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Abstract 

The human sciences should seek generalisations wherever possible. For ethical and scientific reasons, it is 
desirable to sample more broadly than ‘Western, Educated, Industrialised, Rich, and Democratic’ (WEIRD) 

societies. However, restricting the target population is sometimes necessary; for example, young children 
should not be recruited for studies on elderly care. Under which conditions is unrestricted sampling desirable 
or undesirable? Here, we use causal diagrams to clarify the structural features of measurement error bias and 
target population restriction bias (or ‘selection restriction’), focusing on threats to valid causal inference that 

arise in comparative cultural research. We define any study exhibiting such biases, or confounding biases, as 
weird (wrongly estimated inferences due to inappropriate restriction and distortion). We explain why statistical 
tests such as configural, metric, and scalar invariance cannot address the structural biases of weird studies. 
Overall, we examine how the workflows for causal inference provide the necessary preflight checklists for 
ambitious, effective, and safe comparative cultural research. 
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Introduction 

Human scientists ask and answer questions. To anchor answers in facts, we collect data. 

Most publishing human scientists work in what Joseph Henrich, Steven Heine, and Ara Norenzayan have termed  

‘WEIRD’ societies: ‘Western, Educated, Industrialised, Rich, and Democratic Societies’ (Henrich et al., 2010). 

Unsurprisingly, WEIRD samples are over-represented in human science datasets (Arnett, 2008; Sears, 1986). 

Henrich et al. illustrate how WEIRD samples differ from non-WEIRD samples in areas such as spatial cognition 

and perceptions of fairness, while showing continuities in basic emotion recognition, positive self -views, and 
motivation to punish anti-social behaviour. Because science seeks generalisation wherever it can, Henrich et al. 

urge that sampling from non-WEIRD populations is desirable. 

Recently, a host of institutional diversity and inclusion initiatives have been developed that commend 

researchers to obtain data from global samples. In my view, the motivation for these mission statements is 

ethically laudable. The injunction for a broader science of humanity also accords with institutional missions. For 
example, the scientific mission of the American Psychological Association (APA) is ‘to promote the 

advancement, communication, and application of psychological science and knowledge to benefit society and 

improve lives.’ The APA does not state that it wants to understand and benefit only North Atlantic Societies 

(https://www.apa.org/pubs/authors/equity-diversity-inclusion, accessed March 2024). It is therefore tempting 
to use such a mission statement as an ideal by which to evaluate the samples used in human scientific 

research. 

Suppose we agree that promoting a globally diverse science makes ethical sense. Set aside the worry that global 

studies often do not sample the globe very well (this problem is discussed in Ghai et al., 2024). Does the sampling 

of globally diverse populations always advance this ideal? It is easy to find examples in which restricting our 

https://doi.org/10.1017/ehs.2024.33 Published online by Cambridge University Press

http://creativecommons.org/licenses/by-nc-nd/4.0/
https://doi.org/10.1017/ehs.2024.33


2 

source population makes better scientific sense. Suppose we are interested in the psychological effects of 

restorative justice among victims of violent crime. Here, it would make little scientific sense to sample from a 

population that has not experienced violent crime. Nor would it make ethical sense. The scientific question, 

which may have important ethical implications, is not served by casting a wider net. Suppose we want to 
investigate the health effects of calorie restriction. It might be unethical to include children or the elderly. It 

makes little sense to investigate the psychological impact of vasectomy in biological females or hysterectomy in 

biological males. 

In the cases we just considered, the scientific questions pertained to a sub-sample of the human population and 

so could be sensibly restricted (refer also to Gaechter (2010), Machery (2010)). However, even for questions that 

relate to all of humanity, sampling from all of humanity might be undesirable. For example, if we were interested 

in the effects of a vaccine on disease, sampling from one population might be as good as sampling from al l. 
Sampling from one population might spare time and expense, which come with opportunity costs. We might 

conclude that sampling universally, where unnecessary, is wasteful and unethical. 

We might agree with our mission statements in judging that ethical aspirations must guide research at every 

phase. More fundamentally, we cannot assess the bandwidth of human diversity from the armchair, without 

empirical study, and this is a motivation to investigate. Yet, mistaking our aspirations for sampling directives 

risks wasteful science. Because waste carries opportunity costs, wasteful science is unethical science. 

I present these examples to remind ourselves of the importance of addressing questions of sampling in relation 

to the scientific question at hand. 

During the past twenty years, causal data science, also known as ‘causal inference’ or ‘CI’, has enabled 
tremendous clarity for questions of research design and analysis (Richardson & Rotnitzky, 2014). Here, we 

examine how the workflows developed for causal inference clarify threats and opportunities for causal inference 

in comparative human research. These workflows require that we state our causal question in terms of well -

defined counterfactual quantities, state the population of interest, and evaluate assumptions under which it is 

possible to obtain valid quantitative estimates of the counterfactual quantities we seek from data. Application 
of these workflows to comparative questions enables us to clarify when comparative research is possible, and 

also whether it is desirable. Not all questions are causal, of course. However, because manifest associations in a 

dataset may not be evidence of association in the world, even those who seek comparative descriptive 

understanding may benefit from causal inference workflows (Vansteelandt & Dukes, 2022a). 

In the remainder of the introduction, I review causal directed acyclic graphs (causal DAGs). Readers familiar 

with causal directed acyclic graphs may skip this section. I encourage readers unfamiliar with causal directed 
acyclic graphs to develop familiarity before proceeding: (Barrett, 2021; Bulbulia, 2024b; Hernan & Robins, 

2024, Chapter 6; McElreath, 2020, Chapters 5, 6; Neal, 2020; Pearl, 2009). Because directed acyclic graphs 

encode causal assumptions, we will use the terms ‘structural’ and ‘causal’ synonymously. 

Part 1 uses causal diagrams to clarify five structural features of measurement-error bias. Understanding 

measurement error bias is essential in all research, especially in comparative human science, where it casts a 

long shadow. 

Part 2 examines structural sources of bias arising from attrition and non-response, also known as ‘right-
censoring’ or simply ‘censoring’. Censoring may lead to restriction of the target population at baseline. If the 

analytic sample population at baseline is meant to be the target population, censoring at baseline may lead to 

bias. 

Part 3 addresses biases that arise at the start of a study when there is a mismatch between the analytic sample 

population and the target population. When the target population is restricted in the analytic sample population 

at baseline, results may be biased. I focus on structural threats to inference when the analytic sample population 

is (1) too restrictive (e.g., too WEIRD - Western, Educated, Industrialised, Rich, and Democratic) and (2) 
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insufficiently restrictive (leading to bias from WEIRD sampling). We find that population-restriction biases are 

formally equivalent to certain measurement error biases. This structural parallel is crucial because it shows that 

many biases in comparative research can be treated as measurement error biases. As these biases are 

structural—causal in nature—they cannot be assessed using the statistical estimation methods typically 

employed by comparative researchers. 

Part 4 uses Single World Intervention Graphs (SWIGs) to enhance understanding of measurement-error bias, 
which is not easily conveyed through causal directed acyclic graphs (DAGs). Causal DAGs are designed to evaluate 

assumptions of ‘no unmeasured confounding’. Consequently, they do not fully elucidate populationrestriction 

and measurement-error biases that do not stem from confounding. Although SWIGs are also built to evaluate 

‘no unmeasured confounding’, they represent counterfactual dependencies directly on a graph. By placing the 

measurements—or ‘reporters’—of latent realities we aim to quantify, along with the variables that perturb these 
reporters so that the reported quantities differ from the latent realities, we can advance the structural 

understanding of measurement problems. This approach better diagnoses threats to comparative human science 

and elucidates their remedies. 

The importance of causal inference for comparative research has been highlighted in several recent studies  

(Bulbulia, 2022; Deffner et al., 2022). Here, I focus on challenges arising from structural features of (1) 

measurement error bias, (2) target population restriction bias from censoring, and (3) target population 
restriction bias at a study’s baseline. I clarify that the basis of these biases is causal, not statistical, by 

demonstrating their roots in measurement error bias. This understanding is essential because comparative 

researchers often rely on statistical methods, such as configurable scalar and metric invariance, to address 

measurement issues. However, if the problems are causal, such methods are inadequate. They fail to clarify the 

dependencies between reality, its measurements, and the contextual and cultural features that modify the 

effects of reality on its measurements (VanderWeele, 2022; VanderWeele & Vansteelandt, 2022). 

I begin with a brief overview of causal inference, causal directed acyclic graphs (causal DAGs), and our 

terminology. 

What is Causality? 

To quantify a causal effect, we must contrast the world as it is – in principle, observable – with the world as it 

might have been – in principle, not observable. 

Consider a binary treatment variable 𝐴 ∈ {0, 1} representing the randomised administration of a vaccine to 

individuals 𝑖 in the set {1, 2, … , 𝑛}. 𝐴𝑖 = 1 denotes vaccine administration, and 𝐴𝑖 = 0 denotes no vaccine. The 

potential outcomes for each individual are 𝑌𝑖(0) and 𝑌𝑖(1), representing outcomes yet to be realised before 

administration. Thus, they are called ‘potential’ or ‘counterfactual’ outcomes. For an individual 𝑖, we define a 
causal effect as the contrast between the outcome observed under one intervention level and the outcome 

observed under another. This contrast, for the 𝑖𝑡ℎ individual, can be expressed on the difference scale as: 

Individual Treatment Effect = 𝑌𝑖(1) − 𝑌𝑖(0) 

where the ‘Individual Treatment Effect’ is the difference in the outcomes for an individual under two treatment 

conditions, where 𝑌𝑖(1) − 𝑌𝑖(0) ≠ 0 denotes a causal effect of 𝐴 on 𝑌 for individual 𝑖 on the difference scale. 

Similarly, 𝑌𝑌𝑖𝑖 denotes a causal effect of treatment 𝐴 for individual 𝑖 on the risk ratio scale. These quantities 

cannot be computed from observational data for any individual 𝑖. The inability to observe individual-level causal 

effects is the Fundamental Problem of Causal Inference (Holland, 1986; Rubin, 1976). This problem has long 

puzzled philosophers (Hume, 1902; Lewis, 1973). However, although individual causal effects are generally 

unobservable, we can sometimes recover average causal effects by treatment group. 
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How We Obtain Average Causal Effect Estimates from Ideally Conducted Randomised Experiments  

The Average Treatment Effect (ATE) measures the difference in outcomes between treated and control groups: 

Average Treatment Effect = 𝔼[𝑌(1)] − 𝔼[𝑌(0)] 

Here, 𝔼[𝑌(1)] and 𝔼[𝑌(0)] represent the average outcome for the target population if everyone in the population 

were subjected to the treatment and control conditions, respectively. 

In a randomised experiment, we estimate these averages assuming that the analytic sample population matches 
the target population. We do this by considering the average observed and unobserved outcomes under the 

treatment conditions: 

ATE = (𝔼[𝑌(1) ∣ 𝐴 = 1] + 𝔼[𝑌(1) ∣ 𝐴 = 0]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟) − (𝔼[𝑌(0) ∣ 𝐴 = 0] + 𝔼[𝑌(0) ∣ 𝐴 = 

1]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟) 

 unobserved unobserved 

Effective randomisation ensures that potential outcomes are similarly distributed across both groups. Thus, any 
differences in the averages of the treatment groups can be attributed to the treatment. Therefore, in an ideally 

conducted randomised experiment, the average outcomes are expected to be equal across different treatment 

conditions for the population from which the sample is drawn: 

 unobserved observed observed unobserved 

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝔼[𝑌(0) 

∣ 𝐴 = 1]] = ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝔼[𝑌(0) ∣ 𝐴 = 0]],

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝔼[𝑌(1) 

∣ 𝐴 = 1]] = ⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[𝔼[𝑌(1) ∣ 𝐴 = 0]] 

 Under 𝐴=0 Under 𝐴=1 

Because treatment groups are exchangeable – by randomisation, it follows that an ideally randomised controlled 

experiment provides an unbiased estimate of the Average Treatment Effect: 

 ATÊ = 𝔼[𝑌 ∣ 𝐴 = 1] −̂ 𝔼[𝑌 ∣ 𝐴 = 0]̂ 

Note that in the context of our imagined experiment, ATÊ applies to the population from which the 

experimental participants were drawn and is calculated on the difference scale. A more explicit notation would 

define this effect estimate by referencing its scale and population: ATE
̂ 𝑎

S′−𝑎, where 𝑎′ − 𝑎 denotes the difference 

scale, and 𝑆 denotes the source population. I will return to this point in Part 2 and Part 3, but it is important to 
build intuition early that in causal inference we must specify: 1. The causal effect of interest. 2. A scale of 

contrast. 3. A target population for whom a causal effect estimate is meant to generalise. 

Three Fundamental Assumptions For Causal Inference  

An observational study aims to estimate the average treatment effects without researchers controlling 

treatments or randomising treatment assignments. We can consistently estimate counterfactual contrasts only 

under strict assumptions. Three fundamental assumptions are required to obtain the counterfactual quantities 

required to compute causal contrasts from observational data. 
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Assumption 1. Causal Consistency 

Causal consistency states that the observed outcome for each individual under the treatment they actually 

received is equal to their potential outcome under that treatment. This means if an individual 𝑖 received 

treatment 𝐴𝑖 = 1, their observed outcome 𝑌𝑖 is the same as their potential outcome under treatment, denoted 

as 𝑌𝑖(1). Similarly, if they did not receive the treatment (𝐴𝑖 = 0), their observed outcome is the same as their  

potential outcome without treatment, denoted as 𝑌𝑖(0), such that: 

𝑌𝑖 = 𝐴𝑖 ⋅ 𝑌𝑖(1) + (1 − 𝐴𝑖) ⋅ 𝑌𝑖(0) 

where: 

• 𝑌𝑖 denotes the observed outcome for individual 𝑖; 

• 𝐴𝑖 denotes the treatment status for individual 𝑖, with 𝐴𝑖 = 1 indicating treatment received and 𝐴𝑖 = 0 

indicating no treatment; 

• 𝑌𝑖(1) and 𝑌𝑖(0) denote the potential outcomes for individual 𝑖 under treatment and no treatment, 

respectively (refer to Morgan & Winship (2014); VanderWeele (2009)). 

The causal consistency assumption is necessary to link the theoretical concept of potential outcomes — the 

target quantities of interest — with observable data (see Bulbulia et al. (2023)). 

Assumption 2. Conditional Exchangeability (or Ignorability) 

Conditional exchangeability states that given a set of measured covariates 𝐿, the potential outcomes are 
independent of the treatment assignment. Once we control for 𝐿, the treatment assignment 𝐴 is as good as 

random with respect to the potential outcomes: 

𝑌(𝑎) ∐ 𝐴|𝐿 

where: 

• 𝑌(𝑎) denotes the potential outcomes for a particular treatment level 𝑎. 

• ∐ denotes conditional independence. 

• 𝐴 denotes the treatment levels to be contrasted. 

• 𝐿 denotes the measured covariates. 

Under the conditional exchangeability assumption, any differences in outcomes between treatment groups can 

be attributed to the treatment. This assumption requires that all confounding variables affecting both the 

treatment assignment 𝐴 and the potential outcomes 𝑌(𝑎) are measured and included in 𝐿. 

Assumption 3. Positivity 

The positivity assumption requires that every individual in the population has a non-zero probability of receiving 

each treatment level, given their covariates (Bulbulia et al., 2023; Chatton et al., 2020; Hernan & Robins, 2024; 

Westreich & Cole, 2010). Formally, 

 0 < 𝑃𝑟(𝐴 = 𝑎|𝐿 = 𝑙) < 1 , ∀𝑎 ∈ 𝐴, ∀𝑙 ∈ 𝐿 such that 𝑃𝑟(𝐿 = 𝑙) > 0 

where: 

• 𝐴 denotes the treatment or exposure variable. 
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• 𝐿 denotes a vector of covariates assumed sufficient for satisfying conditional exchangeability. 

For a discussion of causal assumptions in relation to external validity, refer to Imai et al. (2008). 

Terminology 

To avoid confusion, we define the meanings of our terms: 

• Unit/individual: An entity, such as an object, person, or culture. We will use the term ‘individual’ instead 

of the more general term ‘unit’. Think ‘row’ in a dataset. 

• Variable: A feature of an individual, transient or permanent. For example, ‘Albert was sleepy but is no 

longer’ or ‘Alice was born 30 November’. 

• Treatment: Equivalent to ‘exposure’, an event that might change a variable. For instance, ‘Albert was 
sleepy; we intervened with coffee; he is now wide awake’ or ‘Alice was born in November; nothing can 

change that’. The ‘cause’. 

• Outcome: The response variable or ‘effect’. In causal inference, we contrast ‘potential’ or ‘counterfactual 

outcomes’. In observational or ‘real-world’ studies where treatments are not randomised, the assumptions 

for obtaining contrasts of counterfactual outcomes are typically much stronger than in randomised 

controlled experiments. 

• Confounding: A state where the treatment and outcome share a common cause and no adjustment is 
made to remove the non-causal association, or where the treatment and outcome share a common effect, 

and adjustment is made for this common effect, or when the effect of the treatment on the outcome is 

mediated by a variable which is conditioned upon. In each case, the observed association will not reflect 

a causal association. Causal directed acyclic graphs clarify strategies for confounding control. 

• Measurement: A recorded trace of a variable, such as a column in a dataset. When placing measurements 

within causal settings, we call measurements reporters. 

• Measurement error: A misalignment between the true state of a variable and its recorded state. For 
example, ‘Alice was born on 30 November; records were lost, and her birthday was recorded as 1 

December’. 

• Population: An abstraction from statistics, denoting the set of all individuals defined by certain features. 

Albert belongs to the set of all individuals who ignore instructions. 

• Super-population: An abstraction, the population of all possible individuals of a given kind. Albert and 

Alice belong to a super-population of hominins. 

• Restricted population: Population 𝑝 is restricted relative to another population 𝑃 if the individuals 𝑝 ∈ 𝑃 

share some but not all features of 𝑃. ‘The living’ is a restriction of hominins. 

• Target population: A restriction of the super-population whose features interest investigators. An 

investigator who defines their interests is a member of the population of ‘good investigators’. 

• Source population: The population from which the study’s sample is drawn. Investigators wanted to 

recruit from a general population but recruited from the pool of first-year university psychology students.  

• Sample population at baseline: or equivalently the ‘analytic sample population.’ The abstract set of 

individuals from which the units in a study at treatment assignment belong, e.g., ‘the set of all first-year  
university psychology students who might end up in this study’. Unless stated otherwise, we will consider  

the baseline analytic sample population to represent the source population; we will consider the analytic 

population at baseline to be representative of the target population. 
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• Selection into the analytic sample: Selection occurs and is under investigator control when a target 

population is defined from a super-population or when investigators apply eligibility criteria for inclusion 

in the analytic sample. Selection into the sample is often out of the investigator’s control. Investigators 

might aspire to answer questions about all of humanity but find themselves limited to undergraduate 
samples. Investigators might sample from a source population but recover an analytic sample that differs 

from it in ways they cannot measure, such as mistrust of scientists. There is typically attrition of an analytic 

sample over time, and this is not typically fully within investigator control. Because the term ‘selection’ 

has different meanings in different areas of human science, we will speak of ‘target population restriction 

at the start of study’. Note that to evaluate this bias, it is important for investigators to state a causal effect 

of interest with respect to the full data that includes the counterfactual quantities for the treatments to 
be compared in a clearly defined target population where all members of the target population are 

exposed to each level of treatment to be contrasted (Westreich et al., 2017a). 

• (Right) censored analytic sample at the end of study: Right censoring is generally uninformative if there 

is no treatment effect for everyone in the baseline population (the sharp causal null hypothesis). 

Censoring is informative if there is an effect of the treatment, and this effect varies in at least one stratum 

of the baseline population. If no correction is applied, unbiased effect estimates for the analytic sample 

will bias causal effect estimates for the target population in at least one measure of effect (Greenland, 

2009; Lash et al., 2020; VanderWeele, 2012). We call such bias from right censoring ‘target population 

restriction at the end of study’. Note again that to evaluate this bias, the causal effect of interest must be 
stated with respect to the full data that includes the counterfactual quantities for the treatments to be 

compared in a clearly defined target population where all members of the target population are exposed 

to each level of treatment to be contrasted (Westreich et al., 2017a). 

• Target population restriction bias: Bias occurs when the distribution of effect modifiers in the analytic 

sample population differs from that in the target population, either at the start, at the end, or throughout 
the study. Here we consider: target population restriction bias at the start of study and target population 

restriction bias at the end of study. If this bias occurs at the start of the study, it will generally occur at the 

end of the study (and at intervals between), except by accident. We require validity to be non-accidental. 

• Generalisability: A study’s findings generalise to a target population if the effects observed in the analytic 

sample at the end of study are also valid for the target population for structurally valid reasons (i.e., non-

accidentally). 

• Transportability: When the analytic sample is not drawn from the target population, we cannot directly 
generalise the findings. However, we can transport the estimated causal effect from the source population 

to the target population under certain assumptions. This involves adjusting for differences in the 

distributions of effect modifiers between the two populations. The closer the source population is to the 

target population, the more plausible the transportability assumptions and the less we need to rely on 

complex adjustment methods see (Refer to supplementary materials S2). 

• Marginal effect: Typically a synonym for the average treatment effect — always relative to some 

population specified by investigators. 

• Intention-to-treat effect: The marginal effect of random treatment assignment. 

• Per-protocol effect: The effect of adherence to a randomly assigned treatment if adherence were perfect 

(Hernán et al., 2017). We have no guarantee that the intention-to-treat effect will be the same as the per-

protocol effect. A safe assumption is that: 

 𝐴𝑇�̂� Per-Protocoltarget≠ 𝐴𝑇�̂� Intention-to-Treattarget 
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When evaluating evidence for causality, in addition to specifying their causal contrast, effect measure, and 

target population, investigators should specify whether they are estimating an intention-to-treat or per-

protocol effect (Hernán, 2004; Tripepi et al., 2007). 

• WEIRD: A sample of ‘Western, Educated, Industrialised, Rich, and Democratic Societies’ (Henrich et al., 

2010). 

• weird: (wrongly estimated inferences due to inappropriate restriction and distortion) A causal effect 
estimate that is not valid for the target population, either from confounding bias, measurement error bias, 

target population restriction at the start of study, or target population restriction at the end of study.  

For discussion of these concepts refer to Dahabreh et al. (2021); Imai et al. (2008); Cole & Stuart (2010); 

Westreich et al. (2017b). A clear decomposition of key concepts needed to external validity— or what we call  

‘target validity’ 

— is given in Imai et al. (2008). For a less technical, pragmatically useful discussion, refer to Stuart et al. (2018). 
Note that terminology differs across the causal inference literature. See supplementary materials S1 for a 

causal inference glossary. 

Graphical Conventions 

• 𝐴: Denotes the ‘treatment’ or ‘exposure’ — a random variable, ‘the cause’. 

• 𝑌: Denotes the outcome or response, measured at the end of the study. 𝑌 is the ‘effect’. 

• 𝐿: Denotes a measured confounder or set of confounders. 

• 𝑈: Denotes an unmeasured confounder or confounders. 

• ℛ: Denotes randomisation to treatment condition (ℛ → 𝐴). 

• Node: denotes characteristics or features of units within a population on a causal diagram — that is, a 

‘variable’. In causal directed acyclic graphs, nodes are drawn with respect to the target population, which 
is the population for whom investigators seek causal inferences (Suzuki et al., 2020). Time-indexed nodes: 

𝑋𝑡 denotes relative chronology. 

• Edge without an Arrow ( ): Path of association, causality not asserted. 

• Red Edge without an Arrow ( ): Confounding path, ignoring arrows to clarify statistical 

dependencies. 

• Arrow (→): Denotes a causal relationship from the node at the base of the arrow (a ‘parent’) to the node 

at the tip of the arrow (a ‘child’). In causal directed acyclic graphs, it is conventional to refrain from drawing 

an arrow from treatment to outcome to avoid asserting a causal path from 𝐴 to 𝑌 because we aim to 

ascertain whether causality can be identified for this path. All other nodes and paths — including the 

absence of nodes and paths — are typically assumed. 

• Red Arrow ( ): Denotes a path of non-causal association between the treatment and outcome. Despite 

the arrows, this path is associational and may flow against time. 

• Open Blue Arrow ( ): Denotes effect modification, which occurs when the effect of treatment varies 

within levels of a covariate. We do not assess the causal effect of the effect modifier on the outcome, 

recognising that it may be incoherent to consider intervening on the effect modifier. However, if the 
distribution of effect modifiers in the analytic sample population differs from that in the target population, 

then at least one measure of causal effect will differ between the two populations. 

• Boxed Variable ( 𝑋 ): Denotes conditioning or adjustment for 𝑋. 
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• Red-Boxed Variable ( 𝑋 ): Highlights the source of confounding bias from adjustment. 

• Dashed Circle ( 𝑋 ): Denotes no adjustment is made for a variable (implied for unmeasured confounders).  

• 𝒢: Names a causal diagram. 

• Split Node (SWIGs) 
𝐴 ã 

: Convention used in Single World Intervention Graphs (SWIGs) that allows 

for factorisation of counterfactuals by splitting a node at intervention with post-intervention nodes 

relabeled to match the treatment. We introduce Single World Intervention Graphs in Part 4. 

• Unobserved Node (SWIGs) : Our convention when using Single World Intervention Graphs to denote 

an unobserved node (SWIGs): 𝑋 unmeasured. 

Causal Directed Acyclic Graphs (DAGs) 

Judea Pearl proved that, based on assumptions about causal structure, researchers can identify causal effects 

from joint distributions of observed data (Pearl, 1995, 2009). The rules of d-separation are given in Table ??. 

Pearl’s rules of d-separation can be stated as follows: 

• Fork rule (𝐵 𝐶): 𝐵 and 𝐶 are independent when conditioned on 𝐴 (𝐵 ∐ 𝐶 ∣ 𝐴). 

• Chain rule (𝐴 𝐶): Conditioning on 𝐵 blocks the path between 𝐴 and 𝐶 (𝐴 ∐ 𝐶 ∣ 𝐵). 

• Collider rule (𝐴 𝐵): 𝐴 and 𝐵 are independent until conditioned on 𝐶, which introduces dependence (𝐴∐𝐵 

∣ 𝐶). 

Table ?? shows causal directed acyclic graphs corresponding to these rules. Because all causal relationships can 

be assembled from combinations of the five structures presented in Table ??, we can use causal graphs to 

evaluate whether and how causal effects may be identified from data (Bulbulia, 2024b). 

Pearl’s general identification algorithm is known as the ‘back door adjustment theorem’ (Pearl, 2009). 

Backdoor Adjustment: In a causal directed acyclic graph (DAG), a set of variables 𝐿 satisfies the backdoor  

adjustment theorem relative to the treatment 𝐴 and the outcome 𝑌 if 𝐿 blocks every path between 𝐴 and 𝑌 that 

contains an arrow pointing into 𝐴 (a backdoor path). Formally, 𝐿 must satisfy two conditions: 

1. No Path Condition: No element of 𝐿 is a descendant of 𝐴. 

2. Blocking Condition: 𝐿 blocks all backdoor paths from 𝐴 to 𝑌. 

If 𝐿 satisfies these conditions, the causal effect of 𝐴 on 𝑌 can be estimated by conditioning on 𝐿 (Pearl, 2009). 

Effect-Modification on Causal Directed Acyclic Graphs 

The primary function of a causal directed acyclic graph is to allow investigators to apply Pearl’s backdoor  

adjustment theorem to evaluate whether causal effects may be identified from data, as shown in Table ??. We 
have noted that modifying a causal effect within one or more strata of the target population opens the possibility 

for biased average treatment effect estimates when the distribution of these effect modifiers differs in the 

analytic sample population (Bulbulia, 2024c). 

We do not generally represent non-linearities in causal directed acyclic graphs, which are tools for obtaining 

relationships of conditional and unconditional independence from assumed structural relationships encoded in 

a causal diagram that may lead to a non-causal treatment/outcome association (Bulbulia, 2024b). 
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Table ?? presents our convention for highlighting a relationship of effect modification in settings where (1) we 

assume no confounding of treatment and outcome and (2) there is effect modification such that the effect of 𝐴 

on 𝑌 differs in at least one stratum of the target population. 

To focus on effect modification, we do not draw a causal arrow from the direct effect modifier 𝐹 to the outcome 

𝑌. This convention is specific to this article (refer to Hernan & Robins (2024), pp. 126-127, for a discussion of 

‘non-causal’ arrows). 

Part 1: How Measurement Error Bias Makes Your Causal Inferences weird (wrongly 

estimated inferences due to inappropriate restriction and distortion)  

Measurements record reality, but they are not always accurate. Whenever variables are measured with error, 

our results can be misleading. Every study must therefore consider how its measurements might mislead. 

Causal graphs can deepen understanding because – as implied by the concept of ‘record’ —there are structural 

or causal properties that give rise to measurement error. Measurement error can take various forms, each with 

distinct implications for causal inference: 

• Independent (undirected) /uncorrelated: Errors in different variables do not influence each other. 

• Independent (undirected) and correlated: Errors in different variables are related through a shared cause.  

• Dependent (directed) and uncorrelated: Errors in one variable influence the measurement of another, 

but these influences are not related through a shared cause. 

• Dependent (directed) and correlated: Errors in one variable influence the measurement of another, and 

these influences are related through a shared cause (Hernán & Cole, 2009; VanderWeele & Hernán, 2012). 

The six causal diagrams presented in Table ?? illustrate structural features of measurement error bias and clarify 

how these structural features compromise causal inferences. 

Understanding the structural features of measurement error bias will help us understand why measurement 

error bias cannot typically be evaluated with statistical models and will prepare us to understand how target -

population restriction biases are linked to measurement error. 

Example 1: Uncorrelated Non-Differential Errors under Sharp Null: No Treatment Effect  

Table ?? 𝒢1 illustrates uncorrelated non-differential measurement error under the ‘sharp-null,’ which arises when 

the error terms in the exposure and outcome are independent. In this setting, the measurement error structure 

is not expected to produce bias. 

For example, consider a study investigating the causal effect of beliefs in big Gods on social complexity in 

ancient societies. Imagine that societies either randomly omitted or inaccurately recorded details about their 
beliefs in big Gods and their social complexities. This might occur because of varying preservation in the 

records of cultures which is unrelated to the actual beliefs or social complexity. In this scenario, we imagine the 

errors in historical records for beliefs in big Gods and for social complexity are independent. When the 

treatment is randomised, uncorrelated and undirected errors will generally not introduce bias under the sharp 
null of no treatment effect for any unit when all backdoor paths are closed. However, if confounders are 

measured without error this may open a backdoor path from treatment to outcome. For example, Robins & 

Hernan (2008) p.2216 discusses how in non-experimental settings, mismeasured confounders can introduce 

bias even when the measurement errors of the treatment and outcome are uncorrelated and undirected and 
there is no treatment effect. This is because mismeasured confounders will not control for confounding bias. 

We present an illustration of this bias in Table ?? 𝒢6, where we discuss challenges to comparative research in 

which the accuracy of confounder measurements varies across the sites to be compared. 
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Example 2: Uncorrelated Non-Differential Errors ‘Off The Null’ (True Treatment Effect) Biases True Effects 

toward the Null 

Table ?? 𝒢2 illustrates uncorrelated non-differential measurement error, which arises when the error terms in 

the exposure and outcome are independent This bias is also called information bias (Lash et al., 2009). In this 

setting, bias will often attenuate a true treatment effect. However, there are no guarantees that uncorrelated 
undirected measurement error bias effect estimates toward the null (Jurek et al., 2005, 2008; Jurek et al., 2006; 

Lash et al., 2009, p. 93). 

Consider again the example of a study investigating a causal effect of beliefs in big Gods on social complexity in 

ancient societies, where there are uncorrelated errors in the treatment and outcome. In this case, 

measurement error will often make it seem that the true causal effects of beliefs in big Gods are smaller than 
they are, or perhaps even that such an effect is absent. Often but not always: again, attenuation of the effect 

estimate is not guaranteed, and mismeasured confounders will open backdoor paths. We can, however, say 

this: uncorrelated undirected measurement error in the presence of a true effect leads to distortion of that 

effect, inviting weird results (wrongly estimated inferences due to inappropriate restriction and distortion). 

Uncorrelated undirected measurement error in the presence of a true effect leads to distortion of true causal 

effects, inviting weird results (wrongly estimated inferences due to inappropriate restriction and distortion). 

Example 3: Correlated Errors Non-Differential (Undirected) Measurement Errors 

Table ?? 𝒢3 illustrates the structure of correlated non-differential (undirected) measurement error bias, which 

arises when the error terms of the treatment and outcome share a common cause. 

Consider an example: imagine that societies with more sophisticated record-keeping systems tend to offer more 

precise and comprehensive records of both beliefs in big Gods and of social complexity. In this setting, it is the 

record-keeping systems that give the illusion of a relationship between big Gods and social complexity. This might 

occur without any causal effect of big-God beliefs on measuring social complexity or vice versa. Nevertheless, 

the correlated sources of error for both the exposure and outcome might suggest causation in its absence. 

Correlated non-differential measurement error invites weird results (wrongly estimated inferences due to 

inappropriate restriction and distortion). 

Example 4: Uncorrelated Differential Measurement Error: Exposure Affects Error of Outcome  

Table ?? 𝒢4 illustrates the structure of uncorrelated differential (or directed) measurement error, where a 

noncausal path is opened linking the treatment, the outcome, or a common cause of the treatment and 

outcome. 

Continuing with our previous example, imagine that beliefs in big Gods lead to inflated records of social 

complexity in a culture’s record-keeping. This might happen because the record keepers in societies that believe 

in big Gods prefer societies to reflect the grandeur of their big Gods. Suppose further that cultures lacking beliefs 
in big Gods prefer Bacchanalian-style feasting to record-keeping. In this scenario, societies with record keepers 

who believe in big Gods would appear to have more social complexity than equally complex societies without 

such record keepers. 

Uncorrelated directed measurement error bias also invites weird results (wrongly estimated inferences due to 

inappropriate restriction and distortion). 

Example 5: Uncorrelated Differential Measurement Error: Outcome Affects Error of Exposure  

Table ?? 𝒢5 illustrates the structure of uncorrelated differential (or directed) measurement error, this time when 

the outcome affects the recording of the treatment that preceded the outcome. 
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Suppose that ‘history is written by the victors.’ Can we give a structural account of measurement error bias 

arising from such selective retention of the past? Suppose that social complexity causes beliefs in big Gods. 

Perhaps kings create big Gods after the image of kings. If the kings prefer a history in which big Gods were 
historically present, this might bias the historical record, opening a path of association that reverses the order 

of causation. Such results would be weird: (wrongly estimated inferences due to inappropriate restriction and 

distortion). 

Example 6: Uncorrelated Differential Error: Outcome Affects Error of Exposure  

Table ?? 𝒢6 illustrates the structure of correlated differential (directed) measurement error, which occurs when 

the exposure affects levels of already correlated error terms. 

Suppose social complexity produces a flattering class of religious elites who produce vainglorious depictions of 
kings and their dominions, and also of the extent and scope of their society’s beliefs in big Gods. For example, 

such elites might downplay widespread cultural practices of worshipping lesser gods, inflate population 

estimates, and overstate the range of the king’s political economy. In this scenario, the errors of the exposure 

and of the outcome are both correlated and differential. 

Results based on such measures might be weird: (wrongly estimated inferences due to inappropriate restriction 

and distortion). 

Summary 

In Part 1, we examined four types of measurement error bias: independent, correlated, dependent, and 
correlated dependent. The structural features of measurement error bias clarify how measurement errors 

threaten causal inferences. Considerably more could be said about this topic. For example, VanderWeele & 

Hernán (2012) demonstrate that, under specific conditions, we can infer the direction of a causal effect from 

observed associations. Specifically, if: 

1. The association between the measured variables 𝐴′
1 and 𝑌2

′ is positive, 

2. The measurement errors for these variables are not correlated, and 

3. We assume distributional monotonicity for the effect of 𝐴 on 𝑌 (applicable when both are binary), then 

a positive observed association implies a positive causal effect from 𝐴 to 𝑌. Conversely, a negative observed 
association provides stronger evidence for a negative causal effect if the error terms are positively correlated 

than if they are independent. This conclusion relies on the assumption of distributional monotonicity for the  

effect of 𝐴 on 𝑌. For now, the four elementary structures of measurement error bias will enable us to clarify 

the connections between the structures of measurement error bias, target population restriction bias at the 

end of a study, and target restriction bias at the start of a study. 

We will return to measurement error again in Part 4. Next, we focus on structural features of bias when there is 

an inappropriate restriction of the target population in the analytic sample at the end of study.  

Part 2: How Target Population Restriction Bias At The End of Study Makes Your Causal 

Inferences weird (wrongly estimated inferences due to inappropriate restriction and 

distortion) 

Suppose the analytic sample population at the start of a study matches the source population from which it is 
drawn and that this source population aligns with the target population. In this setting, at the start of study, if all  

goes well, there is hope that our results may generalise to the target population. Right-censoring, typically 

abbreviated to ‘censoring’ and also known as ‘attrition and non-response’, may bias causal effect estimates, 

spoiling our hopes for valid causal inferences, in one of two ways: by opening pathways of bias (distortion) or by 
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inappropriately restricting the analytic sample population at the end of a study so that it is no longer  

representative of the target population. Both forms of bias will make causal inferences weird: (wrongly estimated 

inferences due to inappropriate restriction and distortion). 

Example 1: Confounding by common cause of treatment and attrition 

Table ?? 𝒢1 illustrates confounding by common cause of treatment and outcome in the censored such that the 
potential outcomes of the population at baseline 𝑌(𝑎) may differ from those of the censored population at the 

end of study 𝑌 ′(𝑎) such that 𝑌 ′(𝑎) ≠ 𝑌(𝑎). 

Suppose investigators are interested in whether religious service attendance affects volunteering. Suppose that 

an unmeasured variable, loyalty, affects religious service attendance, attrition, and volunteering. The structure 

of this bias reveals an open backdoor path from the treatment to the outcome. 

We have encountered this bias before. The structure we observe here is one of correlated measurement errors  

(Table ?? 𝒢3). In this example, attrition may exacerbate measurement error bias by opening a path from 𝐴 𝑈 𝑈Δ𝐴 

𝑌 ′ 

The results obtained from such a study would be distorted – that is, weird: (wrongly estimated inferences due 

to inappropriate restriction and distortion). Here, distortion operates through the restriction of the target 

population in the analytic sample population at the end of the study. 

Example 2: Treatment affects censoring 

Table ?? 𝒢2 illustrates bias in which the treatment affects the censoring process. Here, the treatment causally 

affects the outcome reporter but does not affect the outcome itself. 

Consider a study investigating the effects of mediation on well-being. Suppose there is no treatment effect but 

that Buddha-like detachment increases attrition. Suppose those with lower Buddha-like detachment report well -

being differently than those with higher Buddha-like detachment. Buddha-like detachment is not a cause of well -

being, we suppose, however, we also suppose it is a cause of measurement error in the reporting of well -being. 

In this setting, we discover a biasing path that runs: 𝐴 𝑈Δ𝐴→𝑌 𝑌 ′. Note there is no confounding bias here because 

there is no common cause of the treatment and the outcome. 

We have encountered this structural bias before. The structure we observe here is one of directed uncorrelated 
measurement error (Table ?? 𝒢4). Randomisation ensures no backdoor paths. However, if the intervention affects 

both attrition and how the outcome is reported the treatment will cause measurement error bias (note this is 

not confounding bias because the treatment and outcome do not share a common cause.) 

The results obtained from such a study risk distortation, inviting weirdness: (wrongly estimated inferences due 

to inappropriate restriction and distortion). Here, distortion operates through the restriction of the target 
population at the end of the study, assuming the analytic sample at the start of the study represented that 

target population (or was weighted to represent it.) 

Example 3: No treatment effect when outcome causing censoring 

Table ?? 𝒢3 illustrates the structure of bias when there is no treatment effect yet the outcome affects censoring. 

If 𝒢3 faithfully represents reality, under the sharp null we would generally not expect bias in the average 

treatment effect estimate from attrition. The structure we observe here is again familiar: it is one of undirected 

uncorrelated measurement error(Table ?? 𝒢1). However, as before, at the start of study it is generally unclear  

whether the sharp null holds (if it were clear, there would be no motivation for the study). In theory, however, 

although the analytic sample population in the setting we have imagined would be a restriction of the target 
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population, such a restriction of the target population is not expected to bias the null result. Again, we consider  

this example for its theoretical interest; no statistical test could validate what amounts to a structural assumption 

of the sharp null. 

Example 4: Treatment effect when outcome causes censoring and there is a true treatment effect  

Table ?? 𝒢4 illustrates the structure of bias when the outcome affects censoring in the presence of a treatment 
effect. If the true outcome is an effect modifier of the measured outcome, we can expect bias in at least one 

measure of effect (e.g., the risk ratio or the causal difference scale). We return to this form of bias with a 

worked example in Part 4, where we clarify how such bias may arise even without confounding. We shall see 

that the bias described in Table ?? 𝒢4 is equivalent to measurement error bias. For now, we note that the 
results of the study we have imagined here would be weird: (wrongly estimated inferences due to 

inappropriate restriction and distortion). 

Example 5: Treatment effect and effect-modifiers differ in censored (restriction bias without confounding) 

Table ?? 𝒢5 represents a setting in which there is a true treatment effect, but the distribution of effect-modifiers 

– variables that interact with the treatment – differ among the sample at baseline and the sample at the end of 

the study. Knowing nothing else, we might expect this setting to be standard. Where measured variables are 

sufficient to predict attrition, that is, where missingness is at random, we can obtain valid estimates for a 

treatment effect by inverse probability of treatment weighting (Cole & Hernán, 2008; Leyrat et al., 2021) or by 

multiple imputation – on the assumption that our models are correctly specified (Shiba & Kawahara, 2021). 
However, if missingness is not completely at random, or if our models are otherwise misspecified, then causal 

estimation is compromised (Malinsky et al., 2022; Tchetgen Tchetgen & Wirth, 2017). 

Note that Table ?? 𝒢5 closely resembles a measurement structure we have considered before, in Part 1: Table ?? 

𝒢2 Replacing the unmeasured effect modifiers  and 𝑈Δ𝐹 in Table ?? 𝒢5 for 𝑈𝑌 in Table ?? 𝒢2 reveals 

that the unmeasured effect modification in the present setting can be viewed as an example of uncorrelated 

independent measurement error when there is a treatment effect (i.e. censoring ‘off the null’.)  

In the setting we describe in Table ?? 𝒢5 there is a common cause of the treatment and outcome. Nevertheless, 

the analytic sample population at the end-of-study is an undesirable restriction of the target population 

because the marginal effect estimate for this analytic sample population will differ from that of the target 
population (refer to supplementary materials S4 for a simulation that covers applies to this setting). We infer 

that results in this setting just described permit weirdness: (wrongly estimated inferences due to inappropriate 

restriction and distortion) because censoring leads to inappropriate restriction. 

Summary 

In this section, we examined how right-censoring, or attrition, can lead to biased causal effect estimates. Even 

without confounding bias, wherever the distribution of variables that modify treatment effects differs between 
the analytic sample population at the start and end of the study, the average treatment effects may differ, leading 

to biased estimates for the target population. To address such bias, investigators must ensure that the 

distribution of potential outcomes at the end of the study corresponds with that of the target population. Again, 

methods such as inverse probability weighting and multiple imputation can help mitigate this bias (refer to 

Bulbulia, 2024a). 

The take-home message is this: attrition is nearly inevitable, and if attrition cannot be checked it will make results 

weird: (wrongly estimated inferences due to inappropriate restriction and distortion). Refer to supplementary 
materials S3 for a mathematical explanation of why effects differ when the distribution of effect modifiers differs. 

Refer to supplementary materials S4 for a data simulation that makes the same point. 

 

https://doi.org/10.1017/ehs.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.33


15 

Next, we investigate target population restriction bias at the start of the study (left-censoring). We shall discover  

that structural motifs of measurement error bias reappear. 

Part 3: How Target Population Restriction Bias At The Start of Study Makes Your Causal 

Inferences weird (wrongly estimated inferences due to inappropriate restriction and 

distortion) 

Consider target-restriction bias that occurs at the start of a study. There are several failure modes. For example, 

the source population from which participants are recruited might not align with the target population. 

Moreover, even where there is such alignment, the participants recruited into a study - the analytic sample – 
might not align with the source population. For simplicity, we imagine the analytic sample population at the start 

of the study accurately aligns with the source population. What constitutes ‘alignment’? We say the sample is 

unrestrictive of the target population if there are no differences between the sample and target population in 

the distribution both of confounders (common causes of treatment and outcome) and of the variables tha t 

modify treatment effects (effect modifiers). Proof of alignment cannot be verified with data (refer to 

supplementary materials S3). 

Target Population Restriction Bias at Baseline Can Be Collider-Restriction Bias 

Table ?? 𝒢1 illustrates an example of target population restriction bias at baseline in which there is 

colliderrestriction bias. 

Suppose investigators want to estimate the causal effects of regular physical activity, 𝐴, and heart health, 𝑌, 

among adults visiting a network of community health centres for routine check-ups. 

Suppose there are two unmeasured variables that affect selection into the study 𝑆 = 1 

1. Health Awareness, 𝑈 1, an unmeasured variable that influences both the probability of participating in the 

study, 𝑆 = 1 , and the probability of being physically active, 𝐴. Perhaps people with higher health awareness 

are more likely to (1) engage in physical activity and (2) participate in health-related studies. 

2. Socioeconomic Status (SES), 𝑈 2, an unmeasured variable that influences both the probability of 

participating in the study, 𝑆 = 1 , and heart health, 𝑌. We assume that individuals with higher SES have 

better access to healthcare and are more likely to participate in health surveys; they also tend to have 

better heart health from healthy lifestyles: joining expensive gyms, juicing, long vacations, and the like. 

As presented in Table ?? 𝒢1, there is collider-restriction bias from conditioning on 𝑆 = 1: 

1. 𝑈 1: Because individuals with higher health awareness are more likely to be both physically active and 

participate in the study, the subsample over-represents physically active individuals. This overestimates 

the prevalence of physical activity, setting up a bias in overstating the potential benefits of physical 

activity on heart health in the general population. 

2. 𝑈 2: Because individuals with higher SES may have better heart health from SES-related factors, this 

opens a confounding path from physical activity and heart health through the selected sample, setting 
up the investigators for the potentially erroneous inference that physical activity has a greater positive 

impact on heart health than it actually does in the general population. The actual effect of physical 

activity on heart health in the general population might be less pronounced than observed.  

It might seem that researchers would need to sample from the target population. However, Table ?? 𝒢2 makes it 

clear that by adjusting for health awareness or SES or a proxy for either, researchers may block the open path 
arising from collider stratification bias. After such conditioning, we should expect a null effect in the sample 

population just as in the target population. 
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The next series of examples illustrate challenges to obtaining valid causal effect estimates in the presence of 

interactions. 

Target Population Restriction Bias at Baseline Without Collider-Restriction Bias at Baseline Problem 1: The 

target population is not WEIRD (Western, Educated, Industrialised, Rich, and Democratic); the analytic 

sample population is WEIRD 

Table ?? 𝒢1.1 presents a scenario for target population restriction bias at baseline. When the analytic sample 

population obtained at baseline differs from the target population in the distributions of variables that modify 

treatment effects, effect estimates may be biased, even without confounding bias. Results may be weird 
without arising from confounding bias. This problem has been recently considered in Schimmelpfennig et al. 

(2023); Schimmelpfennig et al. (2024). 

Suppose we are interested in the effects of political campaigning but only sample from our preferred political 

party. Results for the general population will be distorted if the distribution of effect modifiers of the treatment 

varies by party. One such effect modifier might be ‘party affiliation’. This valid concern underscores the call for 
broader sampling in the human sciences. WEIRD samples will not be informative for science generally 

whenever the distribution of effect modifiers among humans differs from those of the restricted population of 

humans from which WEIRD analytic samples are drawn. 

Note that we have encountered Table ?? 𝒢1.1 twice before. It is the same causal directed acyclic graph as we 

found in Table ?? 𝒢5. As we did before, we may replace the unmeasured effect modifiers  and 𝑈Δ𝐹 for  in 

Table ?? 𝒢2 and observe that we recover uncorrelated measurement error ‘off the null’ (i.e. when there is a true 

treatment effect). 

The structural similarity suggests options might be easily overlooked. Where the distributions of treatment-effec t 

modifiers are known and measured and where census (or other) weights are available for the distributions of 

effect modifiers in the target population, it may be possible to weight the sample to more closely approximate 

the target population parameters of interest (Stuart et al., 2015). 

Let 𝐴𝑇�̂� 𝑡𝑎𝑟𝑔𝑒𝑡 denote the population average treatment effect for the target population. Let 𝐴𝑇�̂� restricted denote 
the average treatment effect at the end of treatment. Let 𝑊 denote a set of variables upon which the 

restricted and target populations structurally differ. We say that results generalise if we can ensure that: 

𝐴𝑇�̂� 𝑡𝑎𝑟𝑔𝑒𝑡 = 𝐴𝑇�̂� 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 

or if there is a known function such that: 

𝐴𝑇𝐸𝑡𝑎𝑟𝑔𝑒𝑡 ≈ 𝑓𝑊(𝐴𝑇𝐸restricted, 𝑊 ) 

In most cases, 𝑓𝑊 will be unknown, as it must account for potential heterogeneity of effects and unobserved 

sources of bias. For further discussion on this topic, see Imai et al. (2008); Cole & Stuart (2010); Stuart et al. 

(2018). 

Table ?? 𝒢1.2 provides a graphical representation of the solution. 

Importantly, if there is considerable heterogeneity across humans, then we might not know how to interpret  

the average treatment effect for the target population of all humans even if this causal effect can be estimated. 

In comparative research, we are often precisely interested in treatment heterogeneity. If we seek explicitly 

comparative models, however, we will need to ensure the validity of estimates for every sample that we 
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compare. If one stratum in the comparative study is weird: (wrongly estimated inferences due to inappropriate 

restriction and distortion), errors will propagate to the remainder of the comparative study. To understand such 

propogation consider scenarios where the target population is a deliberate restriction of the the source 

population from which the analytic sample at baseline is drawn. We deliberately seek restriction wherever  
‘eligibility criteria’ are desirable for a study. Although this point is perhaps obvious, it is less clear whether many 

studies should be conducted without eligibility criteria. 

Example 2: The target population is a sub-sample of WEIRD (Western, Educated, Industrialised, Rich, and 

Democratic); the analytic sample population is not WEIRD enough. 

Table ?? 𝒢2.1 presents a scenario where the source population does not meet eligibility criteria. Consider again 

the question of whether vasectomy affects a sense of meaning and purpose in life. Suppose further we want to 

evaluate effects in New Zealand among men over the age of 40 who have no prior history of vasectomy, and 

who are in relationships with heterosexual partners. The target population is a stratum of WEIRD population 
(Western, Educated, Industrialised, Rich, and Democratic). That is, the WIERD population would be too broad 

for scientific interest. We should not sample from young children, the elderly, or any who do not qualify. Not 

only is it clear that a narrow population is desirable for many scientific questions, but also it is easy to imagine 

settings in comparative human science for which a fully unrestricted human population would be undesirable. 
In causal inference, we attempt to emulate ideal (although typically implausible) experiments with ‘real world’ 

data. Just as eligibility criteria are often useful for isolating populations of interest in experimental designs, so 

too are eligibility criteria often useful for isolating populations of interest in real-world ‘target trials’ (Hernán et 

al., 2008). 

Note again Table ?? 𝒢2.1 is identical to Table ?? 𝒢5 — right-censoring bias with effect modifiers in an otherwise 
unconfounded study. The structure is also similar to Table ?? 𝒢2 the problem is structurally that of uncorrelated 

measurement error ‘off the null’. Where it is the defusion of the effect-modifiers that causes we may fix the 

measurement error by restricting the sample. 

Table ?? 𝒢2.2 presents a solution. Ensure eligibility criteria are scientifically relevant and feasible. Sample from 

this eligible population. With caution, apply survey or other weights where these weights enable a closer  

approximation to the distributions of effect-modifiers in the target population. Notice that here we avoid weird 

inferences (wrongly estimated inferences due to inappropriate restriction and distortion) by imposing greater  

restriction on what would otherwise be an inappropriately unrestricted target population. 

Example 3: Correlated Measurement Error of Covariates and Outcome in the Absence of a Treatment Effect  

Table ?? 𝒢3.1 considers the threats to external validity from correlated measurement errors in the target 

population arising from structured errors across heterogeneous strata. For simplicity imagine the groups with 

structured errors are cultures. Even if the treatment is measured without error, multiple sources of error may 

led to statitical association without causation. 

Suppose we plan a cross-cultural investigation to clarify the relationship between interventions on religious 
service attendance, 𝐴, and charitable giving, 𝑌. We plan to obtain measures of covariates 𝐿 sufficient to control 

for confounding. Suppose we observe religious attendance so that it is not measured with error (as did Shaver 

et al., 2021), yet there is heterogeneity in the measurement of covariates 𝐿 and the outcome 𝑌. For example, if 

charitable giving measures are included among the baseline covariates in 𝐿, measurement errors at baseline 
will be correlated with outcome measures. Perhaps in certain cultures, charitable giving is under-reported 

(perhaps charity is associated with the vice of gullibility), while in others, it is over-reported (perhaps only the 

charitable are hired and promoted). Suppose further that true covariates affect the treatment and outcome. As 

shown in Table ?? 𝒢3.1, in this setting, multiple paths of confounding bias are open. 

https://doi.org/10.1017/ehs.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.33


18 

Moreover, because measurements are causally related to the phenomena we record, we cannot apply statistical 

tests to verify whether measures are recorded with error (VanderWeele, 2022; Vansteelandt & Dukes, 2022b). 

Whether the phenomena that we hope to measure are functionally equivalent across cultural settings remains 

unknown, and can generally only be discovered slowly, through patient, careful work with local experts. Although 
big cross-cultural projects are preferred in certain science journals, including multiple cultures in a single analysis 

imposes considerable burdens on investigators. All sources of error must be evaluated – and errors from one 

culture can poison the wells in the analysis of others. 

Table ?? 𝒢3.2 provides a sensible solution: restrict one’s study to those cultures where causality can be 

identified. Democritus wrote, ‘I would rather discover one cause than gain the kingdom of Persia’ (Freeman, 

1948). Paraphrasing Democritus, we might say, ‘I should rather discover one WEIRD cause than the kingdom of 

weird comparative research.’ 

Example 4: Correlated Measurement Error of Effect Modifiers for an Overly Ambitious Target Population  

Table ?? 𝒢4.1 considers the threats to target validity from correlated measurement errors in the target population 
arising from structured errors linking measurements for the effect modifiers. Here, we discover a familiar  

structural bias of correlated measurement error bias Table ?? 𝒢3 

Even if the treatment is randomised so that there are no open backdoor paths, and even if the treatment and 

outcome are measured without error, we will not be able to obtain valid estimates for treatment-effec t 
heterogeneity from their data, nor will we be able to apply target-sample weights (such as census weights) to 

obtain valid estimates for the populations in which the measurement errors of effect modifiers are manifest.  

Table ?? 𝒢4.2 suggests that where measures of effect modification are uncertain, it is best to consider settings in 

which the measurements are reliable — whether or not the settings are WEIRD (Western, Educated, 

Industrialised, Rich, and Democratic). Moreover, in comparative settings where multiple cultures are measured, 

unless each is proven innocent of structural measurement error bias, it is generally best to report the results for 

each culture separately, without attempting comparisons. 

Part 4 Measurement Error Bias Understood Through Single World Intervention Graphs 

Thus far, we have repeatedly observed that all biases in causal inference relate to confounding. In Part 1, we 
examined undirected/uncorrelated measurement error bias and found that measurement bias can arise ‘off 

the null’ without any confounding (Table ?? 𝒢2). In Part 2, we examined population-restriction bias at the end of 

a study, finding it to be a variety of undirected uncorrelated measurement error bias (Table ?? 𝒢5). In Part 3, we 

examined population-restriction bias at baseline; of the five biases considered, only one could be classified as 

confounding bias. 

Throughout this article, we encountered challenges in using causal direct acyclic graphs to represent biases that 

arise from effect modification. The blue arrows that we use to convey this bias in causal dags might make it 

appear that bias occurs through action at a distance. That causal directed acyclic graphs are limited in 

representing such biases should come as no surprise because causal DAGs are designed to clarify confounding 

bias and not other biases (Hernan & Robins, 2024; Pearl, 2009). 

To enrich our understanding of bias from measurement error bias and target population restriction – certain 

forms of which occur without confounding bias – we turn to Single World Intervention Graphs (SWIGs). SWIGs 
are causal diagrams that allow us to read counterfactual dependencies directly off a graph (Richardson & Robins, 

2013a). Similar to causal DAGs, Single World Intervention Graphs are not purpose-built to evaluate measurement 

error and restriction biases: they function to factorise conditional probability distributions from assumed causal 

structures so that investigators may evaluate identifiability conditions – or ‘no unmeasured confounding’ 

(Bulbulia, 2024c). However, because SWIGs encode assumptions about the relationships of treatments to the 
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counterfactual outcomes that arise after an intervention is made, SWIGs may help us to better understand the 

causal mechanisms at work when there are measurement error biases. We can demonstrate that there is no 

‘action at distance’ in measurement error biases. Furthermore, because target population restriction biases can 

be approached as measurement error biases, our results extend to target restriction biases as well. 

SWIGs operate by ‘node-splitting’ at each intervention (Bulbulia, 2024c; Richardson & Robins, 2013a), dividing 

the intervention into a random component and a fixed component. Nodes that follow a fixed intervention are 
relabeled with the value of the intervention depicted in a SWIG. Importantly only one intervention is represented 

in any given SWIG (we never observe the joint distribution of more than one intervention at a time). Single 

World Intervention Templates are ‘graph value functions’ that we may use to generate multiple Single World 

Intervention Graphs (Richardson & Robins, 2013b). Whether we imagine a single-point treatment or sequential 
treatments, one reads a SWIG just as one would read a causal DAG, ensuring there are no backdoor paths 

linking the random part of the node to the outcome. The deterministic part of a node is fixed, preventing 

confounding in the counterfactual future from the fixed portion of the node unless an open backdoor path 

arises before a subsequent intervention such that the subsequent intervention is no longer d-separated from 
the outcome. Again, although SWIGs, like causal DAGs, are built to evaluate the ‘no unmeasured confounding’ 

assumption of causal inference by factorising observed joint distributions into conditional and marginal 

distributions associated with a graph, the explicit representation of counterfactual states in a SWIG makes it 

easier to understand how bias arises in the absence of confounding, without supposing action at distance. 

Measurement Error in the Treatment Biases Causal Contrasts Because the Treatment Reporter is a Post-

Treatment Collider 

Table ??𝒢1.1 presents a Single World Intervention Template from which we may generate two counterfactual 

states of the world under two distinct interventions 𝐴 = �̃� ∈ {0, 1}. We call the measurement of the intervention 

a ‘reporter of A’ and denote the state of the reporter under 𝐴 = �̃� as 𝐵(�̃�). In our convention, if a node in a Single 

World Intervention Graph (or Template) is unobserved, we shade it in grey. 𝐸𝐴 denotes an unmeasured variable 
or set of variables that cause the reporter 𝐵(�̃�) to differ from �̃�, the fixed state of the intervention when 𝐴 is set 

to �̃�. In template Table ??𝒢1.1, 𝐴 = �̃� remains unobserved. The only observed nodes are 𝐵(�̃�) and 𝑌(𝐵(�̃�)), 

which is the potential outcome for 𝑌 as reported by 𝐵(�̃�). Note that here we include reporters of the 

unobserved true state of the treatment directly in our representation of the causal order as encoded in our 

Single World Intervention Graph. Table ??𝒢1.2 corresponds to the assumed state of the world when the reporter 
of 𝐴 is set to 𝐵(0). Table ??𝒢1.3 corresponds to the assumed state of the world when the reporter of 𝐴 is set to 

𝐵(1); in this world, investigators observe 𝑌(𝐵(1)). We assume that 𝐸𝐴 is independent of both 𝐴 and 𝑌(�̃�). 

However, we assume that 𝐸𝐴 causes 𝐵(�̃�) to differ from the true state 𝐴 = �̃�. As a result of this misclassification, 

we have no assurance whether 𝔼[𝑌(𝐵(1)) − 𝑌(𝐵(0))] = 𝔼[𝑌(1) − 𝑌(0)]. The SWIGs make it apparent that 
although 𝐴 is independent of 𝐸𝐴, 𝐴 = �̃� and 𝐸𝐴 become statistically entangled in the reporter 𝐵(�̃�), and it is this 

reporter, not the unobserved true state of 𝑌(�̃�), that investigators record. 

Consider the following example. Coach Alice randomly assigns one of two running programs to club runners:  

𝐴 = 1 (train), 𝐴 = 0 (do not train). Alice is not interested in estimating the effect of random treatment assignment 
(the intent-to-treat effect). Rather, she wants to understand the causal effect of training compared to rest—a 

per-protocol effect. Unknown to Alice, 20% do not follow the program. Table ??𝒢1.1 is a SWIG template that 

presents bias from measurement error in the treatment. The template serves as a ‘graph value function’ that 

generates SWIGs Table ??𝒢1.1, in which all runners receive 𝐴 = 0 (do not train), and Table ??𝒢1.2, in which all  

runners receive 𝐴 = 1 (train). Here, 𝐵(0) and 𝐵(1) denote the reporters of the level of the intervention. 

Again, we note that the treatment recorded is not the per-protocol effect 𝔼[𝑌(1) − 𝑌(0)] but rather the 

intentionto-treat effect 𝔼[𝑌(𝐵(1)) − 𝑌(𝐵(0))]. Generally, the effect we obtain will understate the per-protocol 
effect of training both on the difference scale and the risk ratio scale. Those who were assigned to training but 
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rest will dilute the effect of training: 𝔼[𝑌(1)] > 𝔼[𝑌(𝐵(1))]. Those who were assigned to rest but who 

nevertheless train will inflate the expected effect of resting: 𝔼[𝑌(𝐵(1))] > 𝔼[𝑌(1)]. Hence: 

𝔼[𝑌(1) − 𝑌(0)] > 𝔼[𝑌(𝐵(1)) − 𝑌(𝐵(0))] 

Note that attenuation of a true treatment effect in a setting of uncorrelated errors is not guaranteed (Jurek et 

al., 2008; Lash et al., 2020). The SWIGs in Table ??𝒢1.1−1.3 make the general measurement bias problem clear : 

although the treatment that is estimated remains d-separated from the potential outcomes, the causal contrast 

that we obtain at the end of the study is not the treatment we seek and will often (though not always) diminish 

a true treatment effect because the reporter under treatment is a common effect of the unmeasured source of 

bias and the treatment that has been applied, and it is the outcomes under mismeasured treatments that 

investigators contrast. 

Measurement Error in the Outcome Biases Causal Contrasts Because The Unmeasured Error of the Outcome 

is an Effect Modifier of the Outcome Reporter  

Table ??𝒢2.1 presents a Single World Intervention Template from which we may generate two counterfactual 

states of the world under two distinct interventions 𝐴 = �̃� ∈ {0, 1}. Here, the treatment is observed and recorded 

without error. Hence we do not include a reporter of the treatment. However, the true outcome is not observed, 

but only reported with error. 𝐸𝑌 denotes the unmeasured source of error in the reporting of 𝑌(�̃�), which we 
assume to be independent of 𝐴 and of 𝑌. We shade these nodes in grey because both 𝐸𝑌 and 𝑌(�̃�) are not 

observed. The node 𝑉 (𝑌(�̃�)) denotes the observed state of 𝑌 when 𝐴 = �̃�. In template Table ??𝒢2.1, 𝐴 = �̃� remains 

unobserved. Table ??𝒢2.2 corresponds to the assumed state of the world when 𝐴 = 0 and 𝑌(0) is reported with 

error as 𝑉 (𝑌(0)). Likewise, Table ??𝒢2.3 corresponds to the assumed state of the world when 𝐴 = 1 and 𝑌(1) is 

reported with error as 𝑉 (𝑌(1)). We assume that 𝐸𝑌 is independent of 𝐴 and of 𝑌. Misclassification will tend to 
increase the variance of the estimated treatment effect. If the outcome is continuous, the expected difference 

in the mean of the outcome for the reported outcome may differ from that for the true outcome. How bias 

affects the outcome will vary depending on the scale we use to evaluate such bias. 

Suppose that under training, the athlete runs a marathon in 3 hours, and under rest, they run a marathon in 4 

hours. To keep figures easy, we will use round numbers. Suppose the bias in reporting is 1 hour. Thus, we have 

𝔼[𝑌(1)] = 3, 𝔼[𝑌(0)] = 4; 𝔼[𝑉 (𝑌(1))] = 2 and 𝔼[𝑉 (𝑌(0))] = 3. 

ATE Difference Scale: no measurement error = 𝔼[𝑌(1)] − 𝔼[𝑌(0)] = 3 − 4 = −1 

ATE Difference Scale: measurement error = 𝔼[𝑉 (𝑌(1))] − 𝔼[𝑉 (𝑌(0))] = 2 − 3 = −1 

The effect estimates do not differ: 

ATE no measurement error = ATE measurement error  

However, consider this bias on the risk ratio scale: 

ATE Risk Ratio Scale: no measurement error = 𝔼[𝑌(1)]/𝔼[𝑌(0)] = 3/4 = 0.75 

ATE Risk Ratio Scale: measurement error = 𝔼[𝑉 (𝑌(1))]/𝔼[𝑉 (𝑌(0))] = 2/3 = 0.66 

https://doi.org/10.1017/ehs.2024.33 Published online by Cambridge University Press

https://doi.org/10.1017/ehs.2024.33


21 

These effect estimates differ: 

ATE RR no measurement error ≠ ATE RR measurement error  

Imagine the bias was positive, such that runners added an hour to their times—perhaps the runners do not 

want to stand out. The true risk ratio for the treatment remains 0.75. However, the biased risk ratio for the 

treatment would become: 

ATE Risk Ratio Scale: measurement error = 𝔼[𝑉 (𝑌(1))]/𝔼[𝑉 (𝑌(0))] = 4/5 = 0.8 

Here we would understate the true treatment effect. The Single World Intervention Graphs Table ??𝒢2.1−2.3 make 
clear the reason for the scale sensitivity of the bias. Although the source of bias in the outcome (𝐸𝑌) is 

independent of the treatment (𝐴), 𝐸𝑌 functions as an effect modifier for the reported outcome 𝑉 (𝑌(�̃�)). 

Consider: it has long been understood that where treatment effects vary across different population strata, an 

estimate of the causal effect on the risk difference scale will differ from the estimate on the risk ratio scale 

(Greenland, 2003). Here, we find that reporters of the outcome are subject to similar relativity. For example, we 

might have constructed a multiplicative error function for the outcome such that we subtract 1 hour if the 

response is 3 and subtract 1.344 if the response is 4. Under this error function, the risk ratio would remain stable 
at 0.75 irrespective of whether the outcome was measured with error; however, the risk difference would no 

longer be constant. 

Note that we have encountered SWIGs Table ??𝒢1.2−1.3 and Table ??𝒢2.2−2.3 before. These causal graphs are 

structurally equivalent to the causal directed acyclic graph in Part 1 Table ?? 𝒢2, in which we considered 
uncorrelated independent measurement error. Moreover, we Table ??𝒢2.2−2.3 is equivalent to Part 2 Table ?? 𝒢5, 

in which we considered target-restriction bias without confounding; and Part 3 Table ?? 𝒢1, 𝒢2, 𝒢4 in which we 

considered target population restriction biases in the analytic sample at the start of the study. Single World 

Intervention Graphs are useful in providing a more detailed representation of causality in which the biases that 

give rise to biased causal effect estimates when there is measurement error bias ‘off the null’ – such as when 
restricted representation of the target population by the analytic sample at the start or end invalidates the causal 

inferences we seek for the target population. 

Measurement Error in The Treatment Or Outcome Will Not Modify a Strictly ‘Null’ Effect  

As shown in Table ??𝒢1.4 and Table ??𝒢2.4, if we assume randomisation into treatments, or equivalently if we 

assume no unmeasured confounding conditional on perfectly measured covariates, we will no expect a biasing 

path leading to an association between treatment and outcome. However, a strict ‘null’ effect cannot be 
assumed. Note that we do not use ‘null’ here in the sense of null hypothesis significance testing, where there is 

no such thing as a ‘null’ effect. Supplementary materials S5 uses Single World Intervention Graphs to describe 

correlated and directed measurement error and consider how bias correction may be interpreted 

mechanistically as interventions on reporters. 

Summary Part 4 

We have characterised target-population restriction bias, whether at the start or the end of the study, as formally 

equivalent to undirected uncorrelated measurement error. Here, Single World Intervention Graphs (SWIGs) allow 
us to apply lessons from the study of effect modification to the analysis of measurement error biases. SWIGs, as 

shown in 𝒢2.1−2.3, greatly clarify how measurement error bias for the outcome arises in the absence of 

confounding bias: the unmeasured causes of error function as effect modifiers of the outcome reporters, such 

that causal contrasts will differ on at least one scale of effect ‘off the null’. The mathematical explanation in 
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supplementary materials S3 for threats to external validity from right censoring applies equally to threats from 

left censoring, as does the simulation in supplementary materials S4. 

Note that all of the biases we have considered cannot be evaluated by statistical tests. For example, even if 

investigators were to obtain satisfactory test statistics for metric, configural, and scalar equivalence, they would 

be unable to diagnose target population restriction biases with these tests. Nor would we be able to diagnose 

other forms of measurement error biases using statistical tests. Rather, they can only evaluate evidence for bias 
by first representing the causal structures they assume hold in the world, and investigating the implications of 

each assumption one by one. Likewise, we cannot take the invalidation of standard statistical tests as evidence 

that similar causal effects underpin sample responses to the interventions of interest. Assumptions alone do not 

clarify the causal realities that give rise to them. A similar point about the role of assumptions in comparative 

research is made in Schimmelpfennig et al. (2023) and Schimmelpfennig et al. (2024). 

Conclusions 

In causal inference, we start by clearly defining treatments and outcomes and specifying contrasts for 

hypothetical interventions on a specific scale (such as the additive scale) across a well-defined target population. 
We then evaluate the prospects for identifying these causal effect estimates on the full data — the entire 

counterfactual dataset where the population is simultaneously observed under each intervention to be 

contrasted. Obtaining valid contrasts requires that we consider sources of measurement error, and target 

population restriction bias (also known as ‘selection bias’) – biases that may arise in the absence of confounding 

by a common cause of the treatment and outcome. Although causal inference is gaining popularity, there is 
considerable scope to improve habits of reflecting on the threats to valid inference that measurement error bias 

and target population-restriction bias present. We have considered how these threats become evident in the 

comparative human sciences, and furthermore, how target population-restriction biases often take the form of 

measurement error bias. Although Single World Intervention Graphs (SWIGs) were developed to evaluate the 

conditional exchangeability assumption, they also clarify the diagnosis of structural sources of measurement 

error bias. We have considered more generally that lacking structural assumptions – that is causal assumptions 
– statistical tests alone are insufficient for diagnosing the implications of measurement error biases, which may 

be directed, correlated, both directed and correlated, or undirected and uncorrelated. Whether and how we may 

correct for measurement-error biases requires structural assumptions that we do not obtain from the data alone, 

refer to supplementary materials S2 and S5. 

Nothing I have said here should detract from the importance of seeking species-level knowledge. We should 

seek such knowledge. Science should seek generalisations where it can because generalisation is knowledge. In 

my view, there are also ethical reasons – a great many populations remain understudied; where there are no 
scientific reasons for restriction, where a valid target population can be stated for a cross-cultural sample, and 

where costs permit, we should seek wider samples. Here, we have considered that problems of measurement-

error bias remain even if adequate samples are taken from broader populations. To put the point metaphorically, 

before investigators venture into the vast wildernesses of human existence, locally-understood gardens of 

human existence must be cultivated. Because a long shadow of measurement error bias casts its shade over 

nearly every aspect of the human condition that scientists hope to understand, locally-understood gardens of 
human existence remain largely uncultivated. The good news is that standard workflows for causal inference 

offer investigators generic guidance. We avoid weird (wrongly estimated inferences due to inappropriate 

restriction and distortion) inferences in comparative research in the same way that we avoid weird inferences in 

any research by undertaking the following steps: 

1. State a well-defined intervention. 

Clearly define the treatment or exposure to be evaluated. For which exposures do we hope to infer 

consequences? Which levels of the exposure shall we compare? Why these levels and not others?  
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2. State a well-defined outcome. 

Clearly define the outcome to be evaluated. Which consequences are of interest? Which comparisons will be 

made? At which time scale following exposure are we interested in evaluating outcomes? At which scale of causal 

contrast are we interested? 

3. Clarify the target population. 

Use eligibility criteria to define the population to whom the results are meant to generalise, understanding that 

causal contrasts may differ for different populations, even in the absence of confounding or measurement error 

biases (Hernán et al., 2016). 

4. Ensure treatments to be compared satisfy causal consistency. 

Verify that the treatments correspond to interpretable interventions (Hernan & Robins, 2024). Satisfying the 

causal consistency assumption is a necesary condition for valid causal inference. 

5. Evaluate whether treatment groups, conditional on measured covariates, are exchangeable. 

Balancing confounding covariates across treatment levels ensures that differences between groups are 

‘ignorable’, or equivalently, are conditionally exchangeable, or equivalently, that all backdoor paths have been 

closed, or equivalently that the treatment and outcome are d-separated. Ensuring that confounders are balanced 

in the treatments to be compared is a necessary condition for valid causal inference. 

6. Check if the positivity assumption is satisfied. 

Confirm that all individuals in the target population have a non-zero probability of receiving each treatment level, 

given their covariates. Satisfying the positivity assumption is a necesary condition for valid causal inference.  

7. Ensure that the measures relate to the scientific questions at hand. 

Ensure that the data collected and the measures used directly relate to the research question to hand. As part 
of this, evaluate structural features of measurement error bias. As we have considered, there are manifold 

possibilities for measurement error bias to obscure the phenomena under study and bias results. For example 

target-population-restriction biases manifest as measurement error biases where inferences for the analytic 

sample population differ from inferences for the target population. 

8. Consider strategies to ensure the analytic sample measured at the end of the study represents the 

target population. 

If the distribution of effect modifiers in the study population at the end of treatment differs from the distribution 

of effect modifiers in target population, the study will be biased in at least one measure of effect. 

9. Clearly communicate the reasoning, evidence, and decision-making that inform steps 1-8. 

Provide transparent and thorough documentation of how steps 1-8 have been made. This includes stating 

investigator assumptions, disagreements, and decisions. Prepare to conduct and report multiple analyses where 

causal assumptions are debated or ambiguous (Bulbulia, 2024b). 

We have seen that the demands of following this workflow in comparative research are more stringent because 

measurement error biases must be evaluated at every site to be compared. Correlated and directed structures 
of measurement error bias can distort treatment effect estimates for the broader target population. More 

fundamentally, the target population in comparative research may not be easily defined, sampled, or, when 

required by the scientific question, appropriately restricted. Methodologists broadly agree on these points but 

can easily forget them (as discussed in Ghai et al., 2024). We have shown how workflows for causal inference act 

as essential preflight checklists for ambitious, effective, and safe comparative cultural research. These workflows 

help propel the human sciences forward without overreaching. 
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