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The Vibrations of a Particle about a Position of
Equilibrium—Part III.

The Significance of the Divergence of the Series Solution.

By Dr BKVAN B. BAKER.

(Read 10th November 1922. Received 27th Augvst 1923.)

§ 1. In the two parts of this investigation previously published *
it has been shown that the solution in terms of elliptic functions
represents the motion of the particular dynamical system under
consideration throughout the whole range of values of s and g for
which a real solution exists, except for those values for which
s = 2g and k=\, but that, on the other hand, the series solution
is convergent and represents the motion only so long as

for values of * and g for which the sign of this inequality is
reversed the trigonometric series representing the solution are
divergent. I t is of importance to investigate what discontinuities,
if any, of the system correspond to values of « and g which lie on
the boundary of the region of convergence; the present part is
concerned primarily with showing that under such circumstances
no discontinuity of the system exists, thus confirming the sugges-
tions made in Part I., § 12.

§ 2. The Equation of the Boundary of the Region of Convergence.
The first step is to obtain the analytical relation between a and

g which corresponds to points on the boundary of the region of

* Baker and Boss, "The Vibrations of a Particle about a Position oi
Equilibrium," Proe. Edin. Moth. Soc, XXXIX. (1920 21), pp. 34-57 (referred
to in the sequel as Part I.); Baker, " The Vibrations of a Particle about a
Position of Equilibrium — Part II.; The Relation between the Elliptic
Function and Series Solutions," Proe. Edin. Math. Soc., XL. (1921-22),
pp. 34-49 (referred to in the sequel as Part II.).

t Part II., p. 48; it is evident that the sign of inequality in inequality
(35) on that page should be reversed.
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convergence. For such points the quantity under the modulus on
the left hand side of inequality (1) must be equal either to + 1
or to — 1.

1°. Suppose

The quantity under the radical in the expressions for v and fi *
is then zero and we obtain

s2 1 A

But since v = p and v is the greatest root of the cubic, they must
both equal £ for any real solution,t so that

v = a = h and therefore A = —-.
4a.2

The locus corresponding to these values of A., p, v is the part of the
double line, 8 = 2g, between the points of contact with the curved
branches of the discriminant curve; this part of the double line is
therefore a boundary of the region of convergence (see the figure
in Part II., p. 37).

2". Suppose

then T ^ = 5 ( 1 ^ -Mi)+ <»-»*> (2)
Substituting this value in the expressions for v and /i, J we obtain

2 72a.2 (3)

* Part II., §11, p. 48.
t Of. Part I., §8, p. 48.
f Part II., § 11, p. 48.
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To obtain the equation of the boundary it is simplest to eliminate
A. between equation (2) and the equation of the cubic which is
satisfied by X, viz.,

4a.* Xs - (4<x2 + «2) A.2 + (a2 + 2»g) X - f = 0.

This elimination leads to the equation

U L( * V Ll8 V l (* V 1 1 8

..W + 2W +l6W " i l l

which is the equation of the remainder of the boundary of the
region of convergence of the series solution.

When g = 0, this equation reduces to the simple form

-L 4 (ss - 8oc2) (*» - 8<Ax2 - 8s*a* + 8a8) = 0,
I MO Of.

so that in this particular case we have the real values «= 0 and
«= + 2 J2a., which agrees with the results previously obtained.*

In the general case no simple factors of the expression have
been discovered.

Owing to the complicated form of equation (4) it seems
impossible to discuss analytically the particular characteristics, if
any, of those orbits for which the corresponding values of s and g
lie on the curved part of the boundary of the region of convergence;
recourse must therefore be had to the discussion of particular
numerical cases.

Before proceeding to investigate such special cases another
general result may be given, which has some bearing on the
the question.

• Part IL, § 10 (ii), p. 47.
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§ 3. The Envelope of the Orbit.

In the numerical cases considered in Part I. it will be observed
that the whole orbit is contained in a certain bounded region of
the plane of <£, and fa. I t seems worth while to obtain the equa-
tion of the boundary of this region not only as a means of checking
the numerical calculations,* but, what is more important from the
point of view of the present investigation, because it is conceivable
that, for points on the boundary of the region of convergence, these
boundary curves may exhibit some peculiarities. For want of a
better name we shall refer to the boundary curve as the "envelope"
of the orbit.

To determine the equation of the "envelope" we employ a
method similar to that used by Beth + in a particular simple case.

The position of a particle at any instant is given by the
equations }

where plt plt q,, q% have certain definite values which may be
determined. Writing 2p, -pi=<f>, the equations become

(5)

the quantities qlt q2, Pi and <f> being determined at any instant.

Now suppose we keep y,, q2 and <j> fixed and vary p , ; the
corresponding values of <£, and fa determine a certain Lissajous
figure, which is the curve instantaneously described at the moment.
We may call such a curve an "osculatory curve," using a term

* The plotting of the boundary cur re disclosed a numerical slip in the
oaloulations on which the orbit represented in figure 2 of Part I., p. 45, was
based; the oorreot orbit for this case is shown in figure 3 of the present
paper. This emphasises the value of finding the envelope as a cheok on the
long and intricate calculations.

t Archives Nierlandaitea it* 8c. ex. et not. (2), 15 (1910), pp. 246-283.
The system disouased by Beth corresponds to the case in whioh »=0.

t Part I., § 2, p. 35, eqns. (1).
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employed by Poincare1 in a similar connection.* The envelope
of all such osculatory curves will be the required "envelope" of the
orbit.

Write q1 = f, so that qt = —— ; then from equations (5)

J tcosft^y-j =a;(say), (6)

JT^Jcos(-2Pl-<j>) = <l> N/Z"=2t/(say) (7)

Further
A = 1 - g = *, qt + «2 q 2 + <xj, q$ cos <f>, J

Writing A= _ _ , ?l= , this equation becomes
V 2 a. V 2 a.

7 c o s ^ = A - Z f (8)

Eliminating <£ and p, between equations (6), (7) and (8) we
obtain

^ = 0. ...(9)

Differentiating this equation with respect to £ and eliminating
between the resulting equation and equation (9) we have finally

kl \2 / P

or, expanding and removing the factor a?,

+ kl - P) - Ux*y + §kxiy + x'y*(iP - 4) - 2ky - ikly*
(10)

* See Poinoare, Legons de la Micanique cttesle, I., p. 90.

t Part I., § 2, p. 36, eqn. (6).
t Part I., §2, p. 36, eqn. (5).
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which is the required equation of the envelope in terms of the
coordinates x and y.

If we seek to identify equation (10) with the equation

{a? + Av y + 5,) (a? + Aa y + B,) (a2 + At y + B,) = 0,

we find that Alt A2, At are the roots of the cubic

l ) £ - 8 * = 0 (11)

Now the cubic of Pa r t I., §9, p. 49, eqn (20), may be writ ten in
the form

this is the cubic whose roots are k, /x, v. Transforming this cubic
into the corresponding cubic for q1 by put t ing qx = 1 - 2qit we obtain

2k
which, on putt ing qx = , becomes

The values of A x , A 3 , A , are therefore given by

•2k 2k 2k
1-2A.' 1-2/x' " l - 2v"

The expressions for Bl, 52
 a n d -̂ 3 m a 7 De found without difficulty.

The " envelope " of the orbit thus breaks up into the three coaxial
parabolas

2k (L

Transforming back to the coordinates <f>i a n c ' </>: l>7 means of
equations (6) and (7) we obtain three similar parabolas in the
plane of <£, and <£«.
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Now in all cases in which there is a real solution
A.<J, / t<£ and v>\;

thus :—
when k>Q, i.e. 8>2g, the parabolas (12) and (13) extend to

infinity in the positive direction of the axis of </>2) whereas the
parabola (14) extends to infinity in the opposite direction;

when k<0, i.e. s<2g, the parabola (14) extends to infinity in
the positive direction of the axis of <j>v whereas the parabolas (12)
and (13) extend to infinity in the opposite direction.

From a consideration of the equations (12), (13) and (14) it is
evident that the "envelope" of the orbit possesses no essential
peculiarities when the values of 8 and g correspond to a point on
the boundary of the region of convergence of the series solution;
this is further demonstrated by the following numerical cases.

§ 4. Orbits on the Boundary of the Region of Convergence.
All analytical attempts to discover peculiarities of the orbits

on the boundary of the region of convergence having failed, we
are led to the consideration of particular numerical cases in which
s and g satisfy the relation (2).

1°. The simplest case is where
g = 0, s = 2 N/IOL.

We take as before a. = 0-1 and obtain as the result of the
calculations

00428,9083 sn u

s n u 1-0000,1822 1"-?*o * * " o ' ' I »' L l-2?cos2t> J '

v = 0 . 9 9 9 9 , 8 6 0 5 M, M = 10000,13951>,

9 = 0-0000,0348,75,
?i = l - 2 ? 2

Pl = 2 9921,9499» + $ tan"1 {11 5704,2647 dew}
-0-0009,3373 sin 2t? + 0 0000,0174 si

jt>2 = 5 4843,8992 v + %*

* i)i and T)2 are arbitrary constants of integration which may be added to
Pi and p2. They are determined so that qv g2. Pi, and p2 satisfy the integral
of energy

i-g = h = «1?1 + 8fl9 + aqtfj cos (2p, - p2).

Their importance was not recognised in the calculations giveD in Fart I,
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dc u = 0 9999,8177,7 (

! = !, ^=1-7171,5728,8,

l+2q cos 2t>
cos v + y2 cos 3t> //'

. cos plt <p2 =

^, = 0, %=135''0'-42.

The orbit for values of v from 0° to 366° is shown in figure 1.

F I G . I

The parabolas forming the envelope of the orbit have the
equations

# = 5-2416,141 4>2; <k = ( # - 2)0-1580,4812 ;

- y ) 1-8423,4370;

the envelope is represented by the broken lines in the figure.

https://doi.org/10.1017/S0013091500077920 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091500077920


136

The characteristic features of this orbit are that for a certain
value of the time, q3 becomes zero, and that one of the parabolas
forming the envelope of the orbit passes through the origin of
coordinates. These peculiarities are readily seen to be due to the
fact that g = 0, and are not associated with the condition that
the values of 8 and g under consideration correspond to a point on
the boundary of the region of convergence. For qa is zero when
S D U = - 1 , provided that mk = l; but if this condition is satisfied
we must have A. = 0 and therefore g = 0.

The orbit therefore presents no peculiarities which can be
attributed to the fact that the values of s and g correspond to a
point on the boundary of the region of convergence.

2°. As an additional case we will assume s = O2 and the
corresponding value of g, which satisfies equation (2) is found to be
g = 0-0297,0372,3, taking, as before, a. = 0 1. We obtain

01096,8478 sn u

1-0001,6216 sin v- 00000,0001 sin 3 c
S D U 1 - 0 0001,6281 cos 2 c

Pl = 4-0922,3122 v + £ tan"1 {3 3383,6429 dc u)

— \-a— h t an -^0 9576,341 tan «} +1

j»2 = 71844,120c + i tan-1 {C 9914,7001 dew}

^r-\ tan-1 {0-7037,413 tan v) 1 + •

0-9998, 3787(1+0-0001, 6281 cos2i>)
dcw= ',

cost>cost>

- 0 , T ? 2 = - 1 3 4 ° 5 9 ' . 9 1 ,

The orbit for values of v from 0° to 360° is shown in figure 2.
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The equations of the parabolas forming the envelope of the
orbit are found to be

= 0-6765,3662 j y + 0-3442,7800 j ,

= 0-3471,6324j^- - 1 5732,6368],

= l-7734,4980| 0 7710,1434 - ~] ;

these curves are shown by broken lines in the figure.

3°. To show that the orbit just discussed exhibits no peculi-
arities it may be compared with the orbit of Part I., fig. 1 or with
the correct solution of the case discussed in Part I., §7, pp. 44-45.*
In this case s = 0, g = 0-02, o. = 0*1, and we find

01676,1353 sn« +0-2089,2106
?,.= - 0-1605,8204 snw+1

1.0032,6295 sin v
, u = 10065,4186 «,1 - 0 0032,66(50 cos 2v

Pl = 7-3564,8496 w - J t an - 1 ^ 7645,8405 dew}
+ 0-0101,5432 sin 2 v

- 00001,0177 sin 4 v + 00000,0137 sin 6 v
-0-0000,0002 sin 8

p2= 14-7129,6994 u+ £ tan-1{0-7594,2794 dctt}

+ f y - £ tan-^0-6008,7091 tan v}~\

- 00000,0501 sin

09967,4766 (1 + 0-0032,6560 cos 2v)
coav '

i?1=157°30'00, 7,a = 0.

The orbit for values of v from 0° to 360° is shown in figure 3.

* As previously mentioned the work given in that place contained a
numerical slip.
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The equations of the parabolas forming the envelope of the
orbit are found to be

<k=l 12699 (0-19686 -<£?),
<&, = 0-43890 (1-29788 - tf),
<k = 0-31588(#-2-50546);

these curves are shown by broken lines in the figure.*

5 It has therefore been demonstrated adequately, that there
is no discontinuity in the system corresponding to a passage from
values of s and g for which the series solution is convergent to
values for which it is divergent. In other words, the divergence
of the series solution represents no discontinuity in the system but
merely the failure of the series solution to represent the motion for
such values of s and g. On the other hand, it has been shown that
the same remarks do not apply to that part of the boundary of the
region of convergence which consistfs of the double line s = 2g;
for values of s and g on this line the system does possess a dis-
continuity.

To sum up the results obtained for the particular dynamical
system which has been considered :—

It has been shown that real solutions of the problem exist for
a range of values of s and g determined from the discriminant of
the cubic

4 orst? - (4 a? + **) a? + (OL* +2 sg) x - g*~Q.

A solution has been obtained in terms of elliptic functions which is
valid throughout the region of real solutions, except on the double
line * = 2g, where the solution degenerates into a certain asymptotic
form.

The solution in trigonometric series, however, is only valid in
a part of this region, corresponding to values of s and g for which
the roots of the cubio are expressible in the form of infinite series

of positive powers of —; the boundary of the region of con-

vergence of the series solution is thus defined.
It has further been shown that the divergence of the series

solution represents no discontinuity in the system.
In Part IV. it will be shown how these results may be extended

to any dynamical system whatever.

* The complete calculations for this and the previous Parts are given
in the Thesis submitted by the Author for the degree of D.So. in the
University of Edinburgh, entitled " The Convergence of the Trigonometric
Series of Dynamios," 2 vols., which may be found in the General Library of
the University of Edinburgh.
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