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Abstract

Large deviations of the largest and smallest eigenvalues of XX�/n are studied in this
note, where Xp×n is a p × n random matrix with independent and identically distributed
(i.i.d.) sub-Gaussian entries. The assumption imposed on the dimension size p and
the sample size n is p = p(n) → ∞ with p(n) = o(n). This study generalizes one result
obtained in [3].
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1. Introduction

For any two integers p, n ≥ 2, let Xp×n be a p × n random matrix with independent and iden-
tically distributed (i.i.d.) real entries. The matrix W defined by W = XX�/n (with � standing
for matrix transpose) is usually called a sample covariance matrix (see [1] and [11]), where p
and n can be understood as dimension size and sample size respectively. When the entries are
i.i.d. centered normal random variables, then nW is called a Wishart matrix. Sample covariance
matrices appear naturally in many situations of multivariate statistical inference; in particular,
many test statistics involve the extremal eigenvalues of W. For instance, the union-intersection
principle proposed in [8] suggests that one can use the largest eigenvalue of the sample covari-
ance matrix to test whether or not the population covariance is identity. In the literature, weak
convergence and law of large numbers of the extremal eigenvalues of W have been well stud-
ied; see [1], [5], [6], [11], and the references therein. In this note we study large deviations of
the extremal eigenvalues of W as both p and n tend to infinity.

As the non-zero eigenvalues of XX� are the same as those of X�X, it is without loss of
generality to assume that p ≤ n. Let λmin and λmax denote the smallest and largest eigenvalue
of W respectively. It is assumed throughout the note that the i.i.d. entries {Xij}1≤i≤p,1≤j≤n

of X have zero mean E(Xij) = 0 and unit variance V(Xij) = 1. Under the fourth finite moment
assumption EX4

ij <∞, Bai and Yin [1] proved that λmin → (1 − κ1/2)2 and λmax → (1 + κ1/2)2

almost surely as n → ∞ and p = p(n) → ∞ with p(n)/n → κ . When κ = 0, the above results
indicate that for large p and n the majority of λmin lies in the region close to 1 from the left,
and the majority of λmax lies in the region close to 1 from the right. Therefore Fey et al.
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[3, Theorem 3.1] studied asymptotics on large deviation probabilities in the forms P(λmin ≤ c)
with 0 ≤ c ≤ 1 and P(λmax ≥ c) with c ≥ 1 for large p and n satisfying p = o(n/ln ln n). They
also noted [3, p. 1061] that the technical assumption p = o(n/ln ln n) might be extended further
by refining the arguments; however, this does not seem to be able to get rid of the logarithmic
term.

The main result of this note (see Theorem 1 below) is an extension of [3, Theorem 3.1] in
two respects: (a) the technical assumption is extended to p = o(n), and (b) the i.i.d. entries are
more general. To state our main result, let us recall the definition of sub-Gaussian distribution.
A random variable X is said to be sub-Gaussian if it satisfies one of the following three equiv-
alent properties, with parameters Ki, 1 ≤ i ≤ 3 differing from each other by at most an absolute
constant factor (see [10, Lemma 5.5]).

(i) Tails: P(|X|> t) ≤ exp
{
1 − t2/K2

1

}
for all t ≥ 0.

(ii) Moments: (E|X|p)1/p ≤ K2
√

p for all p ≥ 1.

(iii) Super-exponential moment: E exp
{
X2/K2

3

}≤ e.

If moreover E(X) = 0, then (i)–(iii) are also equivalent to the following.

(iv) Moment generating function: E exp{tX} ≤ exp
{
t2K2

4

}
for all t ∈R for some constant

K4.

Furthermore, the sub-Gaussian norm of X is defined as supp≥1 p−1/2(E|X|p)1/p, namely the
smallest K2 in (ii).

Theorem 1. Suppose that the entries {Xij}1≤i≤p,1≤j≤n of X are i.i.d. sub-Gaussian with zero
mean and unit variance. Then, for p = p(n) → ∞ with p(n) = o(n) as n → ∞, we have the
following.

(i) For any c ≥ 1,

lim inf
n→∞ n−1 ln P(λmax ≥ c) ≥ −I(c), (1)

lim sup
n→∞

n−1 ln P(λmax ≥ c) ≤ − lim
ε→0

I(c − ε). (2)

(ii) For any 0 ≤ c ≤ 1,

lim inf
n→∞ n−1 ln P(λmin ≤ c) ≥ −I(c), (3)

lim sup
n→∞

n−1 ln P(λmin ≤ c) ≤ − lim
ε→0

I(c + ε). (4)

Here I(c) := limp→∞ Ip(c) with

Ip(c) = inf
x∈Rp,‖x‖=1

sup
θ∈R

[
θc − ln E exp

{
θS2

x,1

}]
,

‖x‖ being the Euclidean norm, and

Sx,i =
p∑

k=1

xkXki for x = (x1, . . . , xp) ∈R
p, 1 ≤ i ≤ n.
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For standard normal entries, the results of Theorem 1 were proved in [3, Theorem 3.1]
(assuming p = o(n/ln ln n)), and in [4, Theorems 2 and 3] (under the assumption p(n) = o(n))
where general β-Laguerre ensembles were considered (with β = 1 corresponding to entries
being standard normal). From this point of view, Theorem 1 can also be regarded as an
extension of [4, Theorems 2 and 3] from β-Laguerre ensembles to sub-Gaussian entries. The
continuity of I(c) is still largely unknown, as pointed out in [3]. However, with the arguments in
[3, Theorem 3.2], I(c) can be shown to be continuous on [1,∞) for some special sub-Gaussian
entries; see Section 2.3 for more details. The proof of Theorem 1 makes use of a concentration
inequality of the largest eigenvalue λmax (see Section 2.1), which helps us to avoid refining the
arguments in [3]. The same idea was employed in [9] for the study of condition numbers of
sample covariance matrices.

2. Proof of Theorem 1

2.1. Concentration inequality for the largest eigenvalue

Vershynin [10, Theorem 5.39] considered a random matrix Ap×n whose columns Aj, 1 ≤
j ≤ n are independent sub-Gaussian isotropic random vectors in R

p. Here we switched ‘rows’,
which was originally written in [10, Theorem 5.39], to ‘columns’, as therein the largest singular
value smax(A) of A is defined as the largest eigenvalue of (A�A)1/2, while in the current note
we always consider the form XX� because of the assumption p ≤ n. If we now take A = X,
then the elements in each column are i.i.d. sub-Gaussian random variables, implying (based
on [10, Lemma 5.24]) that the sub-Gaussian norm ‖Aj‖ψ2 of each column Aj is finite, which is
independent of p and n. As columns have the same distribution, it holds that K := ‖A1‖ψ2 =
· · · = ‖An‖ψ2 . The concentration inequality in [10, Theorem 5.39] says that for any t ≥ 0, and
two absolute constants κ1, κ2 > 0 only dependent on K,

P
(
smax(A)>

√
n + κ1

√
p + t

)≤ 2e−κ2t2 .

Note that s2
max(A) = nλmax in the case A = X, so the above non-asymptotic inequality reads

P
(
λmax >

(
1 + κ1

√
p/n + t/

√
n
)2)≤ 2e−κ2t2 .

With γ := t/
√

n and the fact p ≤ n, for any γ ≥ 0 it becomes

P
(
λmax > (1 + κ1 + γ )2)≤ 2e−κ2γ

2n. (5)

2.2. Proof of the upper bounds

As suggested in [3], the fundamental first step of the proof is as follows:

P(λmax ≥ c) = P(∃x ∈R
p with ‖x‖ = 1 and (x · Wx) ≥ c)

= P

(
∃x ∈R

p with ‖x‖ = 1 such that
n∑

i=1

S2
x,i/n ≥ c

)
, (6)

P(λmin ≤ c) = P(∃x ∈R
p with ‖x‖ = 1 and (x · Wx) ≤ c)

= P

(
∃x ∈R

p with ‖x‖ = 1 such that
n∑

i=1

S2
x,i/n ≤ c

)
. (7)
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Then the lower bounds (1) and (3) (for any p ≤ n) follow directly from Cramér’s theorem
for i.i.d. random variables Sx,i, 1 ≤ i ≤ n. More specifically, we first fix an integer p and choose
an x such that only the first p components are non-zero, then apply Cramér’s theorem, and
finally send p to infinity; see also the detailed arguments in [3, Section 3.2] leading to (3.8)
therein. To prove the upper bounds in (2) and (4), as explained in [3] and [9], we shall use a
finite number Nd of spherical caps of chord 2d̃ := 2d

√
1 − d2/4 with centers x(j) to cover the

entire unit sphere S defined as ‖x‖ = 1, such that for any x ∈ S there is some x(j) ∈ S close to x
with ‖x − x(j)‖ ≤ d. In this case,

|x · Wx − x(j) · Wx(j)| ≤ (‖x‖ + ‖x(j)‖)‖W‖‖x − x(j)‖ ≤ 2λmaxd

(see [3, p. 1054]). For p = p(n) → ∞ as n → ∞, we need an explicit expression of Nd, which
can be borrowed from [9] (see also [3] and [7]) as

Nd = 4p̃(n)3/2d̃
−p̃(n)

(ln p̃(n) + ln ln p̃(n) − ln d̃)(1 + O(1/lnp̃(n)))

for all d< 1/2 and large p̃(n) := p(n) − 1. Then it is clear that for any fixed d, we have the
limit limn→∞ n−1 ln Nd = 0 with p(n) = o(n).

Thanks to the concentration inequality (5), the following upper estimates are used:

P(λmax ≥ c) ≤ P
(
c ≤ λmax ≤ (1 + κ1 + γ )2)+ P

(
λmax > (1 + κ1 + γ )2), (8)

P(λmin ≤ c) ≤ P
(
λmin ≤ c, λmax ≤ (1 + κ1 + γ )2)+ P

(
λmax > (1 + κ1 + γ )2). (9)

To prove (2), applying (6) to (8) gives

P
(
c ≤ λmax ≤ (1 + κ1 + γ )2)≤ P

(∃x(j) :
(
x(j) · Wx(j))≥ c − 2d(1 + κ1 + γ )2)

≤
∑

1≤j≤Nd

P
((

x(j) · Wx(j))≥ c − 2d(1 + κ1 + γ )2)
≤ Nd max

1≤j≤Nd

P
((

x(j) · Wx(j))≥ c − 2d(1 + κ1 + γ )2)

≤ Nd max
1≤j≤Nd

P

(
n∑

i=1

S2
x(j),i/n ≥ c − 2d(1 + κ1 + γ )2

)
,

where the first inequality comes from the facts∣∣x · Wx − x(j) · Wx(j)
∣∣≤ (‖x‖ + ‖x(j)‖)‖W‖‖x − x(j)‖ ≤ 2λmaxd

and λmax < (1 + κ1 + γ )2. With ε := 2d(1 + κ1 + γ )2, the Chernoff upper bound (see [2,
remark (c) of Theorem 2.2.3]) implies

n−1 ln P
(
c ≤ λmax ≤ (1 + κ1 + γ )2)

≤ n−1 ln Nd − min
1≤j≤Nd

sup
θ∈R

[
θ (c − ε) − ln E exp

{
θ
(
S2

x(j),1

)}]
≤ n−1 ln Nd − Ip(n)(c − ε) + o(1).

With p(n) = o(n) and the fact limn→∞ n−1 ln Nd = 0, it follows that

lim sup
n→∞

n−1 ln P
(
c ≤ λmax ≤ (1 + κ1 + γ )2)≤ −I(c − ε).
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Taking into account the concentration inequality (5), we obtain

lim sup
n→∞

n−1
P(λmax ≥ c) ≤ max

{−I(c − ε),−κ2γ
2}.

Thus (2) is proved by first taking d → 0+ (implying that ε→ 0+) and then sending γ → ∞.
In a very similar way (4) can be proved by applying (7) to (9) as follows:

P
(
λmin ≤ c, λmax ≤ (1 + κ1 + γ )2)≤ Nd max

1≤j≤Nd

P

(
n∑

i=1

S2
x(j),i/n ≤ c + 2d(1 + κ1 + γ )2

)
.

Here we remark that the original proof in [3] is based on splitting the values of λmax into
two (or more) parts with the length of each part depending on n, which leads to the restrictive
assumption p = o(n/ln ln n). Because of the uniform constant γ in the concentration inequality
(5), it is thus possible to improve it as p = o(n).

2.3. Continuity of I(c)

It was remarked in [3] that the continuity of I(c) is still largely unknown. Here we derive
bounds for I(c) using the ideas of [3, Theorem 3.2], and show that I(c) is continuous on [1,∞)
for sub-Gaussian entries satisfying the conditions in Theorem 1 and K2

4 = 1/2 (recall that K2
4

is given in the definition of sub-Gaussian distributions in Section 1).
Recall that I(c) = limp→∞ Ip(c), where

Ip(c) = inf
x∈Rp,‖x‖=1

sup
θ∈R

[
θc − ln E exp

{
θS2

x,1

}]
.

For c ≥ 1, we have

sup
θ∈R

[
θc − ln E exp

{
θS2

x,1

}]= sup
θ≥0

[
θc − ln E exp

{
θS2

x,1

}]
,

since
θc − ln E exp

{
θS2

x,1

}≤ θc −E
(
θS2

x,1

)= θ (c − 1) ≤ 0 for θ < 0.

It was shown in [9] that

E exp
{
θS2

x,1

}≤ (1 − 4θK2
4

)−1/2 for θ < 1/
(
4K2

4

)
.

Therefore, for c ≥ 1,

Ip(c) ≥ inf
x∈Rp,‖x‖=1

sup
0≤θ<1/(4K2

4 )

[
θc − ln E exp

{
θS2

x,1

}]
≥ inf

x∈Rp,‖x‖=1
sup

0≤θ<1/(4K2
4 )

[
θc − ln

((
1 − 4θK2

4

)−1/2)]
= sup

0≤θ<1/(4K2
4 )

[
θc − ln

((
1 − 4θK2

4

)−1/2)]
= c/

(
4K2

4

)− 1/2 + [
ln
(
2K2

4/c
)]
/2 for 1/2 ≤ K2

4 ≤ c/2.

The restriction 1/2 ≤ K2
4 is from the assumptions that the entries Xij have zero mean, unit

variance, and
E exp{tXij} ≤ exp

{
t2K2

4

}
for all t ∈R.
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The other restriction K2
4 ≤ c/2 is from searching for the supremum. Therefore

I(c) ≥ c/
(
4K2

4

)− 1/2 + [
ln
(
2K2

4/c
)]
/2 for 1/2 ≤ K2

4 ≤ c/2.

On the other hand, Fey et al. [3, Theorem 3.2] proved that I(c) ≤ (c − 1 − ln c)/2 for c ≥ 1.
In summary, if one takes the entries Xij as sub-Gaussian random variables satisfying the condi-
tions in Theorem 1 and K2

4 = 1/2, then I(c) = (c − 1 − ln c)/2 for c ≥ 1. As mentioned in [3],
this is a kind of universality result as (c − 1 − ln c)/2 is the corresponding rate function with
i.i.d. standard normal entries. Furthermore, the condition K2

4 = 1/2 is satisfied for at least three
distributions: standard normal, Bernoulli ∓1 with equal probabilities, and uniform distribution
on [−√

3,
√

3].
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