NEGESSARY AND SUFFICIENT CONDITIONS FOR THE EQUALITY OF $L(f)$ AND l^{1}

WALEED DEEB

Introduction. Let f be a modulus, $e_{i}=\left(\delta_{i \jmath}\right)$ and $E=\left\{e_{i}, i=1,2, \ldots\right\}$. The $L(f)$ spaces were created (to the best of our knowledge) by W. Ruckle in [2] in order to construct an example to answer a question of A. Wilansky. It turned out that these spaces are interesting spaces. For example $l^{p}, 0<p \leqq 1$ is an $L(f)$ space with $f(x)=x^{p}$, and every $F K$ space contains an $L(f)$ space [2]. A natural question is: For which f is $L(f)$ a locally convex space? It is known that $L(f) \subseteq l^{1}$, for all f modulus (see [2]), and l^{1} is the smallest locally convex $F K$ space in which E is bounded (see [1]). Thus the question becomes: For which f does $L(f)$ equal l^{1} ? In this paper we characterize such f. (An $F K$ space need not be locally convex here.) We also characterize those f for which $L(f)$ contains a convex ball. The final result of this paper is to show that if f satisfies $f(x \cdot y) \leqq f(x) \cdot f(y)$ and $L(f) \neq l^{1}$ then $L(f)$ contains no infinite dimensional subspace isomorphic to a Banach space.

Throughout f will be a modulus and

$$
B_{a}=\left\{X \in L(f):|X|_{f} \leqq a\right\}
$$

Lemma. If for some $a>0, B_{f(a)}$ is convex then for any finite collection of positive real numbers $\left\{c_{1}, \ldots, c_{n}\right\}$ with $\sum c_{i}=1$ we have $f(a)=$ $\sum f(c, a)$.

Proof. Let $X_{m}=a e_{m}, m=1,2, \ldots, n$ then $X_{m} \in B_{f(a)}$, for all m and $X=\sum c_{i} X_{i}$ is in $B_{f(a)}$, since $B_{f(a)}$ is convex. So $|X|_{f} \leqq f(a)$. But

$$
|X|_{f}=\sum f\left(c_{i} a\right) \leqq f(a) .
$$

On the other hand

$$
f(a)=f\left(\sum c_{i} a\right) \leqq \sum f\left(c_{i} a\right)
$$

so

$$
f(a)=\sum f\left(c_{\imath} a\right)
$$

Theorem 1. For f a modulus, $L(f)=l^{1}$ if and only if there exist two positive numbers r and ϵ such that $f(x) \leqq r x$ for all x in $[0, \epsilon)$.

Proof. Assume that for every positive real number r and for every positive real number ϵ, there exists an x in $(0, \epsilon]$ such that $f(x)>r x$. So

[^0]for every positive integer n there exists x_{n} in $\left(0,1 / n^{2}\right]$ such that $f\left(x_{n}\right)>n x_{n}$. Since f is continuous [2], we have for every n there exists an interval $I_{n} \subseteq\left(0,1 / n^{2}\right)$ such that $f(x)>n x$ for all $x \in I_{n}$. For each n choose a finite number of points $x_{n 1}, x_{n 2}, \ldots, x_{n t(n)}$ in I_{n} such that
$$
1 / n^{2} \leqq \sum_{k=1}^{t(n)} x_{n_{k}} \leqq 2 / n^{2}
$$

This can be done because, for all x in $I_{n}, x_{n} \leqq 1 / n^{2}$ so pick any point $x_{n_{1}}$ in I_{n}, then choose $x_{n_{2}}, \ldots, x_{n t(n)}$ such that

$$
\sum_{k=1}^{t(n)-1} x_{n_{k}} \leqq 1 / n^{2} \quad \text { and } \quad \sum_{k=1}^{t(n)} x_{n_{k}} \geqq 1 / n^{2}
$$

Let

$$
X=\left(x_{1_{1}}, x_{1_{2}}, \ldots, x_{1_{t(1)}}, x_{2_{2}}, \ldots, x_{2_{t}(2)}, \ldots\right)
$$

then

$$
|x|_{f}=\sum_{n=1}^{\infty} \sum_{k=1}^{t(n)} f\left(x_{n k}\right) \geqq \sum_{n=1}^{\infty} \sum_{k=1}^{t(n)} n x_{n_{k}}=\sum_{n=1}^{\infty} n \cdot \sum_{k=1}^{t(n)} x_{n_{k}} \geqq \sum_{1}^{\infty} n \cdot \frac{1}{n^{2}}=\sum \frac{1}{n}
$$

so $X \notin L(f)$, while

$$
\|X\|=\sum_{n=1}^{\infty} \sum_{k=1}^{t(n)} x_{n t} \leqq \sum_{1}^{\infty} \frac{1}{n^{2}},
$$

so $X \in l^{1}$ and $L(f) \neq l^{1}$.
Conversely, suppose $f(x) \leqq r x$ in $(0, \epsilon]$ for some positive real numbers r and ϵ, so $l^{1} \subseteq L(f)$, but $L(f) \subseteq l^{1}$ for all f modulus (see [2]). So $L(f)=l^{1}$ as sets, and this with the theorem in [4, page 203] imply their equality as topological spaces.

Theorem 2. For f modulus, the following are equivalent:
(1) $B_{f(a)}$ is convex for some $a>0$;
(2) there exists a positive real number a such that

$$
f(x)=\frac{f(a)}{a} x,
$$

for all x in $[0, a] ;$
(3) there exists a positive real number b such that $B_{f(r)}$ is convex for all $r \leqq b$.

Proof. (1) $\Rightarrow(2)$: Let n be any positive integer. By the lemma we have

$$
f(a)=n f(a / n)
$$

Let m be a positive integer $m<n$; then

$$
\begin{aligned}
f(a) & =f\left(\frac{m}{n} a+\frac{n-m}{n} a\right)=f\left(\frac{m}{n} a+\frac{1}{n} a+\frac{1}{n} a+\ldots+\frac{1}{n} a\right) \\
& =f\left(\frac{m}{n} a\right)+(n-m) \text { times } \\
& \left(n-m\left(\frac{1}{n} a\right)\right.
\end{aligned}
$$

by the lemma. So

$$
f(a)=f\left(\frac{m}{n} a\right)+\frac{n-m}{n} f(a)
$$

Hence

$$
\frac{m}{n} f(a)=f\left(\frac{m}{n} a\right)
$$

So for any rational number $r<1$ we have $f(r a)=r f(a)$. By the continuity of f we have

$$
f(x a)=a f(a) \text { for any } x \in[0,1]
$$

Now for any $y \in[0, a], y / a \leqq 1$. So $f(y)=y / a f(a)$.
(2) \Rightarrow (3):

$$
f(x)=\frac{f(a)}{a} x \quad \text { for all } x \in[0, a]
$$

so $l^{1}=L(f)$ and for any $r \leqq a$

$$
\begin{aligned}
B_{r} & =\left\{X \in L(f):|X|_{f} \leqq r\right\} \\
& =\left\{X \in L(f):\|X\|_{1}=|X|_{f} / \alpha \leqq r / \alpha\right\}, \alpha=f(a) / a \\
& =\left\{X \in l^{1}:\|X\|_{1} \leqq r / \alpha\right\}
\end{aligned}
$$

So B_{r} is a convex set for all $r \leqq a$.
$(3) \Rightarrow(1)$ is trivial.
Remark. The equality of $L(f)$ and l^{1} does not guarantee the existence of convex balls in $L(f)$. Take for example $f(x)=x /(1+x) . f$ is a modulus. Since $f(x)<2 f(x / 2)$ for all x, no ball is convex. And it is clear that $L(f)=l^{1}$.

The final theorem is a generalization (in the method of the proof and the conclusion) of the one given by Stiles [3], for the l^{p} spaces $0<p<1$. In the proof we will use his terminology.

Theorem 3. If $L(f) \neq l^{1}$ and f satisfy $f(x y) \leqq f(x) f(y)$ then $L(f)$ contains no infinite-dimensional subspace isomorphic to a Banach space.

Proof. First we will show that if B is a closed infinite dimensional subspace of $L(f)$, then B contains a subspace isomorphic to $L(f)$.

Now if B is infinite dimensional, it contains a sequence $\left\{b_{n}\right\}$ such that $\left|b_{n}\right|_{f}=1$ where b_{n} is of the form

$$
b_{n}=\left(0, \ldots, 0, b_{k_{n}}^{n}, b_{k_{n+1}}^{n}, 0, \ldots\right)
$$

where k_{n} is chosen arbitrarily large. Select b_{n} such that

$$
\sum_{k=k_{n+1}}^{\infty} f\left|{b_{k n}}^{n}\right|<1 / 2^{n+1}
$$

Let

$$
C_{n}=\left(0, \ldots, 0, b_{k_{n}}^{n}, \ldots, b_{k_{n+1}-1}^{n}, 0, \ldots\right), n=1,2, \ldots
$$

$\left\{C_{n}\right\}$ is the basic sequence equivalent to $\left\{e_{n}\right\}$ in $L(f)$ for

$$
\begin{align*}
& \left|\sum_{n=1}^{\infty} \lambda_{n} C_{n}\right|_{f}=\sum_{n=1}^{\infty} \sum_{k_{n}}^{k_{n+1}-1} f\left|b_{k}{ }^{n} \lambda_{n}\right| \geqq \sum_{n=1}^{\infty} f\left(\sum_{k_{n}}^{k_{n}+1-1}\left|\lambda_{n} b_{k}{ }^{n}\right|\right) \\
& =\sum_{n=1}^{\infty} f\left(\sum_{k_{n}}^{\infty}\left|\lambda_{n} b_{k}{ }^{n}\right|-\sum_{k_{n+1}}^{\infty}\left|\lambda_{n} b_{k}{ }^{n}\right|\right)=\sum_{n=1}^{\infty} f\left(\left|\lambda_{n}\right|\left(\sum_{k_{n}}^{\infty}\left|b_{k}{ }^{n}\right|-\sum_{k_{n}+1}^{\infty}\left|b_{k}{ }^{n}\right|\right)\right) \\
& \quad \geqq \sum_{n=1}^{\infty} f\left(\left|\lambda_{n}\right|\left(1-\frac{1}{2^{n+1}}\right)\right) \geqq \sum_{n=1}^{\infty} f\left(\frac{1}{2}\left|\lambda_{n}\right|\right) \geqq \frac{1}{2} \sum_{n=1}^{\infty} f\left|\lambda_{n}\right| \ldots(*) \tag{*}
\end{align*}
$$

On the other hand

$$
\begin{aligned}
\left|\sum_{n=1}^{\infty} \lambda_{n} C_{n}\right|_{f}=\sum_{n=1}^{\infty} \sum_{k_{n}}^{k_{n}+1-1} f\left|\lambda_{n} b_{k}{ }^{n}\right| \leqq \sum_{n=1}^{\infty} f\left|\lambda_{n}\right| & \sum_{k_{n}}^{k_{n}+1-1} f\left|b_{k}{ }^{n}\right| \\
& \leqq \sum_{n=1}^{\infty} f\left|\lambda_{n}\right| \cdot\left|b_{n}\right|_{f} \leqq|\lambda|_{f} .
\end{aligned}
$$

We also have $\left\{C_{n}\right\}$ equivalent to $\left\{b_{n}\right\}$, for if $\sum \lambda_{n} b_{n}$ converges then $\sum \lambda_{n} C_{n}$ converges from the definition of $\left\{C_{n}\right\}$. On the other hand,

$$
\begin{aligned}
& \left|\sum_{n=1}^{m} \lambda_{n}\left(b_{n}-C_{n}\right)\right| f=\left|\sum_{n=1}^{m} \lambda_{n}\left(0, \ldots, 0, b_{k_{n+1}}^{n}, \ldots\right)\right| \leqq \sum_{n=1}^{m} \sum_{k_{n+1}}^{\infty} f\left|\lambda_{n} b_{k}{ }^{n}\right| \\
& \leqq \sum_{n=1}^{m} f\left|\lambda_{n}\right| \cdot \sum_{k_{n+1}}^{\infty} f\left|b_{k}{ }^{n}\right| \leqq \sum_{n=1}^{m} f\left|\lambda_{n}\right| \cdot \frac{1}{2^{n+1}} \leqq \frac{1}{2} \sum_{n=1}^{m} f\left|\lambda_{n}\right| \leqq\left|\sum_{n=1}^{m} \lambda_{n} C_{n}\right|,
\end{aligned}
$$

the last inequality coming from (*). So $\left\{b_{n}\right\}$ is a basis for a subspace of B which is isomorphic to $L(f)$.

Now if $L(f)$ contains an infinite dimensional subspace isomorphic to a Banach space S then by the above result $L(f)$ is isomorphic to a subspace of S. But $L(f) \neq l^{1}$ so by Theorem $1, L(f)$ contains no convex neighbourhood, which is a contradiction.

References

1. G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math. 46 (1973), 17-30.
2. W. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25 (1973), 973-978.
3. W. Stiles, On properties of subspaces of $l^{p}, 0<p<1$, Trans. Amer. Math. Soc. 149 (1970), 405-415.
4. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).

University of Jordan,
Amman, Jordan

[^0]: Received October 14, 1980 and in revised form February 23, 1981.

