pk(n) when F(x) = x/(1 − x). What does (c) tell us about
pk(n)?

(f) [2] Find pk(n) when F(x) = xe−x. Deduce a formula for

exp t(xe−x)〈−1〉
= exp t

∑
n≥1

nn−1 xn

n!
.

61. (a) [2] Let P and Q be finite posets with 1̂’s. For any poset T let T = T∪{0̂},
and for any finite poset T with 0̂ and 1̂ let µ(T) = µT (0̂, 1̂). Show that

−µ(P× Q) = µ(P× Q) = µ(P)µ(Q).

(b) [2] Use (a) and Corollary 5.5.5 to give a direct proof of equation (5.78).
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62. (a) [2+] Let fr(n) be the number of n× n N-matrices A with every row and
column sum equal to r and with at most two nonzero entries in every
row (and hence in every column [why?]). Find∑

n≥0

fr(n)
xn

n!2
.

(b) [1] Use (a) to find f3(n) explicitly.
63. [2+] Let Nk(n) denote the number of sequences (P1, P2, . . . , P2k) of n × n

permutation matrices Pi such that each entry of P1+P2+· · ·+P2k is 0, k,
or 2k. Show that∑

n≥0

Nk(n)
xn

n!2
= (1− x)−(

2k−1
k ) exp

[
x

(
1−

(
2k − 1

k

))]
.

64. (a) [2+] Let Dn be the set of all n×n matrices of+1’s and−1’s. For k ∈ P
let

fk(n) = 2−n2 ∑
M∈Dn

(det M)k

gk(n) = 2−n2 ∑
M∈Dn

(per M)k ,

where per denotes the permanent function, defined by

per [mij] =
∑
π∈Sn

m1,π (1)m2,π (2) · · ·mn,π (n).

Find fk(n) and gk(n) explicitly when k is odd or k = 2.
(b) [3–] Show that f4(n) = g4(n), and show that∑

n≥0

f4(n)
xn

n!2
= (1− x)−3e−2x. (5.120)

HINT. We have

∑
M

(det M)4
=

∑
M

 ∑
π∈Sn

±m1,π (1) · · ·mn,π (n)

4

.

Interchange the order of summation and use Exercise 63.
(c) [2+] Show that f2k(n) < g2k(n) if k ≥ 3 and n ≥ 3.
(d) [3–] Let D′n be the set of all n× n 0–1 matrices. Let f ′k (n) and g′k(n) be

defined analogously to fk(n) and gk(n). Show that f ′k (n) = 2−knfk(n+1).
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Show also that

g′1(n) = 2−nn!

g′2(n) = 4nn!2
(

1+
1

1!
+

1

2!
+ · · · +

1

n!

)
.

65. (a) [3–] Let f (m, n) be the number of m×n N-matrices with every row and
column sum at most two. For instance, f (1, n) = 1 + 2n +

(n
2

)
. Show

that

F(x, y) :=
∑

m,n≥0

f (m, n)
xmyn

m! n!

= (1− xy)−
1
2 exp

[
1
2 xy(3− xy)+ 1

2 (x+ y)(2− xy)

1− xy

]
.

(5.121)

(b) [2+] Deduce from (a) that

∑
n≥0

f (n, n)
tn

n!2
= (1− t)−

1
2 e

t(3−t)
2(1−t)

∑
n≥0

tn

n!2

(
1− 1

2 t

1− t

)2n

.

The latter sum may be rewritten as J0
(√
−t(2− t)/(1− t)

)
, where J0

denotes the Bessel function of order zero.
66. [2+] Let L = L(Krs) be the Laplacian matrix of the complete bipartite

graph Krs.
(a) Find a simple upper bound on rank(L− rI). Deduce a lower bound on

the number of eigenvalues of L equal to r.
(b) Assume r 6= s, and do the same as (a) for s instead of r.
(c) Find the remaining eigenvalues of L.
(d) Use (a)–(c) to compute c(Krs), the number of spanning trees of Krs.

67. (a) [3] Let q be a prime power, and let Fq denote the finite field with q
elements. Given f :

([n]
2

)
→ Fq and a free tree T on the vertex set

[n], define f (T) =
∏

e f (e), where e ranges over all edges (regarded as
two-element subsets of [n]) of T . Let Pn(q) denote the number of maps
f for which ∑

T

f (T) 6= 0 (in Fq),

where T ranges over all nn−2 free trees on the vertex set [n]. Show that

P2m(q) = qm(m−1)(q− 1)(q3
− 1) · · · (q2m−1

− 1)

P2m+1(q) = qm(m+1)(q− 1)(q3
− 1) · · · (q2m−1

− 1).
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(b) [2+] How many simple (i.e., no loops or multiple edges) graphs on the
vertex set [n] have an odd number of spanning trees?

68. [3–] This exercise assumes a basic knowledge of the character theory of
finite abelian groups. Let 0 be a finite abelian group, written additively.
Let 0̂ denote the set of (irreducible) characters χ : 0 → C of 0, with
the trivial character denoted by χ0. Let σ : 0 → K be a weight function
(where K is a field of characteristic zero). Define D = Dσ to be the digraph
on the vertex set 0 with an edge u→ u+ v of weight σ (v) for all u, v ∈ 0.
Note that D is balanced as a weighted digraph (every vertex has indegree
and outdegree equal to

∑
u∈0 σ (u)). If T is any spanning subgraph of D,

then let σ (T) =
∏

e σ (e), where e ranges over all edges of T . Define

cσ (D) =
∑

T

σ (T),

where T ranges over all oriented (spanning) subtrees of D with a fixed root.
Show that

cσ (D) =
1

|0|

∏
χ∈0̂
χ 6=χ0

[∑
v∈0

σ (v)(1− χ (v))

]
.

69. Choose positive integers a1, . . . , ap−1. Let D = D(a1, . . . , ap−1) be the
digraph defined as follows. The vertices of D are v1, . . . , vp. For each 1 ≤
i ≤ p − 1, there are ai edges from xi to xi+1 and ai edges from xi+1 to xi.
For instance, D(1, 3, 2) looks like

(a) [2–] Find by a direct argument (no determinants) the number τ (D, v)
of oriented subtrees with a given root v.

(b) [2–] Find the number ε(D, e) of Eulerian tours of D whose first edge is
e.

70. [2] Let d > 1. A d-ary de Bruijn sequence of degree n is a sequence
A = a1a2 · · · adn whose entries ai belong to {0, 1, . . . , d−1} such that every
d-ary sequence b1b2 · · · bn of length n occurs exactly once as a circular
factor of A. Find the number of d-ary de Bruijn sequences of degree n that
begin with n 0’s.
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71. [2+] Let G be a regular graph with no loops or multiple edges. Let λ1 ≥

λ2 ≥ · · · ≥ λm be nonzero real numbers such that for all ` ≥ 1, the number
W (`) of closed walks in G of length ` is given by

W (`) =
m∑

j=1

λ`j . (5.122)

Find the number c(G) of spanning trees of G in terms of the given data.
72. [3–] Let V be the subset of Z×Z on or inside some simple closed polygonal

curve whose vertices belong to Z × Z, such that every line segment that
makes up the curve is parallel to either the x-axis or y-axis. Draw an edge
e between any two points of V at distance one apart, provided e lies on or
inside the boundary curve. We obtain a planar graph G, an example being

Let G′ be the dual graph G∗ with the “outside” vertex deleted. (The vertices
of G∗ are the regions of G. For every edge e of G there is an edge e∗ of G∗

connecting the two regions that have e on their boundary.) For the above
example, G′ is given by

Let λ1, . . . , λp denote the eigenvalues of G′ (i.e., of the adjacency matrix
A(G′)). Show that

c(G) =
p∏

i=1

(4− λi).
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73. [5–] Let B(n) be the set of (binary) de Bruijn sequences of degree n,
and let Sn be the set of all binary sequences of length 2n. According to
Corollary 5.6.15 we have (#B(n))2 = #S(n). Find an explicit bijection
B(n)× B(n)→ S(n).

74. Let D be a digraph with p vertices, and let ` be a fixed positive integer.
Suppose that for every pair u, v of vertices of D, there is a unique (directed)
walk of length ` from u to v.
(a) [2+] What are the eigenvalues of the (directed) adjacency matrix A =

A(D)?
(b) [2] How many loops (v, v) does D have?
(c) [3–] Show that D is connected and balanced.
(d) [1] Show that all vertices have the same outdegree d. (By (c), all ver-

tices then also have indegree d.) Find a simple formula relating p, d,
and `.

(e) [2] How many Eulerian tours does D have starting with a given edge
e?

(f) [5–] What more can be said about D? Must D be a de Bruijn graph (the
graphs used to solve Exercise 70)?
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1. (a) Let h(n) be the desired number. By Proposition 5.1.3, we have

Eh(x) =

∑
n≥0

xn

n!

2∑
n≥0

x2n+1

(2n+ 1)!

∑
n≥0

x2n

(2n)!


= e2x

(
ex
− e−x

2

)(
ex
+ e−x

2

)
=

1
4

(
e4x
− 1

)
=

∑
n≥1

4n−1 xn

n!
,

whence h(n) = 4n−1.
(b) Pick a set S of 2k poles to be either orange or purple, and pick a subset

of S to be orange in 22k ways. Thus we obtain an extra factor of∑
n≥0

22n x2n

(2n)!
=

1
2

(
e2x
+ e−2x

)
.

Hence
Eh(x) = 1

4

(
e4x
− 1

)
·

1
2

(
e2x
+ e−2x

)
=

1
8

(
e6x
− e−2x

)
,

so h(n) = 1
8 (6n
− (−2)n).

2. (a) By Exercise 1.40, there are unique numbers ai such that

1+
∑
n≥1

fnxn
=

∏
i≥1

(1− xi)−ai .

109
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It is easily seen that fn ∈ Z for all n ∈ [N] if and only if ai ∈ Z for all
i ∈ [N]. Now by the solution to Exercise 1.40

hn =
∑
d|n

dad ,

so by the classical Möbius inversion formula,

an =
1

n

∑
d|n

hd µ(n/d),

and the equivalence of (i) and (ii) follows.
Now let p|n, and let S be the set of distinct primes other than p which
divide n. If T ⊆ S then write 5(T) =

∏
q∈T

q. Then

An :=
∑
d|n

hd µ(n/d) =
∑
T⊆S

(−1)#T (hn/5(T) − hn/p·5(T)
)
. (5.123)

Hence if (iii) holds for all n ∈ [N], then by (5.123) we have pr
|An.

Thus An ≡ 0 (mod n). Conversely, if (ii) holds for all n ∈ [N] then (iii)
follows from (5.123) by an easy induction on n.
Finally observe that

exp
∑
n≥1

(
N∑

i=1

αn
i

)
xn

n
=

1

(1− α1x) · · · (1− αN x)
.

From this it is immediate that (iv)⇒ (i). Conversely, if (i) holds then let1+
∑
n≥1

fnxn

−1

= 1+
∑
n≥1

enxn.

Clearly en ∈ Z for n ∈ [N]. Set

1+
N∑

n=1

entn =
N∏
1

(1− αit).

Then hn =
∑N

i=1 α
n
i for all n ∈ [N], as desired.

The equivalence of (ii) and (iv) goes back to W. Jänischen, Sitz. Berli-
ner Math. Gesellschaft 20 (1921), 23–29. The condition (iii) is due to
I. Schur, Comp. Math. 4 (1937), 432–444, who obtains several related
results. The equivalence of (i) and (ii) in the case N → ∞ appears in
L. Carlitz, Proc. Amer. Math. Soc. 9 (1958), 32–33. Additional ref-
erences are J. S. Frame, Canadian J. Math. 1 (1949), 303–304; G.
Almkvist, The integrity of ghosts, preprint; A. Dold, Inv. math. 74
(1983), 419–435.
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(b) Let us say that a solution α = (α1, . . . ,αk) has degree n if n is
the smallest integer for which α ∈ Fk

qn . By a simple Möbius inver-
sion argument, the number Mn of solutions of degree n is given by
Mn =

∑
d|n Nd µ(n/d). Write αj

= (αj
1, . . . ,αj

k). If α is a solution of

degree n, then the k-tuples α,αq,αq2
, . . . ,αqn−1

are distinct solutions
of degree n. Hence Mn is divisible by n. Now use the equivalence of (i)
and (ii) in (a). See for instance K. Ireland and M. Rosen, A Classical
Introduction to Modern Number Theory, second ed., Springer-Verlag,
New York/Berlin/Heidelberg, 1990 (§11.1).
A considerably deeper result, first proved by B. Dwork, Amer. J. Math.
82 (1959), 631–648, is that the generating function Z(x) (known as
the zeta function of the algebraic variety defined by the equations)
is rational. A nice exposition of this result appears in N. Koblitz,
p-adic Numbers, p-adic Analysis, and Zeta-Functions, second ed.,
Springer-Verlag, New York/Heidelberg/Berlin, 1984 (Ch. V). For fur-
ther information on zeta functions, see for example R. Hartshorne,
Algebraic Geometry, Springer-Verlag, New York/Heidelberg/Berlin,
1977 (App. C).

(c) See A. A. Jagers and I. Gessel (independently), Solution to E2993,
American Math. Monthly 93 (1986), 483–484.

3. (a) Since 1 · 3 · 5 · · · (2n− 1) = (2n)!/2nn!, we have

Ef (x) =
∑
n≥0

2−n
(

2n

n

)
xn

= (1− 2x)−1/2,

by Exercise 1.4(a). Hence

Ef (x)2
= (1− 2x)−1

=

∑
n≥0

2nn!
xn

n!

= Eg(x).

(b) First proof. f (n) is the number of 1-factors (i.e., graphs whose com-
ponents are all single edges) on 2n vertices, while g(n) is the number
of permutations π of [n] with each element of [n] labelled + or −.
Hence given a labelled permutation π , we want to construct a pair
(G, H), where G is a 1-factor on a set of 2k vertices labelled by i and i′,
where i ranges over some subset S of [n], while H is a 1-factor on the
2(n−k) complementary vertices j and j′, where j ∈ T = [n]−S. Define
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Figure 5.23 A pair of 1-factors

S (respectively, T) to consist of all i such that the cycle of π contain-
ing i has least element labelled + (respectively, −). If π(a) = b, then
draw an edge from either a or a′ to either b or b′, as follows: If a is the
least element of its cycle and a 6= b, then draw an edge from a to b
(respectively, b′) if b is labelled + (respectively, −). If neither a nor b
is the least element of its cycle, then inductively assume that an edge
is incident to either a or a′. Draw a new edge from the vertex a or a′

without an edge to b (respectively b′) if b is labelled + (respectively
−). Finally if b is the least element of its cycle then only two vertices
remain for the last edge—it goes from a or a′ (whichever has no edge)
to b′. This procedure recursively defines G and H .

Example. Let

π = ( 1 6 9 2 )
− − + −

( 3 5 7 )
+ + −

( 4 )
−

( 8 )
+

Then G and H are given by Figure 5.23.
This bijection is based on work of D. Dumont, Univ. Beograd. Publ.
Elektrotechn. Fak., ser. Mat. Fiz., no. 634 – no. 677 (1979), pp. 116–
125 (Prop. 3).

Second proof (I. Gessel). It is easy to see that the number of permuta-
tions a1a2 · · · a2n of the multiset {12, 22, . . . , n2

} with no subsequence
of the form bab with a < b is equal to f (n). (Write down two 1’s
in one way, then two consecutive 2’s in three ways relative to the
1’s, then two consecutive 3’s in five ways relative to the 1’s and 2’s,
etc.) Hence by Proposition 5.1.1, Ef (x)2 is the exponential generating
function for pairs (π , σ ), where π is a permutation of some mul-
tiset M ={i21, . . . , i2k} ⊆ {1

2, 22, . . . , n2
} and σ is a permutation of

{12, 22, . . . , n2
} −M ; and where both π and σ satisfy the above condi-

tion on subsequences bab. But to obtain π and σ we can place the two
1’s in two ways (i.e., in either π or σ ), then the two 2’s in four ways,
etc., for a total of 2 · 4 · · · (2n) = 2nn! ways.

4. (a) To obtain a threshold graph G on [n], choose a subset I of [n] to be the
set of isolated vertices of G, and choose a threshold graph without
isolated vertices on [n] − I . From Proposition 5.1.1 it follows that
T(x) = exS(x).
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A threshold graph G with n ≥ 2 vertices has no isolated vertices if and
only if the complement Ḡ has an isolated vertex. Hence t(n) = 2s(n)
for n ≥ 2. Since t(0) = s(0) = 1, t(1) = 1, s(1) = 0, it follows that
T(x) = 2S(x)+ x− 1.
These results, as well as others related to the enumeration of labelled
threshold graphs, are essentially due to J. S. Beissinger and U. N. Peled,
Graphs and Combinatorics 3 (1987), 213–219. For further information
on threshold graphs, see N. V. R. Mahadev and U. N. Peled, Threshold
Graphs and Related Topics, Annals of Discrete Mathematics, vol. 56,
North-Holland, Amsterdam, 1995.

(b) Let G be a threshold graph on [n] with no isolated vertices. Define an
ordered partition (B1, . . . , Bk) of [n] as follows. Let B1 be the set of
isolated vertices of Ḡ, so Ḡ = B1 + G1, where G1 is threshold graph
with no isolated vertices. Let B2 be the set of isolated vertices of Ḡ1.
Iterate this procedure until reaching Ḡk−1 = Bk . We obtain in this
way every ordered partition (B1, . . . , Bk) of [n] satisfying #Bk > 1.
Since there are clearly nc(n− 1) ordered partitions (B1, . . . , Bk) of [n]
satisfying #Bk = 1, it follows that s(n) = c(n)− nc(n− 1).

(c) The polytope P of Exercise 4.63 is called a zonotope with generators
v1, . . . , vk . Let Zn be the zonotope generated by all vectors ei + ej,
1 ≤ i < j ≤ n, where ei is the ith unit coordinate vector in Rn.
The zonotope Zn is called the polytope of degree sequences. By a
well-known duality between hyperplane arrangements and zonotopes
(see e.g. A. Björner, M. Las Vergnas, B. Sturmfels, N. White, and
G. M. Ziegler, Oriented Matroids, Cambridge University Press, Cam-
bridge, 1993 (Proposition 2.2.2)), the number of regions of Tn is equal
to the number of vertices of Zn. The number of vertices of Zn was
computed by J. S. Beissinger and U. N. Peled, Graphs and Combi-
natorics 3 (1987), 213–219. Further properties of Zn appear in R.
Stanley, in Applied Geometry and Discrete Mathematics: The Victor
Klee Festschrift, DIMACS Series in Discrete Mathematics and Theo-
retical Computer Science, Volume 4, American Mathematical Society,
1991, pp. 555–570.

(d) Special case of Exercise 3.112(c).
5. Let ck(n) be the number of ways to choose a connected bipartite graph

on [n] with k edges. Let fk(n) (respectively, gk(n)) be the number of ways
to choose a weak ordered partition (A, B) of [n] into two parts, and then
choose a bipartite graph (respectively, connected bipartite graph) with k
edges on [n] such that every edge goes from A to B. Let
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B(x) =
∑
n≥0

∑
k≥0

bk(n)qk xn

n!
,

and similarly for C(x), F(x), and G(x). (The sums for C(x) and G(x) start at
n = 1.) It is easy to see that

F(x) =
∑
n≥0

(
n∑

i=0

(1+ q)i(n−i)
(

n

i

))
xn

n!

F(x) = exp G(x), B(x) = exp C(x), G(x) = 2C(x),

and the proof follows.
6. It suffices to assume that q ∈ P. Let Kmn have vertex bipartition (A, B).

By an obvious extension of Proposition 5.1.3, the coefficient of xmyn/m! n!
in (ex

+ ey
− 1)q is the number of q-tuples π = (S1, . . . , Sq) where each

Si is a (possibly empty) subset of A or of B, the Si’s are pairwise disjoint,
and

⋃
Si = A ∪ B. Color the vertices in Si with the color i. This yields

a bijection with the q-tuples π and the q-colorings of Kmn, and the proof
follows. Note that there is a straightforward extension of this result to the
complete multipartite graph Kn1,...,nk , yielding the formula∑

n1,...,nk≥0

χ (Kn1,...,nk , q)
xn1

1

n1!
· · ·

xnk
k

nk !
=
(
ex1 + · · · + exk − k + 1

)q .

7. (a) Let An (respectively, Bn) be the set of all pairs (π , σ ) such that
π and σ are alternating permutations of some complementary sub-
sets S and [2n] − S of [2n] of odd (respectively, even) cardinal-
ity. Proposition 5.1.1 shows that the identity 1 + tan2 x= sec2 x
follows from giving a bijection from An to Bn for n≥ 1. Sup-
pose that π = a1a2 · · · ak and σ = b1b2 · · · b2n−k . Then exactly one
of the pairs (a1a2 · · · akb2n−k , b1b2 · · · b2n−k−1) and (a1a2 · · · ak−1,
b1b2 · · · b2n−kak) belongs to Bn, and this establishes the desired
bijection.

(b) The identity (5.87) is equivalent to∑
m,n≥0

m+n odd

Em+n
xm

m!

yn

n!
=

∑
k≥0

[(
tank x

) (
tank+1 y

)
+

(
tank+1 x

) (
tank y

)]
.

Let m, n ≥ 0 with m + n odd, and let π be an alternating permutation
of [m+ n]. Then either n = 0, or else π can be uniquely factored (as a
word a1a2 · · · am+n) in the form

π = e1ō1o1ō2o2 · · · ōkok ōk+1e2,
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where (i) e1 is an alternating permutation (possibly empty) of some
subset of [m] of even cardinality, (ii) e2 is a reverse alternating permu-
tation (possibly empty) of some subset of [m] of even cardinality, (iii)
each oi is a reverse alternating permutation of some subset of [m] of
odd cardinality, and (iv) each ōi is an alternating permutation of some
subset of [m + 1, m + n] of odd cardinality. Using the bijection of (a)
(after reversing e2), we can transform the pair (e1, e2) into a pair (e′1, e′2)
where the e′i’s are alternating permutations of sets of odd cardinality,
unless both e1 and e2 are empty. It follows that∑

m,n≥0
m+n odd

Em+n
xm

m!

yn

n!
= tan x+

∑
k≥0

(
1+ tan2 x

) (
tank x

) (
tank+1 y

)

=

∑
k≥0

[(
tank x

) (
tank+1 y

)
+

(
tank+1 x

) (
tank y

)]
.

8. For further information on central factorial numbers (where our T(n, k) is
denoted T(2n, 2k)), see J. Riordan, Combinatorial Identities, John Wiley &
Sons, New York, 1968 (Section 6.5). Part (e) is equivalent to a conjecture
of J. M. Gandhi, Amer. Math. Monthly 77 (1970), 505–506. This conjec-
ture was proved by L. Carlitz, K. Norske Vidensk. Selsk. Sk. 9 (1972), 1–4,
and by J. Riordan and P. R. Stein, Discrete Math. 5 (1973), 381–388. A
combinatorial proof of Gandhi’s conjecture was given by J. Françon and G.
Viennot, Discrete Math. 28 (1979), 21–35. The basic combinatorial prop-
erty (f)(i) of Genocchi numbers is due to D. Dumont, Discrete Math. 1
(1972), 321–327, and Duke Math. J. 41 (1974), 305–318. For many further
properties of Genocchi numbers, see the survey by G. Viennot, Séminaire
de Théorie des Nombres, 1981/82, Exp. No. 11, 94 pp., Univ. Bordeaux I,
Talence, 1982. A further reference is D. Dumont and A. Randrianarivony,
Discrete Math. 132 (1994), 37–49.

9. (a) If C(x) is the exponential generating function for the number of con-
nected structures on an n-set, then Corollary 5.1.6 asserts that F(x) =
exp C(x). Hence

Eg(x) = exp
1

2
(C(x)+ C(−x)) =

√
F(x)F(−x).

(b) Let ck(n) be the number of k-component structures that can be put on
an n-set, and let

F(x, t) =
∑
n≥0

∑
k≥0

ck(n)tk
xn

n!
.
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By Example 5.2.2 we have F(x, t) = F(x)t, so

Ee(x) =
1

2
(F(x, 1)+ F(x,−1)) =

1

2

(
F(x)+

1

F(x)

)
.

This formula was first noted by H. S. Wilf (private communication,
1997).

10. (a) Put

ti =

{
1, if k|i
0, if k6 | i

in (5.30) to get∑
n≥0

fk(n)
xn

n!
= exp

∑
i≥1

xki

ki

= exp
1

k
log(1− xk)−1

= (1− xk)−1/k

=

∑
n≥0

(
−1/k

n

)
(−1)nxkn.

Hence fk(kn) = (kn)!
(
−1/k

n

)
(−1)n, which simplifies to the stated

answer.
(b) Suppose k|n. We have n − 1 choices for π (1), then n − 2 choices for

π2(1), down to n − k + 1 choices for πk−1(1). For πk(1) we have
n − k + 1 choices, since πk(1) = 1 is possible. If πk(1) 6= 1 we have
n − k − 1 choices for πk+1(1), while if πk(1) = 1 we again have
n − k − 1 choices for π (i), where i is the least element of [n] not in
the cycle (1,π (1), . . . ,πk−1(1)). Continuing this line of reasoning, for
our jth choice we always have n− j possibilities if k 6 | j and n− j + 1
possibilities if k| j, yielding the stated answer.

(c) Put

ti =

{
0, if k|i
1, if k6 | i

in (5.30) to get

∑
n≥0

gk(n)
xn

n!
= exp

∑
i≥1

xi

i
−

∑
i≥1

xki

ki


= exp

[
log(1− x)−1

−
1

k
log(1− xk)−1

]
= (1− xk)1/k(1− x)−1
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= (1+ x+ · · · + xk−1)(1− xk)
1−k

k

= (1+ x+ · · · + xk−1)
∑
n≥0

(
1−k

k
n

)
(−1)nxkn,

etc. (Compare Exercise 1.173(a), the case k = 2 of the present
exercise.) Note that∑

n≥0

fk(n)
xn

n!

∑
n≥0

gk(n)
xn

n!

 =∑
n≥0

n!
xn

n!
=

1

1− x
,

since every cycle of a permutation either has length divisible by k or
length not divisible by k.
This result appears in P. Erdős and P. Turan, Acta Math. Acad. Sci.
Hungar. 18 (1967), 151–163 (Lemma 1).

(d) See E. D. Bolker and A. M. Gleason, J. Combinatorial Theory (A)
29 (1980), 236–242, and E. A. Bertram and B. Gordon, European J.
Combinatorics 10 (1989), 221–226. A combinatorial proof of a gener-
alization of the case k = 2 different from (c) appears in R. P. Lewis and
S. P. Norton, Discrete Math. 138 (1995), 315–318.

11. (a) A permutation w∈Sn has a square root if and only if the num-
ber of cycles of each even length 2i is even. A simple variant of
Example 5.2.10 yields∑

n≥0

a(n)
xn

n!
= ex

(
cosh

x2

2

)
e

x3
3

(
cosh

x4

4

)
e

x5
5 · · ·

=

(
1+ x

1− x

)1/2 ∏
k≥1

cosh(x2k/2k).

This result appears in J. Blum, J. Combinatorial Theory (A) 17 (1974),
156–161 (equation (5)), and [1.6, §9.2] (but in this latter reference with
the factors cosh(x2k/2k) misstated as cosh(x2k/k)). These authors are
concerned with the asymptotic properties of a(n).

(b) Let F(x) =
∑

n a(n) xn

n! . Then by (a) F(x)/(1+ x) is even, and the result
follows. See J. Blum, ibid. (Theorem 1).

12. Let a = u and b = uv−1. Then u = a and v = b−1a, so a and b range over
Sn as u and v do. Note that u2v−2

= (aba−1)b. Since every element of
Sn is conjugate to its inverse, the multiset of elements aba−1b (a, b ∈ Sn)
coincides with the multiset of elements aba−1b−1. Thus f (n) is equal to the
number of pairs (a, b) ∈ Sn×Sn such that ab = ba. (See Exercise 7.69(h).)
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Since the number k(a) of conjugates of a is the index [Sn : C(a)] of the
centralizer of a, we have

f (n) =
∑

a∈Sn

#C(a)

=

∑
a∈Sn

n!

k(a)

= n! p(n),

where p(n) is the number of partitions of n (the number of conjugacy
classes of Sn). Hence

F(x) =
∏
i≥1

(1− xi)−1.

A less conceptual proof can also be given by considering the possible cycle
types of u and v.
Note that the above argument shows the following more general results.
First, for any finite group G,

#{(u, v) ∈ G× G : uv = vu} = k(G) · |G|,

where k(G) denotes the number of conjugacy classes in G. (This result
was known to P. Erdős and P. Turan, Acta Math. Hung. 19 (1968), 413–
435 (Theorem IV, proved on p. 431)). Second (using the observation that if
aba−1b = 1, then b is conjugate to b−1), we have

#{(u, v) ∈ G× G : u2
= v2
} = |G| · ι(G), (5.124)

where ι(G) is the number of “self-inverse” conjugacy classes of G, that is,
conjugacy classes K for which w ∈ K ⇔ w−1

∈ K. This result can also be
proved using character theory, as done in Exercise 7.69(h) for a situation
overlapping the present one when G = Sn. The problem of computing the
left-hand side of (5.124) was posed by R. Stanley, Problem 10654, Amer.
Math. Monthly 105 (1998), 272.

13. (a) A homomorphism f : G → Sn defines an action of G on [n]. The
orbits of this action form a partition π ∈ 5n. By the exponential
formula (Corollary 5.1.6), we have∑

n≥0

#Hom(G,Sn)
xn

n!
= exp

(∑
d

gd
xd

d!

)
,

where gd is the number of transitive actions of G on [d]. Such an action
is obtained by choosing a subgroup H of index d to be the subgroup
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of G fixing a letter (say 1), and then choosing in (d− 1)! ways the
letters 1 6= i∈ [d] corresponding to the proper cosets of H . Hence gd =

(d − 1)!jd , and the proof follows.
This result first appeared (though not stated in generating function
form) in I. Dey, Proc. Glasgow Math. Soc. 7 (1965), 61–79. The proof
given here appears in K. Wohlfahrt, Arch. Math. 29 (1977), 455–457.
For some ramifications and generalizations, see T. Müller, J. London
Math. Soc. (2) 44 (1991), 75–94; Invent. math. 126 (1996), 111–131,
and Adv. Math. 153 (2000), 118–154; as well as T. Müller and J.
Shareshian, Adv. Math. 171 (2002), 276–331, and [73, §3.1]. A general
survey of the function jd(G) is given by A. Lubotzky, in Proceedings
of the International Congress of Mathematicians (Zürich, 1994), vol.
1, Birkhäuser, Basel/Boston/Berlin, 1995, pp. 309–317.

(b) If Fs has generators x1, . . . , xs, then a homomorphism ϕ : Fs → Sn

is determined by any choice of the ϕ(xi)’s. Hence #Hom(Fs,Sn) =
n!s, and the proof follows from (a). A recurrence equivalent to (5.89)
was found by M. Hall, Jr., Canad. J. Math. 1 (1949), 187–190, and
also appears as Theorem 7.2.9 in M. Hall, Jr., The Theory of Groups,
Macmillan, New York, 1959. Equation (5.89) itself first appeared in
[4.55, eqn. (21)]. From (5.89) E. Bender, SIAM Rev. 16 (1974), 485–
515 (§5), has derived an asymptotic expansion for jd(Fs) for fixed s.
For further combinatorial aspects of jd(F2), see A. W. M. Dress and
R. Franz, Bayreuth Math. Schr., No. 20 (1985), 1–8, and T. Sillke, in
Séminaire Lotharingien de Combinatoire (Oberfranken, 1990), Publ.
Inst. Rech. Math. Av. 413, Univ. Louis Pasteur, Strasbourg, 1990, pp.
111–119.

(c) Let m|d. Choose a subgroup H of G of index m, and let N(H) denote
its normalizer. Choose an element z ∈ N(H)/H , and define a subgroup
K of G× Z by

K = {(w, da/m) ∈ G× Z : w ∈ N(H), w = za in N(H)/H}.

Then [G × Z : K] = d, and every subgroup K of G × Z of index
d is obtained uniquely in this way. (This fact is a special case of the
description of the subgroups of the direct product of any two groups.
See for example M. Suzuki, Group Theory I, Springer-Verlag, Ber-
lin/Heidelberg/New York, 1982 (p. 141); translated from the Japanese
edition Gunron, Iwanami Shoten, Tokyo, 1977 and 1978.) Once we
choose m and H , there are [N(H) : H] choices for z. Since the number
of conjugates of H is equal to the index [G : N(H)], we see easily that
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um(G) =
1

m

∑
[G:H]=m

[N(H) : H].

It follows that

jd(G× Z) =
∑
m|d

mum(G), (5.125)

and the proof follows from (a) and Exercise 1.158.
NOTE. The numbers ud(Fs) (where Fs is the free group on s generators)
were computed by V. Liskovets, Dokl. Akad. Nauk BSSR 15 (1971), 6–
9 (in Russian), essentially by using equation (5.90). A messier formula
for ud(Fs) appears in J. H. Kwak and J. Lee, J. Graph Theory 23 (1996),
105–109. Note that

#Hom(Z× Fs,Sn) =
∑

w∈Sn

(#C(w))s,

where C(w) denotes the centralizer of w in Sn (whose cardinality is
given explicitly by equation (7.7.17). Using (5.90) it is then not hard to
obtain the formula

∏
i≥1

∑
j≥0

(j! i j)s−1xij

 =∏
d≥1

(1− xd)−ud(Fs),

which is equivalent to the formula of Liskovets for ud(Fs).
(d) Observe that

cm(n) = #Hom(Zm,Sn).

Now use (c). An equivalent result (stated below) was first proved by
J. Bryan and J. Fulman, Ann. Comb. 2 (1998), 1–6. NOTE. It is well-
known (and an easy consequence of Exercise 3.126(c) or of equation
(5.125)) that∑

d≥1

jd(Zm−1)d−s
= ζ (s)ζ (s− 1) · · · ζ (s− m+ 2), (5.126)

where ζ denotes the Riemann zeta function. For the history of this
result, see L. Solomon, in Relations between Combinatorics and Other
Parts of Mathematics, Proc. Symp. Pure Math. 34, American Math-
ematical Society, 1979, pp. 309–330. By iterating (5.90) or by using
(5.126) directly, we obtain the formula of Bryan and Fulman, namely,

∑
n≥0

cm(n)
xn

n!
=

∏
i1,...,im−1≥1

(
1

1− xi1···im−1

)im−2
1 im−3

2 ···im−2

.
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(e) By (a), we want to show that hk(n) = #Hom(Sk ,Sn). Let sm = (m, m+
1) ∈ Sk , 1 ≤ m ≤ k−1. Given a homomorphism f : Sk → Sn, define
a graph 0f on the vertex set [n] by the condition that there is an edge
colored m with vertices a 6= b if f (sm)(a) = b. One checks that the
conditions (i)–(iii) are equivalent to the well-known Coxeter relations
(e.g., J. E. Humphreys, Reflection Groups and Coxeter Groups, Cam-
bridge University Press, Cambridge, 1990 (Section 1.9)) satisfied by
the generators sm of Sk .

14. (a) Take the logarithm of both formulas, subtract one from the other, and
solve for y to get

1+ t−1y =
1− t

ex(t−1) − t
. (5.127)

Comparing with Exercise 3.204(c) (after correcting a typographical
error) shows that the only possible y is as claimed. Since the steps are
reversible, the proof follows.

(b) While this result can easily be proved using the explicit formula (5.127)
and the fact that d

dx

∑
n≥2 An−1(t) xn

n! = y, we prefer as usual a combina-
torial proof. Define a connected A-structure on a finite subset S of P to
consist of a permutation w = a1a2 · · · aj of S whose smallest element
min ai is a1. Define the weight f (w) of w by f (w) = t1+d(w). If #S = n
then it is easy to see that

Cn(t) :=
∑

w

f (w) =
{

t, n = 1
An−1(t), n > 1,

where w ranges over all connected A-structures on S. By the exponen-
tial formula (Corollary 5.1.6), we have

exp

tx+
∑
n≥2

An−1(t)
xn

n!

 =∑
n≥0

Ãn(t)
xn

n!
,

where

Ãn(t) =
∑

π={B1,...,Bk}∈5n

C#B1 (t) · · ·C#Bk (t).

Given an A-structure wi on each block Bi of π , where the indexing is
chosen so that min w1 > min w2 > · · · > min wk , the concatenation
w = w1w2 · · ·wk is a permutation of [n] such that

f (w1) f (w2) · · · f (wk) = t1+d(w).
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Conversely, given w ∈ Sn we can uniquely recover w1, w2, . . . , wk ,
since the elements min wi are the left-to-right minima of w. (Compare

the closely related bijection Sn
∧
→ Sn of Proposition 1.3.1.) Hence

Ãn(t) =
∑

w∈Sn

t1+d(w)
= An(t),

completing the proof.
(c) It follows from the argument above that the number of left-to-right min-

ima of w is k, the number of blocks of π . The stated formula is now
an immediate consequence of the discussion in Example 5.2.2. This
result is due to L. Carlitz and R. A. Scoville, J. Combinatorial The-
ory 22 (1977), 129–145 (equation (1.13)), with a more computational
proof than ours. Carlitz and Scoville state their result in terms of the
number of cycles and excedances (which they call “ups”) of w, but the

bijection Sn
∧
→ Sn of Proposition 1.3.1 shows that the two results are

equivalent.
(d) If ai is a left-to-right minimum of w = a1a2 · · · an, then either i = 1 or

i ∈ D(w). Hence 1+ d(w)− m(w) ≥ 0. By (c) we have

(1+ y)q/t
=

∑
n≥0

∑
w∈Sn

qm(w)t1+d(w)−m(w)

 xn

n!
,

and the proof follows.
15. (a)

Ef (x) = exp
∑
i≥k

1
2 (i− 1)!

xi

i!

= (1− x)−1/2 exp

(
−

x

2
−

x2

4
− · · · −

xk−1

2(k − 1)

)

(b)

Ef (x) = exp

x2

2!
+

∑
i≥3

i
xi

i!


= exp

(
−x−

x2

2
+ xex

)
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(c)

Ef (x) = exp

x4

4!
+

∑
i≥5

i(i− 2)!

2

xi

i!


= (1− x)−x/2 exp

(
−

1

2
x2
−

1

4
x3
−

1

8
x4
)

(d)

Ef (x) = exp

x+
∑
i≥2

i!

2

xi

i!


= exp

(
x

2
+

x

2(1− x)

)
16. (a) See R. Stanley, in Applied Geometry and Discrete Mathematics: The

Victor Klee Festschrift, DIMACS Series in Discrete Mathematics and
Theoretical Computer Science, Volume 4, American Mathematical
Society, 1991, pp. 555–570 (Cor. 3.4). It would be interesting to have
a direct combinatorial proof of (5.91). For some work in this direction,
see C. Chan, Ph.D. thesis, M.I.T., 1992 (§3).

(b) By Proposition 5.3.2 the number of rooted trees on n vertices is nn−1,
with exponential generating function

R(x) =
∑
n≥1

nn−1 xn

n!
.

Hence by Proposition 5.1.3 the exponential generating function for k-
tuples of rooted trees is R(x)k , and so for undirected k-cycles of rooted
trees (i.e., graphs with exactly one cycle, which is of length k ≥ 3) is
R(x)k/2k.
Let h(j, n) be the number of graphs G on the vertex set [n] such that
every component has exactly one cycle, which is of odd length ≥ 3,
and such that G has a total of j cycles. (Such graphs have exactly n
edges.) Then by the exponential formula (Corollary 5.1.6) we have∑
j,n≥0

h( j, n)
t jxn

n!
= exp

∑
k≥1

t

2(2k + 1)
R(x)2k+1

= exp
t

2

[
1

2

(
log(1− R(x))−1

− log(1+ R(x))−1
)
− R(x)

]

=

(
1+ R(x)

1− R(x)

)t/4
e−tR(x)/2.
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Thus,

1+
∑
j,n≥1

2j−1h(j, n)
xn

n!
=

1

2

[(
1+ R(x)

1− R(x)

)1/2

e−R(x)
− 1

]

=
1

2

[(
−1+

2

1− R(x)

)1/2

e−R(x)
+ 1

]
.

It is easy to deduce from R(x) = xeR(x) that

1

1− R(x)
=

∑
n≥0

nn xn

n!
, e−R(x)

= 1−
∑
n≥1

(n− 1)n−1 xn

n!
(5.128)

(for the first of these formulas see Exercise 42, while the second
follows from equation (5.67)), so we get

1+
∑
j,n≥1

2j−1h(j, n)
xn

n!
=

1

2


1+ 2

∑
n≥1

nn xn

n!

1/2

1−
∑
n≥1

(n− 1)n−1 xn

n!

+ 1

 .

Now by Propositions 5.1.1 and 5.1.6, the exponential generating
function for the right-hand side of (5.91) is1+

∑
j,n≥1

2j−1h( j, n)
xn

n!

 · eT(x),

where T(x) =
∑

n≥1 nn−2 xn

n! is the exponential generating function for
free trees on the vertex set [n], and the proof follows.
This result appears in R. Stanley, ibid., Cor. 3.6.

17. (a) Line up all n persons in n! ways. Break the line in k − 1 of the n − 1
places between two consecutive persons, in

(n−1
k−1

)
ways. This yields k

lines, but the same k lines could have been obtained in any order, so we
must divide by the k! ways of ordering k lines. Thus there are n!

k!

(n−1
k−1

)
ways. (Exercise 1.31(b) is essentially the same as this one.)

(b) Put f (n)= n! and g(k)= xk in Theorem 5.1.4 (or f (n)= xn! in Corol-
lary 5.1.6).

(c) We have [
ur

r!

]
u

(1− u)a = r!

((
r

a− 1

))
,
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the number of ways to linearly order an r-element set, say z1, z2, . . . , zr,
and then to place a− 1 bars in the spaces between the zi’s or before z1

(but not after zr), allowing any number of bars in each space. On the

other hand, we have
(n+(a−1)k−1

n−k

)
=

((
n−k+1
ak−1

))
, the number of ways

to place ak − 1 bars B1, . . . , Bak−1 (from left-to-right) in the spaces
between a line of n − k dots, or at the beginning and end of the line,
allowing any number of bars in each space. Put a new bar B0 at the
beginning and a new bar Bka at the end. Put a new dot just before
the bar Bja for 1 ≤ j ≤ k. We now have n dots in all. Replace them
with a permutation of [n] in n! ways. By considering the configuration
between B(j−1)a and Bja for 1 ≤ j ≤ k, we see that our structure is
equivalent to an ordered partition of [n] into k blocks, such that each
block has a linear ordering z1, . . . , zr together with a − 1 bars in the
spaces between the zi’s, allowing bars before z1 but not after zr. Since
there are k! ways of “unordering” the k blocks, equation (5.92) fol-
lows from Corollary 5.1.6 (the exponential formula). Equation (5.93)
is proved similarly.
Essentially the same argument was found by C. A. Athanasiadis, H.
Cohn, and L. W. Shapiro (independently). These identities are also easy
to prove algebraically. For instance,

exp
xu

(1− u)a =
∑
k≥0

uk

(1− u)ak

xk

k!

=

∑
k≥0

∑
n≥k

((
ak

n− k

))
un

 xk

k!
,

etc.
(d) Choose an (n − k)-subset T of [n] in

(n
k

)
ways. Choose an injection

g : T → [n] ∪ A in (α + n)n−k ways. We have
(n

k

)
(α + n)n−k ways of

choosing in all. If i ∈ [n]−T and i is not in the image of g, then define
{i} to be a block of π (which of course has a unique linear ordering). If
i ∈ [n] − T and i = g( j) for some j, then there is a unique m ∈ T for
which gr(m) = i for some r ≥ 1, and m is not in the image of g. Define
a linearly ordered block of π by

m > g(m) > g2(m) > · · · > gr(m) = i.

The remaining elements of [n] (those not in some block of π ) form the
set S̄, and the restriction of g to S̄ defines f .
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(e) Note that

(1− u)−α−1
=

∑
j≥0

(α + j)j
uj

j!
,

and that (α+j)j is the number of injections f : S̄→ S̄∪A, where #S̄ = j.
Now use Proposition 5.1.1 and (b). There is also an easy algebraic
proof analogous to that given at the end of (c).
The polynomials

L(α)
n (x) =

1

n!

n∑
k=0

(
n

k

)
(α + n)n−k(−x)k

are the Laguerre polynomials. The combinatorial approach used
here is due to D. Foata and V. Strehl, in Enumeration and
Design (D. M. Jackson and S. A. Vanstone, eds.), Academic Press,
Toronto/Orlando (1984), 123–140. They derive many additional prop-
erties of Laguerre polynomials by similar combinatorial reasoning.
Combinatorial approaches toward other classical sequences of poly-
nomials have been undertaken by a number of researchers; see for
example X. G. Viennot, Une théorie combinatoire des polynômes
orthogonaux, lecture notes, Université de Québec à Montréal, Dépt.
de Maths., 1984, 215 pp.; various papers in Springer Lecture Notes in
Math., vol. 1171, Springer-Verlag, Berlin, 1985 (especially pp. 111–
157); J. Labelle and Y.-N. Yeh, Studies in Applied Math. 80 (1989),
25–36. See also Exercise 19 for a further example of this type of
reasoning. Additional references appear in [16, p. xiv].

18. If C is a cycle of length n, then the number of distinct cycles which are
powers of C is φ(n) (since the distinct cycles are Cj where 1 ≤ j ≤ n
and ( j, n) = 1). Hence if π has cycles C1, C2, . . . , Ck , then the number of

permutations equivalent to π is
k∏

i=1

φ(#Ci). Therefore

e(n) =
∑
π∈Sn

(∏
i

φ(#Ci)−1

)
,

where the Ci’s are the cycles of π . Now use Corollary 5.1.9.
This result was proposed as a problem by R. Stanley, Amer. Math. Monthly
80 (1973), 949, with a solution published due to A. Nijenhius, 82 (1975),
86–87.
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19. We have

Kn(a)Kn(b) =
∑
π ,σ

ac1(π)bc1(σ ),

summed over pairs (π , σ ) of involutions in Sn. Represent (π , σ ) by a graph
G(π , σ ) on the vertex set [n] by putting a red (respectively, blue) edge
between i and j if (i, j) is a cycle of π (respectively, σ ). If π (i) = i (respec-
tively, σ (i) = i) then we put a red (respectively, blue) loop on the vertex i.
(Thus if π (i) = i and σ (i) = i, then there are two loops on i, one red and
one blue.) There are three types of components of G(π , σ ):
(i) A path with a loop at each end and with 2k + 1 ≥ 1 vertices, with red

and blue edges alternating. There are (2k+ 1)! such paths, and all have
one red and one blue loop. Thus each contribute a factor ab to the term
ac1(π)bc1(σ ).

(ii) A path as in (i) with 2k ≥ 2 vertices. There are 1
2 (2k)! paths before we

color the edges. One coloring produces two red loops and the other two
blue loops, thus contributing a2 and b2, respectively, to ac1(π )bc1(σ ).

(iii) A cycle of length 2k ≥ 2 with red and blue edges alternating. There are
(2k− 1)! such cycles, and all have no loops. Thus a cycle contributes a
factor of 1 to ac1(π)bc1(σ ).

It follows from Corollary 5.1.6 (the exponential formula) that

∑
n≥0

Kn(a)Kn(b)
xn

n!
= exp

ab
∑
k≥0

(2k + 1)!x2k+1

(2k + 1)!

+
1

2
(a2
+ b2)

∑
k≥1

(2k)!x2k

(2k)!
+

∑
k≥1

(2k − 1)!x2k

(2k)!


= (1− x2)−1/2 exp

[
abx+ 1

2 (a2
+ b2)x2

1− x2

]
.

The Hermite polynomials Hn(a) may be defined by

1+
∑
n≥1

Hn(a)
xn

n!
= exp(2ax− x2). (5.129)

(Sometimes a different normalization is used, so the right-hand side of
(5.129) becomes exp(ax − x2

2 ).) In terms of the Hermite polynomials, the
identity (5.95) becomes∑

n≥0

Hn(a)Hn(b)
xn

n!
= (1− 4x2)−1/2 exp

[
4abx− 4(a2

+ b2)x2

1− 4x2

]
.
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This identity is known as Mehler’s formula. M.-P. Schützenberger sug-
gested finding a combinatorial proof, and essentially the above proof was
given by D. Foata, J. Combinatorial Theory (A) 24 (1978), 367–376. For
further results along these lines, see D. Foata, Advances in Applied Math. 2
(1981), 250–259, and D. Foata and A. M. Garsia, Proc. Symp. Pure Math.
(D. K. Ray-Chaudhuri, ed.), vol. 34, American Mathematical Society,
Providence, RI, 1979, pp. 163–179.

20. (a) We want to interpret xeB′(F(x)) as the exponential generating function
(e.f.g.) for rooted B-graphs on n vertices. By (5.20), B′(x) is the e.f.g.
for blocks on an (n + 1)-element vertex set which are isomorphic to a
block in B. Thus by Theorem 5.1.4, B′(F(x)) is the e.f.g. for the follow-
ing structure on an n-element vertex set V . Partition V , and then place
a rooted B-graph on each block. Add a new vertex v0, and place on the
set of root vertices together with v0 a block in B. This is equivalent to
a B-graph G on n + 1 vertices, rooted at a vertex v0 with the property
that only one block of G contains v0.
It follows from Corollary 5.1.6 that eB′(F(x)) is the e.f.g. for the fol-
lowing structure on an n-set V . Choose a partition π of V . Add a root
vertex vA to each block A of π . Place on each set A ∪ {vA} a B-graph
GA such that vA is contained in a single block.
If we identify all the vertices vA to a single vertex v∗, then we obtain
simply a B-graph G on V ∪ {v∗}. Moreover, given G we can uniquely
recover the partition π and the graphs GA by removing v∗ from G,
seeing the connected components which remain (whose vertex sets will
be the A’s), and adjoining vA to each component connected in the same
way that v∗ was connected to that component. Thus eB′(F(x)) is the e.f.g.
for connected B-graphs on V ∪ {v∗}, where #V = n.
Lastly it follows from (5.19) that xeB′(F(x)) is the e.f.g. for the fol-
lowing structure on an n-set W . Choose an element w ∈ W , then
add an element w∗ to W − {w} and place a connected B-graph on
(W − {w}) ∪ {w∗}. This is equivalent to rooting W at w and placing
a connected B-graph on W . In other words, xeB′(F(x)) is the e.f.g. for
rooted connected B-graphs on n vertices, and hence coincides with
F(x). To obtain (5.97), substitute F〈−1〉(x) for x in (5.96) and solve for
B
′

(x) =
∑

n≥1 b(n+ 1) xn

n! .
See Figure 5.24 for an example of the decomposition of rooted con-
nected B-graphs described by xeB′(F(x)). Equation (5.96) is known as
the block-tree theorem, and is due to G. W. Ford and G. E. Uhlenbeck,
Proc. Nat. Acad. Sci. 42 (1956), 122–128 (the case y0 = 1 of (5.6)).
Ford and Uhlenbeck in fact prove a more general result where they
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vA
vA
vA

Figure 5.24 The block-tree decomposition

keep track of the number of occurrences of each block in a B-graph
G. They then use Lagrange inversion to obtain that the number of B-
graphs on an n-element vertex set with kB blocks isomorphic to B is
equal to

n! · n6BkB−1∏
B

(
|Aut B|

pB

)kB

kB!

where the block B has pB vertices.
(b) Let B be the set of all blocks without multiple edges. A B-graph is just

a connected graph without multiple edges. Letting F(x) and B(x) be as
in (a), by (5.37) and (5.21) we have

F(x) = x
d

dx
log

∑
n≥0

2(
n
2)

xn

n!
.

Now use (5.97).
21. Let u = u1u2 · · · un, where ui ∈ A. Represent u as a row of n dots, and

connect two adjacent dots if they belong to the same word of B when u is
factored into words in B. If π = a1a2 · · · an, then place ai below the ith
dot. For instance, if u = u1u2 · · · u9 where u1 · u2u3u4 · u5 · u6u7 · u8u9

represents the factorization of u into words in B, and if π = 529367148,
then we obtain the diagram

r r r r r r r r r
5 2 9 3 6 7 1 4 8

u1 u2 u3 u4 u5 u6 u7 u8 u9

Consider the subsequence ρ of π consisting of the labels of the first ele-
ments of each connected string. For the above example, we get ρ = 52674.
Draw a bar before all left-to-right maxima (except the first) of the sequence
ρ. For ρ = 52674, the left-to-right maxima are 5, 6, and 7. Thus we get
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r r r r r r r r r
5 2 9 3 6 7 1 4 8

u1 u2 u3 u4 u5 u6 u7 u8 u9

For each sequence v of ui’s separated by bars, write down the cyclic permu-
tation of v whose first element corresponds to the largest possible element
of π . Arrange in a cycle the elements of π which are below v. For our
example, we obtain:

u3u4u1u2 (5293)
u5 (6)

u9u6u7u8 (7148)

We leave the reader to verify that this procedure establishes the desired
bijection.
This bijection is due to I. Gessel.

22. To form a graph with every component a cycle on the vertex set [n+1], first
choose such a graph G on the vertex set [n] (in L(n) ways). Then insert the
vertex n + 1 into it, either as an isolated vertex (one way) or by choosing
an edge e of G and inserting n + 1 in the middle of it (n ways). Every
allowable graph on [n+1] will arise exactly once, except that the two ways
of inserting n + 1 into a 2-cycle (double edge) result in the same graph.
There are

(n
2

)
possible edges, and L(n − 2) graphs which contain a given

one of them. Hence L(n+ 1) = (n+ 1)L(n)−
(n

2

)
L(n− 2), as desired.

This result was first proved by I. Schur, Arch. Math. Phys. Series 3 27
(1918), 162, in a less combinatorial fashion. See also [253, Problem
VII.45].

23. Let N be a cloud. Identify the line δi with the node i, and the intersection
δi ∩ δj ∈ N with the edge {i, j}.
This exercise is taken from [2.3, pp. 273–277]. The connection between
clouds and graphs goes back to W. A. Whitworth, Choice and Chance,
Bell, 1901 (reprinted by Hafner, 1965), Exercise 160 on p. 269. Whitworth
erroneously claimed that c(n) = 1

2 (n − 1)!. His error was corrected by
Robin Robinson, Amer. Math. Monthly 58 (1951), 462–469, who obtained
the recurrence for c(n) given in Example 5.2.8 (where T∗n (2) is used instead
of c(n)) by simple combinatorial reasoning. The generating function (5.29)
was derived from the recurrence in an editorial note [77], and was used
to complete an asymptotic formula for c(n) partially found by Robinson.
Some congruence properties of c(n) were later given by L. Carlitz in Amer.
Math. Monthly 61 (1954), 407–411, and 67 (1960), 961–966.
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24. (a) By Example 4.6.16(b), the vertex set V (6n) of 6n satisfies

V (6n) ⊆
{

1

2
(P+ Pt) : P is an n× n permutation matrix

}
.

It is fairly straightforward to check which matrices 1
2 (P+ Pt) are actu-

ally vertices. See M. Katz, J. Combinatorial Theory 8 (1970), 417–423
(Theorem 1).

(b) Let 1
2 (P+Pt) ∈ V (6n). Suppose that P corresponds to the permutation

π of [n]. Define a graph G = G(P) on the vertex set [n] by drawing an
edge between i and j if π (i) = j or π( j) = i. By (a), the components
of G are single vertices with one loop, single edges, or odd cycles of
length ≥ 3. Moreover, every such G corresponds to a unique vertex of
6n (though not necessarily to a unique P). There is one way to place a
loop on one vertex or an edge on two vertices, and 1

2 (2i)! ways to place
a cycle on 2i+ 1 ≥ 3 vertices. Hence

∑
n≥0

M(n)
xn

n!
= exp

x+
x2

2
+

∑
i≥1

1

2
(2i)!

x2i+1

(2i+ 1)!


= exp

 x

2
+

x2

2
+

1

2

∑
i≥0

x2i+1

2i+ 1


= exp

(
x

2
+

x2

2
+

1

4

(
log(1− x)−1

− log(1+ x)−1
))

=

(
1+ x

1− x

)1/4

exp
(

x

2
+

x2

2

)
.

An equivalent result (but not stated in terms of generating functions)
appears in M. Katz, ibid. (Theorem 2).

(c) Take the logarithm of (5.98) and differentiate to get

∑
n≥0

M(n+ 1)
xn

n!
=

∑
n≥0

M(n)
xn

n!

 d

dx

[
1

4
log(1+ x)

−
1

4
log(1− x)+

x

2
+

x2

2

]

=

∑
n≥0

M(n)
xn

n!

( 1

2(1− x2)
+

1

2
+ x

)
.
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Multiply by 2(1− x2) and take the coefficient of xn/n! on both sides to
obtain

M(n+1) = M(n)+n2M(n−1)−
(

n

2

)
M(n−2)−n(n−1)(n−2)M(n−3).

This recurrence first appeared (with a misprint) in [317, Example 2.8].
(d) A solution was found by the Cambridge Combinatorics and Coffee

Club, February 2000.
25. (a) This result is stated without proof (in a more complicated but equiva-

lent form) by M. Katz, J. Combinatorial Theory 8 (1970), 417–423,
and proved by the same author in J. Math. Anal. Appl. 37 (1972),
576–579.

(b) Arguing as in the solution to Exercise 24(b), the graph G correspond-
ing to a matrix now can have as a component a single vertex with
no loop. (Removing a 1 from the main diagonal converts a loop to a
loopless vertex.) Thus when applying the exponential formula as in
Exercise 24(b), we obtain an additional factor of ex. (An erroneous
generating function appears in [317, Example 2.8].)

(c) As in Exercise 24(c), we obtain

∑
n≥0

M∗(n+ 1)
xn

n!
=

∑
n≥0

M∗(n)
xn

n!

( 1

2(1− x2)
+

3

2
+ x

)
,

from which there follows

M∗(n+ 1) = 2M∗(n)+ n2M∗(n− 1)− 3
(

n

2

)
M∗(n− 2)

− n(n− 1)(n− 2)M∗(n− 3).

Is there a combinatorial proof, analogous to Exercise 22?
26. Given a set X , let D(X ) denote the set of all subsets S of 2X

− {∅} such
that any two elements of S are either disjoint or comparable. Write D(n)
for D([n]). Since for n ≥ 1 we have S ∈ D(n) and [n] /∈ S if and only if
[n] /∈ S and S ∪ {[n]} ∈ D(n), it follows that F(x) = 1 + 2G(x). Now let
S ∈ D(n), and regard S as a poset ordered by inclusion. It is not hard to see
that S is a disjoint union of rooted trees, with the successors of any vertex
being disjoint subsets of [n]. Hence S can be uniquely obtained as follows.
Choose a partition π = {B1, . . . , Bk} of [n]. For each block Bi of π , choose
a set Si ∈ D(Bi) such that Bi ∈ Si (in g(#Bi) ways). If #Bi = 1, then we can
also choose to have Bi 6∈ Si. Finally let S =

⋃
Si. Since there are g(#Bi)

choices for each Bi and one extra choice when #Bi = 1, it follows from
Corollary 5.1.6 that F(x) = ex+G(x).
This exercise is due to I. Gessel.
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27. Given an edge-labelled tree T with n edges, choose a vertex of T in n + 1
ways and label it 0. Then “push” each edge label to the vertex of that edge
farthest from 0. We obtain a bijection between (a) the (n + 1)e(n) ways to
choose T and the vertex 0, and (b) the (n+1)n−1 ways to choose a labelled
tree on n + 1 vertices. Hence e(n) = (n + 1)n−2. Essentially this bijection
(though not an explicit statement of the formula e(n) = (n+1)n−2) appears
in J. Riordan, Acta Math. 97 (1957), 211–225 (see equation (17)), though
there may be much earlier references.

28. Suppose that the tree T on the vertex set [n] has ordered degree sequence
(d1, . . . , dn) (i.e., vertex i has di adjacent vertices), where necessarily∑

di = 2n − 2. Choose a vertex of degree one (endpoint), and adjoin
vertices one at a time to the graph already constructed, keeping the graph
connected. Color each edge as it is added to the graph. For the first edge
we have k choices of colors. If one edge of a vertex of degree d has been
colored, then there are (d−1)!

(k−1
d−1

)
ways to color the others. It follows eas-

ily from Theorem 5.3.4 that the number of free trees with ordered degree
sequence (d1, . . . , dn) is equal to the multinomial coefficient(

n− 2

d1 − 1, d2 − 1, . . . , dn − 1

)
.

Hence the total number of k-edge colored trees is given by

Tk(n) = k(n− 2)!
∑

d1+···+dn=2n−2

n∏
i=1

(
k − 1

di − 1

)

= k(n− 2)![xn−2]
(

(1+ x)k−1
)n

= k(n− 2)!
(

(k − 1)n

n− 2

)
.

This result is due to I. Gessel (private communication). A bijective proof
based on Prüfer codes is due to the Cambridge Combinatorics and Coffee
Club, December 1999.

29. (a) If F ∈ Pn has rank i, then any of the i edges of F can be removed
from F to obtain an element that F covers. Hence F covers i elements.
To obtain an element that covers F, choose a vertex v of F in n ways,
and then choose a connected component T of F not containing v in
(n − i − 1) ways. Attach the root of T below v. Thus F is covered by
(n− i− 1)n elements.

(b) Let M(n) denote the number of maximal chains in Pn. We obtain a
maximal chain by choosing a maximal element of Pn in r(n) ways, then
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an element that it covers in n−1 ways, etc. Hence M(n) = r(n)(n−1)!.
On the other hand, we can choose a maximal chain by starting at 0̂,
choosing an element u covering 0̂ in (n − 1)n ways, then an element
covering u in (n − 2)n ways, etc. Hence M(n) = nn−1(n − 1)!, so
r(n) = nn−1.
This elegant proof appears in J. Pitman, J. Combin. Theory Ser. A 85
(1999), 165–193. The same reasoning can be used to compute the num-
ber pk(n) of planted forests on [n] with k components (i.e., the number
of elements of Pn of rank n− k), as was done by other methods in the
text (Proposition 5.3.2 and Example 5.4.4). Note also that Pn, with a 1̂
adjoined, is a triangular poset in the sense of Exercise 3.201 (except
for not having all maximal chains of infinite length). Further results on
Pn and related posets are given by D. N. Kozlov,

(c) The poset Pn is simplicial, that is, every interval [0̂, t] is isomorphic to a
boolean algebra. (In fact, Pn is the face poset of a simplicial complex.)
It follows from Example 3.8.3 and the recurrence (3.14) defining the
Möbius function that

µn := µ(0̂, 1̂) = −pn(n)+ pn−1(n)− · · · ± p1(n),

where pk(n) denotes the number of planted forests on [n] with k
components. If R(x) denotes the exponential generating function for
rooted trees (defined in Section 5.3), then by the exponential formula
(Corollary 5.1.6) we have∑

n≥1

µn
xn

n!
= 1− e−R(−x).

Now use the second formula of equation (5.128).
30. First solution. Linearly order R ∪ S by 1 ≤ · · · ≤ r ≤ 1′ ≤ · · · ≤ s′.

Given T , define a sequence T1, T2, . . . , Tr+s−2 as follows: set T1 = T . If
i ≤ r+s−2 and Ti has been defined, then define Ti+1 to be the tree obtained
from Ti by removing its largest endpoint vi (and the edge incident to vi).
For each i we also define a pair (ui, u′i) of sequences (or words) ui ∈ R∗

and u′i ∈ S∗ as follows. Set (u0, u′0) = (∅,∅), where ∅ denotes the empty
word. Let ti be the unique vertex of Ti adjacent to vi. If ti ∈ R then set
(ui, u′i) = (ui−1ti−1, u′i−1). If ti ∈ S then set (ui, u′i) = (ui−1, u′i−1ti). Thus
for the tree T we obtain a pair of words (u, u′) = (ur+s−2, u′r+s−2), where
ur+s−2 ∈ R∗s−1, u′r+s−2 ∈ S∗r−1. As in the first proof of Proposition 5.3.2,
the correspondence T 7→ (u, u′) is a bijection between free bipartite trees
on (R, S) and the set R∗s−1 × S∗r−1. Moreover, a vertex t appears in u and u′

one fewer times than its degree, from which (5.100) follows.
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Figure 5.25 A labelled bipartite tree

Example. For the tree T of Figure 5.25, we have (u, u′) = (3113, 3′1′3′),
and T7 consists of a single edge connecting 1 and 3′.
Second solution. There are rssr functions f : R ∪ S → R ∪ S satisfying
f (R) ⊆ S and f (S) ⊆ R. Let Df denote the digraph of such a function
f . The “cyclic part” of Df corresponds to a permutation π of some subset
R1∪S1 of R∪S, where π (R1) = S1 and π(S1) = R1. Linearly order R1∪S1

as a′1 < a1 < a′2 < a2 < · · · < a′j < aj, where a′1 < a′2 < · · · < a′j and
a1 < a2 < · · · < aj as integers. This linear ordering allows π to be written
as a word w = b1b′1b2b′2 · · · bjb′j, where π(a′i) = bi, π(ai) = b′i. Regard
the word w as a path P in a (bipartite) graph. Circle the endpoints b1 and
b′j. Attach to each vertex t of P the tree that is attached to t in Df (with the
arrows removed from each edge), yielding a bipartite tree T on (R, S) with
a root in R and a root in S. As in the second proof of Proposition 5.3.2,
the map f 7→ T is a bijection between functions f : R ∪ S → R ∪ S with
f (R) ⊆ S and f (S) ⊆ R, and “bi-rooted” bipartite trees on (R, S) with a root
in R and a root in S. Moreover, if t is not a root then degT t = 1+ #f −1(t),
while if t is a root then degT t = #f −1(t). It follows that

∑
a∈R
b′∈S

(xayb)
(

x−1
1 · · · x

−1
r

) (
y−1

1 · · · y
−1
s

)∑
T

(∏
i∈R

xdeg i
i

)∏
j′∈S

ydeg j′

j


= (x1 + · · · + xr)s(y1 + · · · + ys)r, (5.130)

where T ranges over all free bipartite trees on (R, S). Then (5.100) follows
immediately from (5.130).
Example. Let T be as in Figure 5.25. Suppose we choose 4 and 1′ as the
roots. The corresponding path P is 43′31′, so the cyclic part of f writ-

ten in two-line notation is
(

1′ 3 3′ 4
4 3′ 3 1′

)
, and in cycle notation is

(1′, 4)(3′, 3). The digraph Df is shown in Figure 5.26.

The number c(Krs) of spanning trees of Krs was first obtained (by different
methods than here) by M. Fiedler and J. Sedláček, Časopis pro pĕstováni
matematiky 83 (1958), 214–225; T. L. Austin, Canad. J. Math. 12 (1960),
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2 1 4

4

2

1 3 3 5

Figure 5.26 The digraph Df of a function f : R ∪ S→ R ∪ S

535–545 (a special case of Theorem II); and H. I. Scoins, Proc. Camb. Phil.
Soc. 58 (1962), 12–16.

31. (a) Easy!
(b) Given a function f : S→ T , let Df be the digraph with vertex set S∪T

and edges s→ f (s) for s ∈ S. Now fix A ⊆ [n], and consider the sum

FA =
∑

g

∏
i∈A

xg(i), (5.131)

where g ranges over all acyclic (i.e., Dg has no directed cycles) func-
tions g : A→ A∪ {n+ 1}. Then Dg is an oriented tree with root n+ 1,
and the exponent of xj in the product in (5.131) is equal to (deg j) − 1
if j 6= n + 1, and to deg(n + 1) if j = n + 1, where deg k denotes
the total number of vertices adjacent to k (ignoring the direction of the
edges). Since the root and orientation of Dg can be determined from
the underlying free tree on A ∪ {n+ 1}, it follows from Theorem 5.3.4
that

FA = xn+1

(
xn+1 +

∑
i∈A

xi

)#A−1

.

Next consider

GA =
∑

h

∏
i∈A′

xh(i),

where h ranges over all functions h : A′ → A′ ∪ [n + 2]. By (a), we
have

GA =

(
xn+2 +

∑
i∈A′

xi

)n−#A

.

If now f : [n]→ [n+2], then the component of Df containing n+1 will
be equal to Dg for a unique A ⊆ [n] and acyclic g : A→ A ∪ {n+ 1}.
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The remainder of Df is equal to Dh for a unique h : A′→ A′ ∪ {n+ 2}.
Thus

(x1 + · · · + xn+2)n
=

∑
f :[n]→[n+2]

n∏
i=1

xf (i)

=

∑
A⊆[n]

FAGA,

and the proof follows.
This result is equivalent to one of A. Hurwitz, Acta Math. 26 (1902),
199–203. See also [2.3, Exer. 20, p. 163] and [171, Exer. 2.3.44–30].
The proof given here is a minor variation of one of J. Françon, Discrete
Math. 8 (1974), 331–343 (repeated in [2.3, pp. 129–130]). Françon
uses an elegant “coding” of functions [n]→ [n] due to D. Foata and A.
Fuchs, J. Combinatorial Theory 8 (1970), 361–375, and obtains many
related results in a systematic way. For a generalization, see A. J. Stam,
J. Math. Anal. Appl. 122 (1987), 439–443.

(c) Put xn+1 = x, xn+2 = y + nz, x1 = x2 = · · · = xn = −z and
collect the A such that #A = k in (b). This famous identity, one of
several equivalent ones called “Abel’s identity” (see the fourth entry of
Exercise 37(b)), is to due N. Abel, J. reine angew. Math. (= Crelle’s J.) 1
(1826), 159–160, or Oeuvres Complètes, vol. 1, p. 102. For some other
proofs, see [2.3, pp. 128–129] and [171, Exer. 1.2.6–51]. For additional
references, see H. W. Gould, Amer. Math. Monthly 69 (1962), 572. For
a combinatorial treatment of many identities related to Abel’s identity,
see V. Strehl, Discrete Math. 99 (1992), 321–340.

(d) This is equivalent to the case x = 1, y = n, z = −1 of (c). (It can also
be proved directly by considering functions [n]→ [n+ 1].)

32. (a) Fix j ∈ P. Given a rooted tree τ , let w(τ ) =
∏

tak
jk , where τ has ak

vertices at distance k from the root. By a simple refinement of (5.41),
we have

∑
n≥1

[∑
τ

w(τ )

]
xn

n!
= tj0xetj1xetj2xe·

·
·

= Ej, say,

where τ ranges over all rooted trees on [n].
Now let C be a collection of j such trees τ1, . . . , τj arranged in a j-cycle,
and define w(C) =

∏
w(τi). Then∑

n≥1

[∑
C

w(C)

]
xn

n!
=

∑
j≥1

1

j
Ej

j ,
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where C ranges over all “cycles of rooted trees”on the vertex set [n],
since by Proposition 5.1.3, Ej

j enumerates j-tuples (τ1, . . . , τj) of rooted
trees, and each j-cycle corresponds to j distinct j-tuples.
Finally by Corollary 5.1.6 the exponential generating function for dis-
joint unions of cycles of rooted trees on [n] (or digraphs of functions
f : [n]→ [n]) is given by

exp
∑
j≥1

1

j
Ej

j ,

as desired.
(b) Z̃n(tjk = 1) is just the number nn of functions f : [n]→ [n], so the first

equality follows. The second equality is a consequence of (5.41) and
Proposition 5.3.2.

(c) A necessary and sufficient condition that f a
= f a+b is that (i) every

cycle of Df has length dividing b, and (ii) every vertex of Df is at
distance at most a from a cycle. Hence (c) follows by substituting in
(a)

tjk =

{
1, if j|b and k ≤ a
0, otherwise

(d) Since f = f 1+b for some b ∈ P if and only if every vertex of Df is
at distance at most one from a cycle, we obtain from (a) by setting
tj0 = tj1 = 1, tjk = 0 if k > 1 (or from (c) by letting b = m! and
m→∞) that ∑

n≥0

h(n)
xn

n!
= exp

∑
j≥1

1

j
(xex)j

= exp log(1− xex)−1

= (1− xex)−1

=

∑
m≥0

xmemx

=

∑
m≥0

∑
r≥0

mr xm+r

r!

=

∑
n≥0

(
n∑

k=1

kn−k(n)k

)
xn

n!
,

so (5.104) follows.
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Putting b = 1 in (5.103) yields∑
n≥0

g(n)
xn

n!
= exp xex

=

∑
m≥0

xmemx

m!
, (5.132)

and (5.105) follows in a similar manner to (5.104).
(e) Note that f satisfies f a

= f a+1 for some a ∈ P if and only if every
cycle of the digraph Df has length one. Hence we want the number of
planted forests on [n], which by Proposition 5.3.2 is (n+ 1)n−1.

(f) While a proof using generating functions is certainly possible, there is
a very simple direct argument. Namely, for each i ∈ [n], we have n− 1
choices for f (i). Hence there are (n − 1)n such functions. Note that
the proportion P(n) of functions f : [n] → [n] without fixed points is
(n − 1)n/nn, so lim

n→∞
P(n) = 1/e. From equation (2.12) this is also the

limiting value of the proportion of permutations f : [n]→ [n] without
fixed points.
Equation (5.101) can be deduced from the general “composition the-
orem” of B. Harris and L. Schoenfeld, in Graph Theory and Its
Applications (B. Harris, ed.), Academic Press, New York/London,
1970, pp. 215–252. In that paper equation (5.102) is essentially derived,
though it is not explicitly written down. Special cases of (5.102) had
appeared in earlier papers; in particular, equations (5.105) and (5.132)
are obtained by B. Harris and L. Schoenfeld, J. Combinatorial The-
ory 3 (1967), 122–135, along with considerable additional information
concerning the number g(n) of idempotents in the symmetric semi-
group 3n. The first explicit statement of (5.102) seems to be [3.32,
§3.3.15, Ex. 3.3.31], and a refinement appears in [73, §3.2].For asymp-
totic properties of 3n, see B. Harris, J. Combinatorial Theory (A) 15
(1973), 66–74, and B. Harris, Studies in Pure Mathematics, Birkhäuser,
Basel/Boston/Stuttgart, 1983, pp. 285–290.

33. The functions c and 2 − ζ are not multiplicative, so Theorem 5.1.11 does
not apply. Since

(2− ζ )−1
=

∑
k≥0

(ζ − 1)k ,

the correct generating function is the unappealing

Ec(x) =
∑
k≥0

f 〈k〉(x),

where f (x) = f 〈1〉(x) = ex
− x− 1 (set f 〈0〉(x) = x).
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34. (a) Straightforward generalization of Theorem 5.1.11.
(b) Let ζ : P → K be given by ζ (n) = 1 for all n. Thus ζ 2(n) = qn and

ζ−1(n) = µn. Since ϕ(ζ ) = ek(x), the result follows from (a).
(c) Define ζt : P→ K by ζt(n) = tn. Then χn(t) = µζt(n). Now

ϕ(ζt) =
∑
n≥0

tn
xkn+1

(kn+ 1)!

= t−1/kek(t1/kx),

while ϕ(µ) = e〈−1〉
k (x). Thus (5.106) follows from (a). When k = 2,

(5.106) becomes

t
∑
n≥0

χn(t2)
x2n+1

(2n+ 1)!
= sinh(t sinh−1 x).

To get (5.107), use Exericse 1.173(c).
For further results on 9n and related posets, see A. R. Calderbank, P.
Hanlon, and R. W. Robinson, Proc. London Math. Soc. (3) 53 (1986),
288–320; S. Sundaram, Contemporary Math. 178 (1994), 277–309;
and the references given in this latter paper.

35. (a) Let T be a plane tree with n + 1 vertices for which si internal vertices
have i successors. Label the vertices of T in preorder with the numbers
0, 1, . . . , n. Let π (T) be the partition of [n] whose blocks are the sets
of vertices with a common parent. This sets up a bijection with non-
crossing partitions of [n] of type s1, . . . , sn, and the proof follows from
Theorem 5.3.10. This result was first proved (by other means) by G.
Kreweras, Discrete Math. 1 (1972), 333–350 (Theorem 4). The bijec-
tive proof just sketched was first found by P. H. Edelman (unpublished).
Later independently N. Dershowitz and S. Zaks, Discrete Math. 62
(1986), 215–218, gave the same bijection between plane trees amd non-
crossing partitions, though they don’t explicitly mention enumerating
noncrossing partitions by type.

(b) Assume char K = 0. By (a) we have for n > 0 that

h(n) =
∑

s1+2s2+···=n

f (1)s1 f (2)s2 · · ·
(n)k−1

s1!s2! · · ·

=

∑
k≥1

(n)k−1[xn]
(F(x)− 1)k

k!
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= [xn]
∫ F(x)−1

0
(1+ t)ndt

= [xn]
F(x)n+1

− 1

n+ 1

= [xn]
F(x)n+1

n+ 1
.

Hence by Lagrange inversion (Theorem 5.4.2, with k= 1 and n
replaced by n+ 1) we get

h(n) = [xn+1]
(

x

F(x)

)〈−1〉

,

and the proof follows when char K = 0. The case char K = p is an
easy consequence of the characteristic zero case.
This result is due to R. Speicher, Math. Ann. 298 (1994), 611–628 (p.
616). Speicher’s proof avoids the use of (a), so he in fact deduces (a)
from (5.108) (see his Corollary 1).

(c) This can be proved by an argument similar to (a), though the details
are more complicated. The result is due to A. Nica and R. Spe-
icher, J. Algebraic Combinatorics, 6 (1997), 141–160 (Theorem 1.6),
and is related to the “free probabability theory” developed by D.-
V. Voiculescu. See also R. Speicher, Mem. Amer. Math. Soc., vol.
132, no. 627, 1998, 88 pages, and R. Speicher, Sém. Lotharingien de
Combinatoire (electronic) 39 (1997), B39c.
NOTE. If one defines ζ (n) = 1 for all n, then the function h = f ζ is as
in (b). Since 0ζ = 1/(1+ x), there results∑

n≥1

h(n)xn

〈−1〉

=
1

1+ x

∑
n≥1

f (n)xn

〈−1〉

.

It follows from the case C(x) = 1/(1 + x) of Exercise 51 that this
formula is equivalent to (5.108).

36. (a) Let u =
(

1
2 (1+ 2x− ex)

)〈−1〉
and v = (log(1+ 2x)− x)〈−1〉. Thus

1+2u−2x = eu. If we replace u by x+w, then we obtain 1+2w = ex+w,
whence w〈−1〉

= log(1+ 2x)− x. Therefore w = v, so y = u− v = x.
(b) It follows from equation (5.27), equation (5.99), and part (a) of this

exercise that Et(2x)− Eg(x) = x, from which the proof is immediate.
(c) Let us call a subset of the boolean algebra Bn of the type enumer-

ated by g(n) a power tree. Represent a total partition π of [n] (where
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n> 1) as a tree T , as in Figure 5.3. Remove any subset of the endpoints
of T , in 2n ways. The labels of the remaining vertices form a power
tree. This correspondence associates each total partition of [n] with 2n

power trees, such that each power tree appears exactly once, yielding
(b). This elegant argument is due to C. H. Yan.

37. (a) First note that (ii) and (iii) are obviously equivalent, since f (u) =

log
∑
n≥0

pn(1)
un

n!
. Given (ii), then (i) follows by expanding in powers

of u both sides of the identity

(exp xf (u))(exp y f (u)) = exp (x+ y) f (u).

Conversely, given (i) write

L(x, u) = log
∑
n≥0

pn(x)
un

n!
.

It follows from (i) that L(x, u)+ L(y, u) = L(x+ y, u), from which it is
easy to deduce that L(x, u) = xf (u) for some f (u) = a1u+ a2u2

+ · · ·

(with a1 6= 0.)
For the equivalence of (i) and (iv), see G.-C. Rota and R. C. Mullin, in
Graph Theory and Its Applications (B. Harris, ed.), Academic Press,
New York, 1970, pp. 167–213 (Thm. 1) or G.-C. Rota, D. Kahaner,
and A. M. Odlyzko, J. Math. Anal. Appl. 42 (1973), 684–760 (Thm.
1). These two papers develop a beautiful theory of “finite operator
calculus” with many applications to analysis and combinatorics. For
additional information and references, see S. Roman, The Umbral Cal-
culus, Academic Press, Orlando, 1984. For asymptotic properties of
polynomials of binomial type, see E. R. Canfield, J. Combinatorial
Theory (A) 23 (1977), 275–290.

(b) ∑
n

xn un

n!
= exp xu

∑
n

(x)n
un

n!
= (1+ u)x

= exp[x log(1+ u)]

∑
n

x(n) un

n!
= (1− u)−x

= exp[x log(1− u)−1]
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∑
n

x(x− an)n−1 un

n!
= exp x

∑
n≥1

(−an)n−1 un

n!

∑
n

∑
k

S(n, k)xk un

n!
= exp x(eu

− 1)

∑
n

∑
k

n!

k!

(
n+ (a− 1)k − 1

n− k

)
xk un

n!
= exp

xu

(1− u)a

∑
n

∑
k

(n

k

)
kn−kxk un

n!
= exp xueu.

A further interesting example, for which an explicit formula is not
available, consists of the polynomials n!Qn(x) of Exercise 4.82. For
a vast generalization see J. Schneider, Electron. J. Combin. 21 (2014),
Paper 1.43. For two additional examples, see Exercise 38.

(c) Rota and Mullin, loc. cit., Thm. 2, and Rota, Kahaner, and Odlyzko,
loc. cit., Thm. 3.2.

(d) Rota and Mullin, loc. cit., Cor. 2, and Rota, Kahaner, and Odlyzko, loc.
cit., Cor. 3.3.

(e) Let g(u) =
∑

n≥0 pn(1) un

n! , so by (a)(iii) we have
∑

n≥0 pn(x) un

n! =

g(u)x. By Exercise 58 there is a power series f (u) satisfying

f (u)x
=

∑
n≥0

x

x+ αn
[un]g(u)x+αn

=

∑
n≥0

x

x+ αn

pn(x+ αn)

n!
,

and the proof follows from (a)(iii). This result appears as part of Prop-
osition 7.4 (p. 711) of Rota, Kahaner, and Odlyzko, ibid. The version
of the proof given here was suggested by E. Rains.

38. (a) Follows from Example 3.15.8 and condition (iii) of Exercise 37(a).
(b) Instead of Example 3.15.8 use equation (5.77).

39. Let g(n) (respectively, h(n)) be the number of series-parallel posets on [n]
that cannot be written as a nontrivial disjoint union (respectively, ordinal

sum). Let G(x) =
∑
n≥1

g(n)
xn

n!
and H(x) =

∑
n≥1

h(n)
xn

n!
. It is easy to see that

every series-parallel poset with more than one element is either a disjoint
union or ordinal sum, but not both. Hence

F(x) = G(x)+ H(x)− x. (5.133)
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Every series-parallel poset P is a unique disjoint union P1 + · · · + Pk ,
where each Pi is not a nontrivial disjoint union (i.e., is connected). Hence
by Corollary 5.1.6,

1+ F(x) = eG(x). (5.134)

Similarly P is a unique ordinal sum P1 ⊕ · · · ⊕ Pk , where each Pi is
not a nontrivial ordinal sum. If there are exactly k summands, then by
Proposition 5.1.3 the exponential generating function is H(x)k . Hence

F(x) =
∑
k≥1

H(x)k
= H(x)/(1− H(x)). (5.135)

It is a simple matter to eliminate G(x) and H(x) from (5.133), (5.134), and
(5.135), thereby obtaining (5.112).
This result first appeared in R. Stanley, Proc. Amer. Math. Soc. 45 (1974),
295–299.

40. (a) The “unlabelled” version of this problem is due to P. A. MacMahon,
The Electrician 28 (1892), 601–602, and is further developed by J.
Riordan and C. E. Shannon, J. Math. and Physics 21 (1942), 83–93.
The labelled version given here turns out to be equivalent to the fourth
problem of Schröder [291] discussed in the Notes. The numbers s(n)
satisfy s(n) = 2t(n) for n ≥ 2, where t(n) is the number of total par-
titions of an n-set, as defined in Example 5.2.5. Note also that if f (n)
is as in Exercise 26, then f (n) = 2ns(n), n ≥ 1. (See Exercise 36 for
related results.)
The first published appearance of the formula (5.113) appears in L.
Carlitz and J. Riordan, Duke Math. J. 23 (1955), 435–445 (eqn. (2.13)).
As discussed in this reference, earlier (essentially equivalent) results
were obtained by R. M. Foster (unpublished) and W. Knödel, Monat-
shefte Math. 55 (1951), 20–27. Additional aspects appear in J. Riordan,
Acta math. 137 (1976), 1–16. See also [2.17, Sect. 6.10].

(b) For this result and a number of related ones, see P. J. Cameron,
Electron. J. Combin. 2 (1995), paper R4 (1995).

(c) See [3.13, Thm. 4 and Cor. 1 on p. 351] The table of values given in
Exercise 5, p. 353, of this reference is incorrect.

41. (a) Let F be a forest on the vertex set [n] such that every component of F
is an alternating tree rooted at some vertex i all of whose neighbors are
less than i. We obtain an alternating tree T on {0, 1, . . . , n} by adding a
vertex 0 and connecting it to the roots of the components of F. Hence
if g(n) denotes the number of alternating trees on the vertex set [n]
rooted at some vertex i all of whose neighbors are less than i, then the
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exponential formula (Corollary 5.1.6) yields

F(x) = exp
∑
n≥1

g(n)
xn

n!
. (5.136)

It is also easy to see that g(n) = nf (n − 1)/2 for n > 1 (consider the
involution on alternating trees with vertex set [n] that sends vertex i to
n+ 1− i), from which the stated functional equation is immediate.
Alternating trees first arose in the theory of general hypergeomet-
ric systems, as developed by I. M. Gelfand and his collaborators.
In the paper I. M. Gelfand, M. I. Graev, and A. Postnikov, in The
Arnold-Gelfand Mathematical Seminars, Birkhäuser, Boston, 1997,
pp. 205–221 (§6), it is shown that f (n) is the number of “admissible
bases” of the space of solutions to a certain system of linear par-
tial differential equations whose solutions are called hypergeometric
functions on the group of unipotent matrices. The basic combinato-
rial properties of alternating trees were subsequently determined by
A. Postnikov, J. Combinatorial Theory (A) 79 (1997), 360–366. See
also A. Postnikov, Ph.D. thesis, M.I.T., 1997 (Section 1.4). In particu-
lar, Postnikov established parts (a), (b), and (g) of the present exercise.
Further discussion of alternating trees appears in R. Stanley, Proc. Nat.
Acad. Sci., 93 (1996), 2620–2625, and A. Postnikov and R. Stanley, J.
Combin. Theory Ser. A 91 (2000), 544-597. See also Exercise 6.19(p,

q).
(b) Let H(x) = x(F(x) + 1). Then H = x(1 + eH/2), so H(x) =

(x/(1+ ex/2))〈−1〉. The proof follows from an application of Lagrange
inversion. (See A. Postnikov, J. Combinatorial Theory (A) 79 (1997),
260–366, and Ph.D. thesis, M.I.T., 1997 (Theorem 1.4.1), for the
details.) It is an open problem to find a bijective proof.

(c) This follows from equation (5.136) by reasoning as in Example 5.2.2.
(d) Let T(x) = log F(x)q

= q log F(x). It follows from (a) that

T(x) =
qx

2

(
1+ eT/q

)
.

Now apply equation (5.64) to the case F(x) = 2x/q(1+ ex/q) and H(x)
= ex. (Here we are using F(x) and H(x) in the generic sense of (5.64),
and not with the specific meaning of this exercise.) This argument is
due to A. Postnikov.

(e) Let E be the operator on polynomials P(q) defined by EP(q) = P(q+1).
Then (d) can be restated as

Pn(q) =
q

2n (E + 1)nqn−1.
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The proof now follows by iterating the case α = 1 of the following
lemma.
Lemma. Let P(q) ∈ C[q] such that every zero of P(q) has real part m.
Let α ∈ C, |α| = 1. Then every zero of the polynomial P(q+1)+αP(q)
has real part m− 1

2 .
For the history of this lemma and an elementary proof, see A. Postnikov
and R. Stanley, ibid. (§9.3).

(f) Let Rn(q) = Qn
(
q− n

2

)
. Then Rn(q) has real coefficients, is monic of

degree n − 1, and by (e) has only purely imaginary zeros (allowing
0 to be purely imaginary). Hence Rn(q) has the form q j ∏

k

(
q2
+ ak

)
,

ak ∈ R. Thus Rn(−q) = (−1)n−1Rn(q), which is equivalent to Qn(q) =
(−1)n−1Qn(−q− n).

(g) See A. Postnikov, J. Combinatorial Theory (A) 79 (1997), 360–366
(§4.1), and Ph.D. thesis, M.I.T., 1997 (Section 1.4.2).

(h,i) The question of counting the number of regions of Ln was raised by
N. Linial (private communication, March 27, 1995), so Ln is now
known as the Linial arrangement. It was conjectured by R. Stanley
that χ (Ln, q) = (−1)nPn(−q). This conjecture was proved by A. Post-
nikov, Ph.D. thesis, M.I.T., 1997 (a special case of Theorem 1.5.7),
and later (using Theorem 3.11.10) by C. A. Athanasiadis, Advances in
Math. 122 (1996), 193–233 (Theorem 4.2). See also R. Stanley, Proc.
Nat. Acad. Sci. 93 (1996), 2620–2625 (Corollary 4.2) and A. Postnikov
and R. Stanley, ibid. (§9.2).

(j) An alternating graph G cannot contain an odd cycle and hence is bipar-
tite. We can partition the vertices into two sets A and B (possibly empty,
and unique except for the isolated vertices of G) such that (α) every
edge goes from A to B, and (β) if i ∈ A, j ∈ B, and there is an edge
between i and j, then i < j. Call a pair (i, j) admissible (with respect to
A and B) if i ∈ A, j ∈ B, and i < j. Let hk(n) be the number of ways
to choose two disjoint sets A and B whose union is {1, 2, . . . , n}, and
then choose a k-element set of admissible pairs (i, j). Suppose that the
elements of B are a1 < a2 < · · · < ak . Then the number of admissible
pairs is ν(a1, . . . , ak) = (a1 − 1) + (a2 − 2) + · · · + (ak − k). Hence
the generating function for the subsets of such pairs according to the
number of edges is (q+ 1)ν(a1,...,ak ), so∑

k

hk(n)qk
=

∑
1≤a1<···<ak≤n

(q+ 1)ν(a1,...,ak )

=

∑
0≤b1≤···≤bk≤n−k

(q+ 1)b1+···+bk .
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By Proposition 1.3.19 we have that for fixed k,∑
0≤b1≤···≤bk≤n−k

qb1+···+bk =

(
n

k

)
.

It follows that ∑
k

hk(n)qk
=

n∑
k=0

(
n

k

)
q+1

.

Now an alternating graph with r isolated vertices and k edges gets
counted exactly 2r times by gk(n) (since each isolated vertex can
belong to either A or B, but there is no choice for the other vertices).
Hence if uk(n) denotes the number of alternating graphs on the vertices
1, 2 . . . , n with no isolated vertices and with k edges, then

n∑
r=0

(
n

r

)
2r
∑

k

uk(n− r)qk
=

∑
k

hk(n)qk

n∑
r=0

(
n

r

)∑
k

uk(n− r)qk
=

∑
k

gk(n)qk .

From this it is routine to deduce the stated result. The case q = 1
appeared in R. Stanley, Problem 10572, Amer. Math. Monthly 104
(1997), 168; solution by S. C. Locke, 106 (1999), 168. Locke’s solution
is different from the one given here.

(k) Let w1w2 · · ·wn ∈ Sn. Define a tree Tw with edges labelled 1, 2, . . . , n
as follows: If i < j then the edges labelled wi and wj have a common
vertex if and only if the sequence wiwi+1 · · ·wj is either increasing
or decreasing. Then Tw is an edge labelled alternating tree, and every
such tree occurs exactly twice in this way (when n > 1), namely, from
w1w2 · · ·wn and its reverse wn · · ·w2w1. Hence when n > 1 there are
n!/2 edge labelled alternating trees with n + 1 vertices. This exercise
is due to A. Postnikov (private communication, December, 1997).

42. (a) From y = xey we have y′ = ey
+ xy′ey, so xy′ = xey/(1 − xey) =

y/(1−y) = −1+(1−y)−1. Thus (1−y)−1
= 1+xy′ = 1+

∑
n≥1 nn xn

n! .
(b) Since (1 − R(x))−1

= 1 + R(x) + R(x)2
+ · · · , by Proposition 5.1.3

we seek a bijection ϕ : R1
n ∪R2

n ∪ · · · → T ∗n , where for n ≥ 1 Rj
n is

the set of j–tuples (τ1, . . . , τj) of (nonempty) rooted trees whose total
vertex set is [n], and where T ∗n is the number of double rooted trees on
[n]. Given (τ1, . . . , τj) ∈ Rj

n, let vi be the root of τi. Let P be a path
with successive vertices v1, v2, . . . , vj. Label v1 by s and vj by e, and

https://doi.org/10.1017/9781009262538.003 Published online by Cambridge University Press

https://doi.org/10.1017/9781009262538.003


148 Solutions

Figure 5.27 A bijection from j-tuples of rooted trees to double rooted trees

attach to each vi the remainder of the tree τi. This yields the desired
double rooted tree on [n]. This bijection is illustrated in Figure 5.27.

43. Let T be a leaf-labelled tree as in the problem. Iterate the following proce-
dure until all vertices are labelled except the root. At the start, the leaves
are labelled 1, . . . , k. Assume now that labels 1, 2, . . . , m have been used.
Label by m+1 the vertex v satisfying: (a) v is unlabelled and all successors
of v are labelled, and (b) among all unlabelled vertices with all successors
labelled, the vertex having the successor with the least label is v. Now let
the blocks of the partition π consist of the labels of the successors of each
nonleaf vertex v. It can be checked that this procedure yields the desired
bijection.
Similar bijections appear in Erdős-Székely [82] and W. Y. C. Chen, Proc.
Natl. Acad. Sci. USA 87 (1990), 9635–9639. See also W. Y. C. Chen,
European J. Combinatorics 15 (1994), 337–343. (A further bijection was
discovered independently by M. Haiman.) The Erdős–Székely bijection has
the minor defect of not preserving the leaf labels when the nonroot vertices
are labelled. Erdős and Székely go on to deduce from their bijection many
standard results on the enumeration of trees, including our Theorem 5.3.4
(or Corollary 5.3.5) and Theorem 5.3.10.

44. Let rj = #{i : ai = j}. Given the permutation w = w1 · · ·wn, define a word
ϕ(w) = xm1 · · · xmnx0 as follows: If wi is the first occurrence of a letter k,
then mi = ak . Otherwise mi = 0. One checks that ϕ is a map between
the set S of permutations we wish to count and the set T of elements of
the monoid B∗ defined by equation (5.50) containing rj copies of xj and
1 +

∑
(ai − 1) copies of x0, and that every element of T is the image of∏

rj! elements of S. The proof follows from Theorem 5.3.10. Is there a
simpler proof?
An easy bijection shows that the result of this exercise is equivalent to
the statement that the number of nonnesting partitions of [n] (as defined
in Exercice 6.19(uu)) with rj blocks of size j is given by n!/((n − k +
1)! r1! r2! · · · ). Note the curious fact that by Exercise 35(a) this number is
also the number of noncrossing partitions of [n] with rj blocks of size j. It
is not difficult to give a bijective proof of this fact.
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45. Let y =
∑

n≥1 tnxn and z =
∑

n≥0 fnxn. It is easy to see that (k + 1)xyk is
the generating function for recursively labelled trees for which the root has
exactly k subtrees. Hence

y = x+ 2xy+ 3xy2
+ · · · =

x

(1− y)2 .

It is then routine to use the Lagrange inversion formula to obtain the stated
formula for tn. Similarly z = 1/(1 − y), so y = x/(1 − y)2

= xz2 and
z = 1/(1− xz2). Again it is routine to use Lagrange inversion to find fn, or
to observe from z = 1/(1−xz2) that z = 1+xz3, the generating function for
ternary trees. With a little more work these arguments can be “bijectivized,”
yielding a bijection from recursively labelled forests to ternary trees (and
similarly from recursively labelled trees to pairs of ternary trees). Recur-
sively labelled trees and forests were first defined by A. Björner and M. L.
Wachs, J. Combinatorial Theory (A) 52 (1989), 165–187.

46. Define a ternary tree γ (T) whose vertices are the edges of T as follows. Let
j be the smallest vertex of T (in this case, j = 1), and let k be the largest
vertex for which jk is an edge e. Define three subtrees of T as follows.
T1 is the connected component containing vertex 1 of the graph T − e.
T2 is the connected component containing vertex k of the graph obtained
from T by removing edge e and vertices k + 1, k + 2, . . . , n. T3 is the
graph obtained from T by removing vertices 1, 2, . . . , k − 1. Define e to
be the root of γ (T), and recursively define γ (Ti) to be the ith subtree of
the root. It is easy to see that γ is a bijection from noncrossing trees on
[n] to ternary trees with n− 1 vertices. See Figure 5.28 for an example. In
this figure the vertices of γ (T) are shown as open circles and the edges as
dotted lines. Three edge directions with empty subtrees have been drawn
to make the ternary structure clear. Essentially the bijection just described
was suggested independently by R. Simion and A. Postnikov. Noncrossing
trees were first enumerated by S. Dulucq and J.-G. Penaud, Discrete Math.
117 (1993), 89–105 (Lemme 3.11). For further information and references,
see M. Noy, Discrete Math. 180 (1998), 301–313. Dulucq and Penaud, ibid.
(Proposition 2.1), also give a bijection between plane ternary trees with
n − 1 vertices and ways of drawing n chords with no common endpoints
between 2n points on a circle such that the intersection graph G of the set of
chords is a tree. (The chords are the vertices of G, with an edge connecting
two vertices u and v if and only if u and v intersect (as chords).)

47. (a) Let w ∈ Sn, and let (i, j) be a transposition in Sn. It is easy to see that
if i and j are in different cycles of w then these two cycles are merged
into a single cycle in the product (i, j)w. From this it follows that a
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1 2 3 4 5 6 7 8

e

Figure 5.28 A ternary tree constructed from a noncrossing tree

product τ1 · · · τn−1 of n − 1 transpositions is an n-cycle if and only if
the graph on the vertex set [n] whose edges are the pairs transposed by
the τk’s is a tree. There are nn−2 trees on [n] (Proposition 5.3.2) and
(n−1)! ways to linearly order their edges. Hence there are (n−1)!nn−2

ways to write some n-cycle as a product of n − 1 transpositions. By
“symmetry” all (n− 1)! n-cycles have the same number of representa-
tions as a product of n−1 transpositions. Hence any particular n-cycle,
such as (1, 2, . . . , n), has nn−2 such representations. This result is usu-
ally attributed to J. Dénes, Publ. Math. Institute Hungar. Acad. Sci.
(= Magyar Tud. Akad. Mat. Kutato Int. Kozl.) 4 (1959), 63–71, and
has spawned a large literature. However, a much more general theorem
was announced (with a sketch of the proof) by A. Hurwitz, Math. Ann.
39 (1891), 1–66 (see part (c) of this exercise). Bijective proofs of this
exercise were given by P. Moszkowski, European J. Combin. 10 (1989),
13–16; I. P. Goulden and S. Pepper, Discrete Math. 113 (1993), 263–
268; and C. M. Springer, in Eighth International Conference on Formal
Power Series and Algebraic Combinatorics, University of Minnesota,
June 25–29, 1996, pp. 427–438.

(b) The formula g(n) = 1
2n−1

(3(n−1)
n−1

)
was first proved by J. A. Eidswick,

Discrete Math. 73 (1989), 239–243, and J. Q. Longyear, Discrete Math.
78 (1989), 115–118. A number of proofs were given subsequently,
including I. P. Goulden and D. M. Jackson, J. Algebra 16 (1994), 364–
378, and C. M. Springer, ibid. (Both these papers prove much more
general results.) We sketch a bijective proof based on a suggestion of
A. Postnikov. Given a noncrossing tree on [n], label the edges with the
labels 1, 2, . . . , n−1 such that the following condition holds. For every
vertex i, if the vertices adjacent to i are j1 < · · · < jr < k1 < · · · < ks

with jr < i < k1, and if λ(m) denotes the label of the edge im, then

λ(jr) < λ(jr−1) < · · · < λ(j1) < λ(ks) < λ(ks−1) < · · · < λ(k1).

Let τi be the transposition (a, b), where ab is the edge of T labelled i.
Then it is not hard to show that τ1τ2 · · · τn−1 = (1, 2, . . . , n − 1) and
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that each equivalence class is obtained exactly once in this way, thus
giving the desired bijection.

(c) This result was stated with a sketch of a proof by A. Hurwitz in 1891
(reference in (a)). The first complete proof was given by I. P. Goulden
and D. M. Jackson, Proc. Amer. Math. Soc. 125 (1997), 51–60, based
on the theory of symmetric functions. A reconstruction of the proof of
Hurwitz, together with much interesting further information, was given
by V. Strehl, Sém. Lothar. Combin. 37 (1996), Art. S37c. A direct com-
binatorial proof was given by M. Bousquet-Mélou and G. Schaeffer,
Adv. in Appl. Math. 24 (2000), 337–368. Some further aspects of “tran-
sitive factorizations” are discussed in I. P. Goulden and D. M. Jackson,
European J. Combin. 21 (2000), 1001–1016, and in The Mathematical
Legacy of Richard Stanley, Amer. Math. Soc., Providence, RI, 2016,
pp. 189–201.

48. (a) Let G be a connected graph on [n]. Define a certain spanning tree τG of
G as follows. Start at vertex 1, and always move to the greatest adjacent
unvisited vertex if there is one; otherwise backtrack. Stop when every
vertex has been visited, and let τG consist of the vertices and edges
visited. We leave to the reader the proof of the following crucial lemma.
Lemma. Let τ be a tree on [n]. A connected graph G satisfies τG = τ

if and only if τ is a spanning tree of G, and every other edge of G
has the form {i, k}, where (i, j) is an inversion of τ and k is the unique
predecessor of j in the rooted tree (with root 1) τ .
Thus the n− 1 edges of τ must be edges of G, while any subset of the
i(τ ) “inversion edges” defined by the previous lemma may constitute
the remaining edges of G. Hence∑

G

te(G)
= tn−1(1+ t)inv(τ ), (5.137)

where G ranges over all connected graphs on [n] satisfying τG = τ .
Summing (5.137) over all τ completes the proof.
Equation (5.115) was first proved using an indirect generating func-
tion method by C. L. Mallows and J. Riordan, Bull. Amer. Math. Soc.
74 (1968), 92–94. (See also [231, Sect. 4.5].) The elegant proof given
here is due to I. M. Gessel and D.-L. Wang, J. Combinatorial Theory
(A) 26 (1979), 308–313. Gessel and Wang also give a similar result
related to the enumeration of acyclic digraphs and tournaments. For
some further results related to inversions in trees, see G. Kreweras,
Period. Math. Hungar. 11(4) (1980), 309–320; J. S. Beissinger, J. Com-
binatorial Theory (B) 33 (1982), 87–92, as well as Exercises 49(c) and
50(c). A remarkable conjectured connection between tree inversions
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and invariant theory appears in M. Haiman, J. Algebraic Combinator-
ics 3 (1994), 17–76 (§2.3), subsequently proved by Haiman using the
geometry of Hilbert schemes. For an overview see M. Haiman, in Cur-
rent Developments in Mathematics, 2002, Int. Press, Somerville, MA,
2003, pp. 39–111.

(b) Substitute t − 1 for t in equation (5.115), take the logarithm of both
sides, and differentiate with respect to x. An explicit statement of the
formula appears in [115, (14.7)]. For a generalization, see R. Stanley,
in Mathematical Essays in Honor of Gian-Carlo Rota (B. Sagan and
R. Stanley, eds.), Birkhäuser, Boston/Basel/Berlin, 1998, pp. 359–375
(Theorem 3.3).

49. (a) If some bi > i, then at least n − i + 1 cars prefer the n − i spaces
i+1, i+2, . . . , n and hence are unable to park. Thus the stated condition
is necessary. The sufficiency can be proved by induction on n. Namely,
suppose that a1 = k. Define for 1 ≤ i ≤ n− 1,

a′i =

{
ai+1, if ai+1 ≤ k

ai+1 − 1, if ai+1 > k.

Then the sequence (a′1, . . . , a′n−1) satisfies the condition so by induc-
tion is a parking function. But this means that for the original sequence
α = (a1, . . . , an), the cars C2, . . . , Cn can park after car C1 occu-
pies space k. Hence α is a parking function, and the proof follows by
induction (the base case n = 1 being trivial).

(b) Add an additional parking space 0 after space n, and allow 0 also to
be a preferred parking space. Consider the situation where the cars
C1, . . . , Cn enter the street as before (beginning with space 1), but if
a car is unable to park it may start over again at 1 and take the first
available space. Of course now every car can park, and there will be
exactly one empty space. If the preferences (a1, . . . , an) lead to the
empty space i, then the preferences (a1+ k, . . . , an+ k) will lead to the
empty space i+ k (addition in G). Moreover, α is a parking function if
and only if the space 0 is left empty. From this the proof follows.
Parking functions per se were first considered by A. G. Konheim and
B. Weiss, SIAM J. Applied Math. 14 (1966), 1266–1274, in connection
with a hashing problem. They proved the formula P(n) = (n + 1)n−1

using recurrence relations. (The characterization (a) of parking func-
tions seems to be part of the folklore of the subject.) However, a result
equivalent to P(n) = (n + 1)n−1 was earlier given by R. Pyke, Ann.
Math. Statist. 30 (1959), 568–576 (special case of Lemma 1). The ele-
gant proof given here is due to H. Pollak, described in J. Riordan, J.
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Combinatorial Theory 6 (1969), 408–411, and D. Foata and J. Riordan,
aequationes math. 10 (1974), 10–22 (p. 13). Some bijections between
parking functions and trees on the vertex set [n+ 1] appear in the pre-
vious reference, as well as in J. Françon, J. Combinatorial Theory (A)
18 (1975), 27–35; P. Moszkowski, Period. Math. Hungar. 20 (1989),
147–154 (§3); and J. S. Beissinger and U. N. Peled, Electronic J. Com-
binatorics 4 (1997), paper R4. For a survey of parking functions see
C. H. Yan, in Handbook of Enumerative Combinatorics, Discrete Math.
Appl. (Boca Raton), CRC Press, Boca Raton, FL, 2015, pp. 835–893.

(c) This result is due to G. Kreweras, Period. Math. Hungar. 11(4) (1980),
309–320. Kreweras deals with suites majeures (major sequences),
which are obtained from parking functions (a1, . . . , an) by replacing
ai with n+ 1− ai.

(d) Suppose that cars C1, . . . , Ci−1 have already parked at spaces
u1, . . . , ui−1. Then Ci parks at ui if and only if spaces ai, ai+1, . . . , ui−

1 are already occupied. Thus ai can be any of the numbers ui, ui −

1, . . . , ui − τ (u, ui)+ 1. There are therefore τ (u, ui) choices for ai, so

ν(u) = τ (u, u1) · · · τ (u, un) = τ (u, 1) · · · τ (u, n).

This result is implicit in Konheim and Weiss, ibid.

(e) Given σ , define a poset (Pσ ,
σ
<) on [n] by the condition that j

σ
< i if

either 0 < i− j ≤ si or 0 < j− i ≤ ti. It is easy to see that Pσ is a tree,
and that Tσ consists of the linear extensions of Pσ (where we regard a
linear extension of Pσ as a permutation of its elements). By definition

of Pσ we have #3i = si + ti, where 3i = {j ∈ Pσ : j
σ
≤ i}, and the

proof follows from Exercise 3.57.
NOTE. The trees Tσ by definition have the property that the elements
of 3i form a set of consecutive integers. Hence Tσ is a recursively
labelled tree in the sense of Exercise 45. There follows from The-
orem 2.2 of the paper of Björner and Wachs cited there the curious
result ∑

u∈Tσ

qinv(u)
=

∑
u∈Tσ

qmaj(u).

Note that this formula is a refinement of the fact that maj and inv are
equidistributed over Sn (Corollary 1.3.13 and Proposition 1.4.6).

(f) First solution. Suppose that α1, . . . ,αk is a sequence of prime parking
functions, where the length of αi is di. Let βi denote αi with d1 + d2 +

· · · + di−1 added to each term. Then any permutation of all the terms
of all the βi’s is a parking function, and conversely given any parking
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function one can uniquely reconstruct α1, . . . ,αk . From this it follows
(using equation (5.116)) that∑

n≥0

(n+ 1)n−1 xn

n!
=

1

1−
∑
n≥1

Q(n)
xn

n!

.

The proof now follows from equation (5.67). The definition of prime
parking functions and the above proof of their enumeration is due to I.
Gessel (private communication, 1997).
Second solution. Let ri be the number of entries of α equal to i. One
checks that the parking function α is prime if and only if every par-
tial sum of the sequence r1 − 1, r2 − 1, . . . , rn−1 − 1 is positive (in
which case rn = 0 and

∑
i(ri − 1) = 1). A version of Lemma 5.3.7

shows any sequence of integers with sum 1 has exactly one cyclic per-
mutation all of whose partial sums are positive. From this it follows
that if we regard the elements of the group L = Z/(n − 1)Z as being
the integers 1, 2, . . . , n − 1, then every coset of the subgroup M of Ln

generated by (1, 1, . . . , 1) contains exactly one prime parking function.
Hence Q(n) = [Ln : M] = (n − 1)n−1. This argument is due to L.
Kalikow.

50. (a) The number of regions was first computed by J.-Y. Shi, Lecture Notes in
Mathematics, no. 1179, Springer, Berlin/Heidelberg/New York, 1986
(Chapter 7), and J. London Math. Soc. 35 (1987), 56–74. For this
reason the arrangement Sn is called the Shi arrangement. A more
elementary (though nonbijective) proof was subsequently given by
P. Headley, Ph.D. thesis, University of Michigan, Ann Arbor, 1994
(Chapter VI), and J. Algebraic Combin. 6 (1996), 331–338. For a sim-
ple nonbijective proof, see the solution to (b). A bijection between the
regions of Sn and parking functions of length n (as defined in Exer-
cise 49) is due to I. Pak and R. Stanley, stated in R. Stanley, Proc. Nat.
Acad. Sci., 93 (1996), 2620–2625 (Theorem 5.1) and proved in R. Stan-
ley, in Mathematical Essays in Honor of Gian-Carlo Rota (Cambridge,
MA, 1996), Progr. Math. 161, Birkhäuser Boston, Boston, MA, 1998,
pp. 359–375 (Theorem 2.1). This bijection has the virtue of allowing an
easy proof of (c). Simpler bijections lacking this property were given
by J. Lewis, Parking functions and regions of the Shi arrangement, pre-
print dated August 1, 1996, and C. A. Athanasiadis and S. Linusson,
Discrete Math. 204 (1999), 27–39.

(b) We want to compute the number of n-tuples (x1, . . . , xn) ∈ F n
p such

that if i < j, then xi 6= xj and xi 6= xj + 1. There are (p− n)n−1 ways to
choose a weak ordered partition π = (B1, . . . , Bp−n) of [n] into p − n
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blocks such that 1 ∈ B1. Choose x1 in p ways. Think of the elements of
Fp as being arranged in a circle, in the clockwise order 0, 1, . . . , p− 1.
We will place the numbers 1, 2, . . . , n on some of the p points of this
circular depiction of Fp. Place the elements of B1 consecutively in
increasing order when read clockwise, with 1 placed at x1. Then skip
one space (in clockwise order) and place the elements of B2 consecu-
tively in increasing order. Then skip one space and place the elements
of B3 consecutively in increasing order, etc. Let xi be the point at which
i is placed. It is easy to see that this gives a bijection between the
p(p−n)n−1 choices of (π , x1) and the allowed values of (x1, . . . , xn), so
the proof follows from Theorem 3.11.10. This argument is due to C. A.
Athanasiadis, Ph.D. thesis, M.I.T, 1996 (Theorem 6.2.1), and Advances
in Math. 122 (1996), 193–233 (Theorem 3.3). The characteristic poly-
nomial of the Shi arrangement was first computed by P. Headley, Ph.D.
thesis, University of Michigan, Ann Arbor, 1994 (Chapter VI); Formal
Power Series and Algebraic Combinatorics, FPSAC ’94, May 23–27,
1994, DIMACS preprint, pp. 225–232 (§5); and J. Algebraic Combi-
natorics 6 (1997), 331–338 (Theorem 2.4 in the case 8 = An), by a
different method. A further proof appears in A. Postnikov, Ph.D. the-
sis, M.I.T., 1997 (Example 1, p. 39), and A. Postnikov and R. Stanley,
J. Combin. Theory Ser. A 91 (2000) 544-597 (Corollary 9.3).

(c) This result is equivalent to a theorem of I. Pak and R. Stanley that
is stated in R. Stanley, Proc. Nat. Acad. Sci. 93 (1996), 2620–2625
(Theorem 5.1), and proved in R. Stanley, in Mathematical Essays in
Honor of Gian-Carlo Rota (Cambridge, MA, 1996), Progr. Math. 161,
Birkhäuser Boston, Boston, MA, 1998, pp. 359–375 (the case k = 1
of Corollary 2.20).

(d) Let x = (x1, . . . , xn) belong to some region R of Sn. Define πx ∈ Sn

by the condition

xπx(1) > xπx(2) > · · · > xπx(n).

Let Ix = {(i, j) : 1 ≤ i < j ≤ n, xj + 1 > xi > xj}. It is not difficult
to show that the map R 7→ (πx, Ix) is a bijection between the regions
of Sn and the pairs (πx, Ix) where πx ∈ Sn and Ix ∈ J (Pπx ). Moreover,
d(R) =

(n
2

)
− |Ix|, and the proof follows. This result was stated without

proof in R. Stanley, ibid. (after Theorem 5.1).
(e) Let π = {B1, . . . , Bn−k} be a partition of [n], and let wi be a permu-

tation of Bi. Let X consist of all points (x1, . . . , xn) in Rn such that
xa − xb = m if a and b appear in the same block Bi of π , a appears
to the left of b in wi, and there are exactly m ascents appearing in wi
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between a and b. For instance, if w1 = 495361 and w2 = 728, then X
is defined by the conditions

x4 = x9+1 = x5+1 = x3+1 = x6+2 = x1+2, x7 = x2 = x8+1.

This defines a bijection between the partitions of [n] into n− k linearly
ordered blocks and the elements X of LSn of rank k.

51. Assume (i). Substituting A(x) for x yields

x

C(A(x))
= B〈−1〉(A(x)).

Substituting B(x) for x in (i) yields

A〈−1〉(B(x)) = xC(B(x)).

But
(
A〈−1〉(B(x))

)〈−1〉
= B〈−1〉(A(x)), so (ii) follows. (Note that we did not

need [x]C(x) 6= 0.)
Since [x]C(x) 6= 0, the compositional inverse (C(x)− c)〈−1〉 exists. We can
now argue as follows. Substituting xC(B(x)) for x in (ii) yields

xC(B(x))/C(A(xC(B(x)))) = x,

so C(B(x)) = C(A(xC(B(x)))). Substituting B(x)〈−1〉 for x yields

C(x) = C(A(B(x)〈−1〉C(x))).

Subtract c from both sides and apply (C−c)〈−1〉 to get x = A(B(x)〈−1〉C(x)).
Applying A〈−1〉 to both sides gives (i). This argument is due to Daniel
Giaimo and Amit Khetan and (independently) to Yumi Odama.

52. (a) See [2.3, Section 3.7], where also the polynomials ϕn(k) are given for
n ≤ 7.

(b) First check that for fixed n, the quantities [xn]F〈j+k〉(x) and
[xn]F〈j〉(F〈k〉(x)) are polynomials in j and k. Since these two polyno-
mials agree for all j, k ∈ P, they must be the same polynomials. A
similar argument works for the second identity. See [2.3, Thm. B, p.
148].

53. We need to compute

f (n) := [xn−1]
(

1−
1

2
x

)−n

(1− x)−1 [why?].

In equation (5.64), let x/F(x) = (1− 1
2 x)−1 and H ′(x) = (1− x)−1. Then

F〈−1〉(x) = 1−
√

1− 2x, H(x) = − log(1− x),
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so

f (n) = n[xn](− log
√

1− 2x)

= −
n

2
[xn] log(1− 2x)

= 2n−1,

exactly half the sum of the entire series.
This result is equivalent to the identity

2n−1
=

n−1∑
j=0

2−j
(

n+ j− 1

j

)
,

or equivalently (putting n+ 1 for n)

4n
=

n∑
j=0

2n−j
(

n+ j

j

)
. (5.138)

Bromwich [30, Example 20, p. 199] attributes the result of this exercise
to Math. Trip. 1903. Equation (5.138) also follows immediately from
“Banach’s match box problem,” and account of which appears for instance
in W. Feller, An Introduction to Probability Theory and Its Applications,
vol. 1, second ed., Wiley, New York, 1957 (§5.8). This yields a simple
bijective proof of (5.138).

54. By equation (5.53) we have

[x−1]F(x)−n
= n[xn]F〈−1〉(x).

The compositional inverses of the four functions are given by

sin−1 x =
∑
m≥0

4−m
(

2m

m

)
x2m+1

2m+ 1

tan−1 x =
∑
m≥0

(−1)m x2m+1

2m+ 1

ex
− 1 =

∑
n≥1

xn

n!

x+
x2

2(1− x)
= x+

1

2

∑
n≥2

xn,
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yielding the four answers 0, n = 2m

4−m
(

2m

m

)
, n = 2m+ 1

{
0, n = 2m
(−1)m, n = 2m+ 1

1/(n− 1)!

{
1, n = 1
n/2, n ≥ 2

Bromwich [30, Example 19, p. 199] attributes these formulas to Wolsten-
holme.

55. (a) Let y ∈ Q[[x]] satisfy y = xF1( y). By (5.55) with k = 1 we have

n[xn]y = [xn−1]F1( y)n
= 1,

so y =
∑

n≥1
xn

n = − log(1 − x). Hence y〈−1〉
= 1 − e−x, so F1(x) =

x/y〈−1〉
= x/(1− e−x).

NOTE. The Bernoulli numbers Bn are defined by

x

ex − 1
=

∑
n≥0

Bn
xn

n!
.

Hence

F1(x) =
∑
n≥0

(−1)nBn
xn

n!
.

Essentially the same result is attributed to Wolstenholme and Math.
Trip. 1904 by Bromwich [30, Example 18, p. 199]. Somewhat surpris-
ingly, this result has applications to algebraic geometry. See Lemma
1.7.1 of F. Hirzebruch, Topological Methods in Algebraic Geometry,
Springer-Verlag, New York, 1966.
A more general result is the following: Given f (x) =

∑
n≥1 αn−1

xn

n ∈

C[[x]], it follows from (5.57) that the unique power series F(x)
satisfying [xn]F(x)n+1

=αn for all n ∈ N is given by F(x)= x/f 〈−1〉(x).
(b)–(c) Note that Fk(0) = 1 (the case n = 0). Let Gk(x) = x/Fk(xk). The

condition on Fk(x) becomes

[xn]
(

x

Gk(x)

)n+1

=

{
1, if n ≡ 0 (mod k)
0, otherwise.
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By Lagrange inversion (Theorem 5.4.2) we have

[xn]
(

x

Gk(x)

)n+1

= (n+ 1)[xn+1]G〈−1〉
k (x).

Hence

G〈−1〉
k (x) =

∑
m≥0

xkm+1

km+ 1
.

When k = 2 we have G〈−1〉
2 =

1
2 log 1+x

1−x , whence G2(x) = e2x
−1

e2x+1
and

F2(x) =
√

x
tanh
√

x
. This result appears as Lemma 1.5.1 of Hirzebruch,

ibid.
When k > 2 there is no longer a simple way to invert the series

G〈−1〉
k (x) =

∑
m≥0

xkm+1

km+1 .
56. (a) First solution. More generally, let G(x) =

∑
n≥0 bnxn be any power

series with b0 = 1. Define

H(x) = x exp
∑
n≥1

bn
xn

n
,

so
H ′(x)

H(x)
=

G(x)

x
.

Set y = F(x) = a1x+ a2x2
+ · · · , a1 6= 0. Consider the formal power

series

log
H(y〈−1〉)

x
:=
∑
i≥1

pix
i.

Then

log
H(x)

y
=

∑
i≥1

piy
i

=⇒
H ′(x)

H(x)
−

y′

y
=

∑
i≥1

ipiy
i−1y′.

=⇒ y−n
(

G(x)

x
−

y′

y

)
=

∑
i≥1

ipiy
i−n−1y′.

Take the coefficient of 1/x on both sides. As in the first proof of
Theorem 5.4.2 we obtain

[x−1]
G(x)

xyn = npn. (5.139)
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Now take G(x) = 1 in (5.139), so H(x) = x. We get

n[xn] log
y〈−1〉

x
= npn = [x−1]

1

xyn = [xn]
(

x

y

)n

,

as desired.
Second solution. Define H(x) = log x

F(x) . Then (5.64) becomes

n[xn] log
F〈−1〉(x)

x
= [xn−1]

(
1

x
−

F′(x)

F(x)

)(
x

F(x)

)n

= [xn]
(

x

F(x)

)n

− [x−1]
F′(x)

F(x)n+1

= [xn]
(

x

F(x)

)n

+
1

n
[x−1]

d

dx
F(x)−n

= [xn]
(

x

F(x)

)n

,

as desired.
Third solution. Equation (5.53) can be rewritten (after substituting
n+ k for n)

(n+ k)[xn]
1

k

(
F〈−1〉(x)

x

)k

= [xn]
(

x

F(x)

)n+k

. (5.140)

The first proof of Theorem 5.4.2 is actually valid for any k ∈ R, so
we can let k → 0 in (5.140) to get (after some justification) equation
(5.118).
The result of this exercise goes back to J.-L. Lagrange, Mém. Acad.
Roy. Sci. Belles-Lettres Berlin 24 (1770); Oeuvres, vol. 3 Gauthier-
Villars, Paris, 1869, pp. 3–73. It was rediscovered by I. Schur, Amer. J.
Math. 69 (1947), 14–26.

(b) Let G(x) = x/F(x). By (a),

δ0n = [xn]G(x)n
= n[xn] log

F〈−1〉(x)

x
.

Thus x = log F〈−1〉(x)
x , so F〈−1〉(x) = xex. Hence

G(x) = x/(xex)〈−1〉

= 1+
∑
n≥1

(−1)n−1(n− 1)n−1 xn

n!
(with 00

= 1),

by a simple application of (5.53) (or by substituting−x for x in (5.67)).
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57. In Corollary 5.4.3 take H(x) = log(1+ x) and x/F(x) = (1+ x)2/(2+ x).
Then F(x) = 1− (1+ x)−2, so F〈−1〉(x) = (1− x)−1/2

−1. Equation (5.64)
becomes

n[xn]
1

2
log(1− x)−1

= [xn−1](1+ x)2n−1(2+ x)−n.

But [xn] log(1− x)−1
= 1/n, and the result follows.

By expanding (1+ x)2n−1 and (2+ x)−n and taking the coefficient of xn−1

in their product, we see that an equivalent result is the identity (replacing n
by n+ 1)

4n
=

n∑
j=0

(−1)n−j2j
(

2n+ 1

j

)(
2n− j

n

)
.

Bromwich [30, Example 18, p. 199] attributes this result to Math. Trip.
1906.

58. Let F(x) = xf (x)α and G(x) = g(x)α . Then the functional equation
(5.119) becomes F(x) = xG(F(x)), so by ordinary Lagrange inversion
(Theorem 5.4.2) we get

m[xm]F(x)k
= k[xm−k]G(x)m

for any nonnegative integers m and k. In terms of f and g this is

m[xm−k]f (x)αk
= k[xm−k]g(x)αm.

Now set k = t/α and m = t
α
+n, so that t = αk and n = m− k. We get the

desired formula with the restriction that t/α must be a nonnegative integer.
However, since both sides are polynomials in t, the formula holds for all t.
This result is due to E. Rains (private commmunication), and the above
proof was provided by I. Gessel. For an application, see Exercise 37(e).

59. Define g(x, y) ∈ K[[x, y]] to be the (unique) power series satisfying the
functional equation g = yF(x, g). Thus g(x, 1) = f (x). By Lagrange
inversion (Theorem 5.4.2) we have n[yn]g(x, y)k

= k[yn−k]F(x, y)n. Hence

g(x, t)k
=

∑
n≥1

(
[yn]g(x, y)k

)
tn =

∑
n≥1

k

n

(
[un−k]F(x, u)n

)
tn.

Setting t = 1 yields the desired result. This argument is due to I. Gessel.
60. (a) One method of proof is to let B(x) = A(x)− 1 and write

A(x)n
= (1+ B(x))n

=

∑
j≥0

(
n

j

)
B(x)j.
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Thus (since deg B(x)j
≥ j),

[xk]A(x)n
=

k∑
j=0

(
n

j

)
[xk]B(x)j,

which is clearly a polynomial in n of degree ≤ k.
Alternatively, let 1 be the difference operator with respect to the
variable n. Then by equation (1.26) we have

1k+1[xk]A(x)n
= [xk]

k+1∑
i=0

(−1)k+1−i
(

k + 1

i

)
A(x)n+i

= [xk]A(x)n(A(x)− 1)k+1

= 0.

Now use Proposition 1.4.2(a).
(b) Since etF(x)

=
∑

n≥0 tnF(x)n/n!, we have

pk(n) =

[
tn

xn+k

(n+ k)!

]
etF(x)

=
(n+ k)!

n!
[xn+k]F(x)n

= (n+ k)k [xk]
(

F(x)

x

)n

. (5.141)

Now use (a).
(c) We have, as in (b),[

tn
xn+k

(n+ k)!

]
etF〈−1〉(x)

= (n+ k)k[xn+k]F〈−1〉(x)n

= (n+ k)k
n

n+ k
[xk]

(
F(x)

x

)−n−k

(by (5.53))

=
(n+ k − 1)k

(−n)k
pk(−n− k) (by (5.141))

= (−1)kpk(−n− k),

as desired.
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(d) Answer: We have pk(n) = S(n+k, n) and (−1)kpk(−n−k) = s(n+k, n).
The “Stirling number reciprocity” S(−n,−n− k) = (−1)ks(n+ k, n) is
further discussed in I. Gessel and R. Stanley, J. Combinatorial Theory
(A) 24 (1978), 24–33, and D. E. Knuth, Amer. Math. Monthly 99 (1992),
403–422.

(e) It follows from Exercise 17(b) that

pk(n) =
(n+ k)!

n!

(
n+ k − 1

n− 1

)
= (n+ k)(n+ k − 1)2(n+ k − 2)2

· · · (n+ 1)2n/(k − 1)! (k ≥ 1).

Since F〈−1〉(x) = x/(1+x) = −F(−x), it follows from (c) that pk(−n−
k) = pk(n).
For further information on power series F(x) satisfying F〈−1〉(x) =
−F(−x), see Exercise 1.168.

(f) Answer: pk(n) = (−1)k
(n+k

k

)
nk . Thus (−1)kpk(−n− k) =

(n+k−1
k

)
(n+

k)k , so

exp t(xe−x)〈−1〉
=

∑
n≥0

∑
k≥0

(
n+ k − 1

k

)
(n+ k)k tn

xn+k

(n+ k)!
.

This formula is also immediate from Propositions 5.3.1 and 5.3.2.
61. (a) Clearly µ(P×Q) = µ(P)µ(Q) by Proposition 3.8.2. Now we have the

disjoint union

P× Q = (P× Q) ∪· {(x, 0̂Q) : x ∈ P} ∪· {(0̂P, y) : y ∈ Q} ∪· {(0̂P, 0̂Q)}.

Write [u, v]R for the interval [u, v] of the poset R. If t ∈ P × Q then
the intervals [t, 1̂]P×Q and [t, 1̂]P×Q are isomorphic. If x ∈ P, then the

interval [(x, 0̂Q), 1̂P×Q] is isomorphic to [x, 1̂]P×Q. Similarly if y ∈ Q,

then [(0̂P, y), 1̂]P×Q
∼= P× [y, 1̂]Q. Hence

0 =
∑

t∈P×Q

µP×Q(t, 1̂)

=

∑
t∈P×Q

µP×Q(t, 1̂)+

(∑
x∈P

µP(x, 1̂)

)
µ(Q)+ µ(P)

∑
y∈Q

µQ(y, 1̂)


+µ(P)µ(Q)

= −µ(P× Q)− µ(P)µ(Q)− µ(P)µ(Q)+ µ(P)µ(Q),

and the proof follows. Note that Exercise 3.69(d) is a special case.
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(b) In Corollary 5.5.5 put f (i) = −µi = −µ(Qi). If type π = (a1, . . . , an)
then by property (E3) of exponential structures and (a), we have
f (1)a1 · · · f (n)an = −µ(Qa1

1 × · · · × Qan
n ) = −µ(0̂,π ). Hence

h(n) = −
∑
π∈Qn

µ(0̂,π ) = µ(0̂, 0̂) = 1,

and the proof follows.
This proof was suggested by D. Grieser.

62. (a) The case r = 0 is trivial, so assume r > 0. Let 0A be the corresponding
bipartite graph, as defined in Section 5.5. Suppose (0A)i is a connected
component of 0A with vertex bipartition (Xi, Yi), where #Xi = #Yi = j.
Suppose j ≥ 2. The edges of (0A)i may be chosen as follows. Place
a bipartite cycle on the vertices (Xi, Yi) in 1

2 (j − 1)! j! ways (as in the
proof of Proposition 5.5.10). Replace some edge e of this cycle with m
edges, where 1 ≤ m ≤ r− 1. Replace each edge at even distance from
e also with m edges, while each edge at odd distance is replaced with
r − m edges. Thus given (Xi, Yi), there are 1

2 (r − 1)(j − 1)! j! choices
for (0A)i when j ≥ 2. When j = 1 there is only one choice. Hence by
the exponential formula for 2-partitions,

∑
n≥0

fr(n)
xn

n!2
= exp

x+
1

2
(r − 1)

∑
j≥2

(j− 1)! j!
xj

j!2


= exp

[
x+

1

2
(r − 1)(−x+ log(1− x)−1)

]
= (1− x)−

1
2 (r−1) e

1
2 (3−r)x.

(b) When r = 3 we obtain∑
n≥0

f3(n)
xn

n!2
=

1

1− x
=

∑
n≥0

xn,

so f3(n) = n!2. D. Callan observed (private communication) that there
is a very simple combinatorial proof. Any matrix of the type being
enumerated can be written uniquely in the form P + 2Q, where P and
Q are permutation matrices. Conversely, P + 2Q is always of the type
being enumerated, whence f3(n) = n!2.

63. Let A = P1+P2+· · ·+P2k , and let 0A be the bipartite graph corresponding
to A, as defined in Section 5.5. Write 0m = 0Pm , so 0A is the edge-union of
01,02, . . . ,02k . Supose (0A)i is a connected component of 0A with vertex
bipartition (Xi, Yi), where #Xi = #Yi = j ≥ 1. If j ≥ 2 then (0A)i is
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obtained by placing a bipartite cycle on (Xi, Yi) and then replacing each
edge with k edges. This can be done in 1

2 (j−1)! j! ways. Write E(0) for the
multiset of edges of the graph0. Then E(0m)∩E((0A)i) consists of j vertex-
disjoint edges of (0A)i. There are precisely two distinct ways to choose j
vertex-disjoint edges of (0A)i, and each must occur k times among the sets
E(0m)∩E((0A)i), for fixed i and for 1 ≤ m ≤ 2k. Hence there are

(2k
k

)
ways

to choose the sets E(0m) ∩ E((0A)i), 1 ≤ m ≤ 2k. Thus for j ≥ 2 there are
1
2 (j− 1)! j!

(2k
k

)
= (j− 1)! j!

(2k−1
k

)
choices for each bipartition (Xi, Yi) with

#Xi = #Yi = j. When j = 1 it is clear that there is only one choice. Hence
by the exponential formula for 2-partitions,

∑
n≥0

Nk(n)
xn

n!2
= exp

x+

(
2k − 1

k

)∑
j≥2

(j− 1)! j!
xj

j!2


= exp

[
x+

(
2k − 1

k

)
(−x+ log(1− x)−1)

]

= (1− x)−(
2k−1

k ) exp
[

x

(
1−

(
2k − 1

k

))]
.

64. (a) Let M ′ be M with its first row multiplied by −1. If k is odd then
(det M)k

+ (det M ′)k
= (per M)k

+ (per M ′)k
= 0, from which it

follows that fk(n) = gk(n) = 0. Now

2n2
f2(n) =

∑
M

 ∑
π∈Sn

±m1,π (1) · · ·mn,π (n)

2

=

∑
π ,σ∈Sn

(sgnπ )(sgn σ )
∑

i,j

∑
mij=±1

m1,π (1) · · ·mn,π (n)m1,σ (1) · · ·mn,σ (n).

If π 6= σ , say j = π (i) 6= σ (i), then the inner two sums have a factor∑
mij=±1 mij = 0. Hence

2n2
f2(n) =

∑
π∈Sn

(sgnπ )2
∑

i,j

∑
mij=±1

(m1,π (1) · · ·mn,π(n))2

=

∑
π∈Sn

∑
i,j

∑
mij

1

= 2n2
n!,

so f2(n) = n!. The same argument gives g2(n) = n!, since the factors
(sgnπ )(sgn σ ) above turned out to be irrelevant.
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Nyquist, Rice, and Riordan (see reference below) attribute this result
(in a somewhat more general form) to R. Fortet, J. Research Nat. Bur.
Standards 47 (1951), 465–470, though it may have been known earlier.
For a connection with Hadamard matrices, see C. R. Johnson and M.
Newman, J. Research Nat. Bur. Standards 78B (1974), 167–169, and
M. Kac, Probability and Related Topics in Physical Sciences, vol. I,
Interscience, London/New York, 1959 (p. 23).

(b) Now we get

2n2
f4(n) =

∑
ρ,π ,σ ,τ∈Sn

(sgn ρ)(sgnπ )(sgn σ )(sgn τ )

∑
i,j

∑
mij=±1

n∏
k=1

mk,ρ(k)mk,π (k)mk,σ (k)mk,τ (k). (5.142)

We get a nonzero contribution only when the product P in (5.142) is a
perfect square (regarded as a monomial in the variables mrs). Equiva-
lently, if we identify a permutation with its corresponding permutation
matrix then ρ + π + σ + τ has entries 0, 2 or 4. We claim that in this
case the product ρπστ is an even permutation. One way to see this is
to verify that a fixed cycle C occurs an even number of times (0, 2,
or 4, with 4 possible only for singletons) among the four permutations
ρρ−1, πρ−1, σρ−1, τρ−1. Hence ρρ−1πρ−1σρ−1τρ−1 is even, so
also ρπστ . It follows that the factor (sgn ρ)(sgnπ )(sgn σ )(sgn τ ) in
(5.142) is equal to 1 for all nonzero terms. Hence the right-hand side
of (5.142) is equal to 2n2

N2(n), where N2(n) is the number of 4-tuples
(ρ,π , σ , τ ) ∈ S4

n with every entry of ρ + π + σ + τ equal to 0, 2, or
4. Hence (5.120) follows from Exercise 63.
The computation is identical for g4(n) since the factor
(sgn ρ)(sgnπ )(sgn σ )(sgn τ ) turned out to be irrelevant.
Equation (5.120) is due to Nyquist, Rice, and Riordan Quart. J. Appl.
Math. 12 (1954), 97–104, using a different technique. They prove a
more general result wherein the matrix entries are identically distrib-
uted independent random variables symmetric about 0. The method
used here applies equally well to this more general result. For a result
on the sixth moment of the determinant of a random matrix, see
Z. Lv and A. Potechin, The sixth moment of random determinants,
arxiv:2206.11356.

(c) It is clear from the above proof technique that f2k(n) < g2k(n) provided
there are permutations π1, . . . ,π2k ∈ Sn such that π1 + · · · + π2k has
even entries and π1 · · ·π2k is an odd permutation. For n = 3 and k = 3
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we can take {π1,π2, . . . ,π6} = S3. For larger values of n and k we can
easily construct examples from the example for n = 3 and k = 3.

(d) Let M ∈ Dn+1. Multiply each column of M by ±1 so that the first row
consists of 1’s. Multiply each row except the first by±1 so that the first
column contains−1’s in all positions except the first. Now add the first
row to all the other rows. The submatrix obtained by deleting the first
row and column will be an n×n matrix 2M ′, where M ′ is a 0-1 matrix.
Expanding by the first column yields det M = ±2n(det M ′). This map
M 7−→ M ′ produces each n × n 0-1 matrix the same number (viz.,
22n+1) of times. From this it follows easily that f ′k (n) = 2−knfk(n + 1)
when k is even. When k is odd one can see easily that f ′k (n) = 0.
We leave the easy case of g′1(n) to the reader and consider g′2(n). As in
(a) or (b) we have

2n2
g′2(n) =

∑
π ,σ∈Sn

∑
i,j

∑
mij=0,1

n∏
k=1

mk,π (k)mk,σ (k).

Suppose that the matrix π + σ has r 2’s, and hence 2n − r 1’s.
Equivalently, πσ−1 has r fixed points. Then

∑
i,j

∑
mij=0,1

n∏
k=1

mk,π (k)mk,σ (k) = 2n2
−2n+r.

Since we can choose any π ∈ Sn and then choose σ so that πσ−1 has
r fixed points, it follows that

2n2
g′2(n) = n!2n2

−2n
∑
π∈Sn

2c1(π )
= n!2n2

−2nh(n),

say, where π has c1(π ) fixed points. Setting t1 = 2 and t2 = t3 = · · · =
1 in (5.30) yields∑

n≥0

h(n)
xn

n!
= exp

(
2x+

x2

2
+

x3

3
+ · · ·

)

=
ex

1− x

=

∑
n≥0

n!

(
1+

1

1!
+

1

2!
+ · · · +

1

n!

)
xn

n!
,

so h(n) = n!(1 + 1
1! + · · · +

1
n! ), and g′2(n) is as claimed. (One could

also give a proof using Proposition 5.5.8 instead of (5.30).)
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65. (a) Given a function g : N × N − {(0, 0)} → K, define a new function
h : N× N→ K by

h(m, n) =
∑

g(#A1, #B1) · · · g(#Ak , #Bk),

where the sum is over all sets {(A1, B1), . . . , (Ak , Bk)}, where Aj ⊆ [m]
and Bj ⊆ [n], satisfying:

(i) For no j do we have Aj = Bj = ∅,
(ii) The nonempty Aj’s form a partition of the set [m],

(iii) The nonempty Bj’s form a partition of the set [n].
(Set h(0, 0) = 1.) In the same way that Corollary 5.1.6 is proved we
obtain ∑

m,n≥0

h(m, n)
xmyn

m! n!
= exp

∑
i,j≥0

(i,j)6=(0,0)

g(i, j)
xiyj

i! j!
.

Now let A = (aij) be an m × n matrix of the type being
counted. Let 0A be the bipartite graph with vertex biparti-
tion ({x1, . . . , xm}, {y1, . . . , yn}), with aij edges between xi and
yj. The connected components 01, . . . ,0k of 0A define a set
{(A1, B1), . . . , (Ak , Bk)} satisfying (i)–(iii) above, namely, i ∈ Aj if xi is
a vertex of 0j, and i ∈ Bj if yi is a vertex of 0j. Every connected com-
ponent of 0A must be a path (of length ≥ 0) or a cycle (of even length
≥ 2). We have the following number of possibilities for a component
with i vertices among the xk’s and j among the yk’s:

(i, j) = (0, 1) or (1, 0) : 1
(1, 1) : 2

(i, i+ 1) or (i+ 1, i) :
1

2
i!(i+ 1)!, i ≥ 1

(i, i) : i!2 +
1

2
(i− 1)!i!, i ≥ 2

all others : 0.

Hence

F(x, y) = exp

x+ y+ 2xy+
1

2

∑
i≥1

(xiyi+1
+ xi+1yi)

+

∑
i≥2

(
1+

1

2i

)
xiyi

 ,

which simplifies to the right-hand side of (5.121).
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(b) For any power series G(x, y) =
∑

cmnxmyn, let DG(x, y) =
∑

cnntn.
The operator D preserves infinite linear combinations; and if G(x, y) =
H(x, y, xy) for some function H , then DG(x, y) = DH(x, y, t). Hence∑

n≥0

f (n, n)
tn

n!2
= DF(x, y)

= (1− t)−
1
2 e

t(3−t)
2(1−t) D exp

[
(x+ y)(1− 1

2 t)

1− t

]
.

But

D exp

[
(x+ y)(1− 1

2 t)

1− t

]
= D

∑
n≥0

(x+ y)n

n!

(
1− 1

2 t

1− t

)n

=

∑
n≥0

(
2n

n

)
tn

(2n)!

(
1− 1

2 t

1− t

)2n

,

and the proof follows.
66. (a) If r 6= s then the matrix L− rI has s equal rows and hence has rank at

most r + 1. Thus L has at least s − 1 eigenvalues equal to r. If r = s
then another r rows of L − rI are equal, so L has at least r + s − 1
eigenvalues equal to r.

(b) By symmetry, L has at least r − 1 eigenvalues equal to s.
(c) Since the rows of L sum to 0, there is at least one 0 eigenvalue. The

trace of L is 2rs. Since this is the sum of the eigenvalues, the remaining
eigenvalue must be 2rs− (s− 1)r − (r − 1)s = r + s.

(d) By the Matrix-Tree Theorem (Theorem 5.6.8) we have

c(Krs) =
1

r + s
(r + s)rs−1sr−1

= rs−1sr−1,

agreeing with Exercise 30.
67. (a) For each edge e = {i, j} associate an indeterminate xij = xji. Let L =(

Lij
)

be the n× n matrix

Lij =


−xij, if i 6= j∑

1≤k≤n
k 6=i

xik , if i = j,

Let L0 denote L with the last row and column removed. By the Matrix-
Tree Theorem (Theorem 5.5.6.8), we have∑

T

f (T) = det L0( f ),
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where L0( f ) is obtained from L0 by substituting f (e) for xe. Since the
(i, i)-entry of L0 has the form xin+ other terms, and since xin appears
nowhere else in L0, it follows that we can replace the (i, i)-entry of L0

with a new indeterminate yi without affecting the distribution of values
of det L0. Hence Pn(q) is just the number of invertible (n−1)× (n−1)
symmetric matrices over Fq, whose number is given by Exercise 1.198.

(b) It is easy to see that as G ranges over all simple graphs on the vertex
set [n], the reduced Laplacian matrices L0(G) range over all symmetric
(n − 1) × (n − 1) (0, 1)-matrices. Since the determinant of a square
matrix A over F2 is equal to 1 if and only if A is invertible, it follows
from (a) that the desired number of graphs is Pn(2). The present exer-
cise appears also in Chapter 9, Exercise 13(b), of R. Stanley, Algebraic
Combinatorics, second ed., Springer, New York, 2018.

This exercise is related to an unpublished question raised by M. Kont-
sevich. For further information see R. Stanley, Ann. Comb. 2 (1998),
351–363; J. R. Stembridge, Ann. Comb. 2 (1998), 365–385; and P. Belkale
and P. Brosnan, Duke Math. J. 116 (2003), 147–188.

68. The argument parallels that of Example 5.6.10. Let V be the vector space
of all functions f : 0→ C. Define a linear transformation 8 : V → V by

(8f )(u) =
∑
v∈0

σ (v)f (u+ v).

It is easy to check that the characters χ ∈ 0̂ are the eigenvectors of8, with
eigenvalue

∑
v∈0 σ (v)χ (v). Moreover, the matrix of 8 with respect to the

basis 0 of V is just

[8] =

(∑
v∈0

σ (v)

)
· I − L(D).

Hence the eigenvalues of L(D) are given by
∑

v∈0 σ (v)(1 − χ (v)) for χ ∈
0̂, and the proof follows from Corollary 5.6.6. Note that Example 5.6.10
corresponds to the case 0 = (Z/2Z)n and σ given by σ (v) = 1 if v is a unit
vector, while σ (v) = 0 otherwise.

69. (a) Easily seen that τ (D, v) = a1a2 · · · ap−1.
(b) D is connected and balanced, and the oudegree of vertex vi is ai−1+ ai

(with a0 = ap = 0). Hence by Theorem 5.6.2,

ε(D, e) = a1a2 · · · ap−1

p−1∏
i=1

(ai−1 + ai − 1)!.
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70. The argument is completely parallel to that used to prove Corollary 5.6.15.
The digraph Dn becomes the graph with vertex set [0, d − 1]n−1 and
edges (a1a2 · · · an−1, a2a3 · · · an), yielding the answer d!d

n−1
d−n. This

result seems to have been first obtained in [333].
71. Let d be the degree of the vertices of G. First note that the number q of

edges of G is given by W (2) = 2q (since G has no loops or multiple edges).
Now 2q = dp where p is the number of vertices of G, so p is determined as
well. It is easy to see that the numbers λj satisfying (5.122) for all ` ≥ 1 are
unique (consider e.g. the generating function

∑
`≥1 W (`)x`), and hence by

the proof of Corollary 4.7.3 are the nonzero eigenvalues of the adjacency
matrix A of G. Since A has p eigenvalues in all, it follows that p − m of
them are equal to 0. A number of arguments are available to show that
the largest eigenvalue λ1 is equal to d. Since G is regular, the eigenvalues
of the Laplacian matrix L of G are the numbers d − λj, together with the
eigenvalue d of multiplicity p − m. Hence by the Matrix-Tree Theorem
(Theorem 5.6.8),

c(G) =
λ

p−m
1

p

m∏
j=2

(λ1 − λj).

72. There is a standard bijection T 7→ T∗ between the spanning trees T of
G and those of G∗, namely, if T has edge set {e1, . . . , er}, then T∗ has
edge set E∗ − {e∗1, . . . , e∗r }, where E∗ denotes the edge set of G∗. Hence
c(G) = c(G∗). Let L0(G∗) denote L(G∗) with the row and column indexed
by the outside vertex deleted. It is easy to see that L0(G∗) = 4I − A(G′),
and the proof follows from Theorem 5.6.8.
This result is due to D. Cvetković and I. Gutman, Publ. Inst. Math.
(Beograd) 29 (1981), 49–52. They give an obvious generalization to planar
graphs all of whose bounded regions have the same number of boundary
edges. See also D. Cvetković, M. Doob, I. Gutman, and A. Torgašev, Recent
Results in the Theory of Graph Spectra, Annals of Discrete Mathematics
36, North-Holland, Amsterdam, 1988 (Theorem 3.34). For some related
work, see T. Chow, Proc. Amer. Math. Soc. 125 (1997), 3155–3161; M.
Ciucu, J. Combinatorial Theory (A) 81 (1998), 34–68; and D. E. Knuth, J.
Alg. Combinatorics 6 (1997), 253–257.

74. (a) Let J be the p × p matrix of all 1’s. As in the proof of Lemma 5.6.14
we have that A` = J and that the eigenvalues of A are p1/` (once) and
0 (p−1 times). (Note that since tr A is an integer, it follows that p = r`

for some r ∈ P. Part (d) of this exercise gives a more precise result.)
(b) The number of loops is tr A = r, where p = r` as above.
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(c) Since by hypothesis there is a walk between any two vertices of D, it
follows that D is connected. Since A has a unique eigenvalue equal to
r, there is a unique corresponding eigenvector E (up to multiplication
by a nonzero scalar). Since E is also an eigenvector of A` = J with
eigenvalue r` = p, it follows that E is the (column) vector of all 1’s.
The equation AE = rE shows that every vertex of D has outdegree r.
If we take the transpose of both sides of the equation A` = J , then we
get

(
At)`
= J . Thus the same reasoning shows that AtE = rE, so every

vertex of D has indegree r.
(d) The above argument shows that r = d (or p = d`).
(e) Since every vertex of D has outdegree r, we have L = rI − A. Hence

by (a) the eigenvalues of L are r (p− 1 times) and 0 (once). It follows
from Corollary 5.6.7 that

ε(D, e) =
1

p
rp−1(r − 1)!p

= r−(`+1)r!r
`

.

The total number of Eulerian tours is just

ε(D) = rp · ε(D, e) = r!r
`

.

(f) We want to find all p× p matrices A of nonnegative integers such that
A` = J . If we ignore the hypothesis that the entries of A are non-
negative integers, then a simple linear algebra argument shows that
A= r−`+1J + N where N`

= 0 and NJ = JN = 0. Equivalently, if ei

denotes the ith unit coordinate vector, then N`
= 0, N(e1+· · ·+ep) =

0, and the space of all vectors a1e1 + · · · + apep with
∑

ai = 0 is
N-invariant. Conversely, for any such N the matrix A = r−`+1J + N
satisfies A` = J . If we choose N to have integer entries and let c be
a large enough integer so that the matrix B = cJ + N has nonneg-
ative entries, then B will be the adjacency matrix of a digraph with
the same number of paths (not necessarily just one path) of length `
between any two vertices. For instance, let p = 3 and (writing column
vectors as row vectors for simplicity) define N by N[1, 1, 1] = [0, 0, 0],
N[1,−1, 0] = [2,−1,−1], and N[2,−1,−1] = [0, 0, 0]. Then

2J + N =

 2 2 2
0 3 3
4 1 1

 ,

and (2J + N)2
= 12J . Hence 2J + N is the adjacency matrix of a

digraph with 12 paths of length two between any two vertices. It is
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more difficult to obtain a digraph, other than the de Bruijn graphs,
with a unique path of length ` between two vertices, but such examples
were given by M. Capalbo and H. Fredricksen (independently). The
adjacency matrix of Capalbo’s example (with a unique path of length
two between any two vertices) is the following:

1 1 0 0 0 1 0 0 0
0 0 1 1 1 0 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1
1 1 1 0 0 0 0 0 0
0 0 0 1 1 1 0 0 0
0 0 0 0 0 0 1 1 1


.

For further information, see F. Curtis, J. Drew, C.-K. Li, and D. Pragel,
J. Combin. Theory Ser. A 105 (2004), 35–50, and the references therein.
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