NECESSARY AND SUFFICIENT CONDITIONS FOR THE EQUALITY OF L(f) AND l^1

WALEED DEEB

Introduction. Let f be a modulus, $e_i = (\delta_{ij})$ and $E = \{e_i, i = 1, 2, ...\}$. The L(f) spaces were created (to the best of our knowledge) by W. Ruckle in [2] in order to construct an example to answer a question of A. Wilansky. It turned out that these spaces are interesting spaces. For example l^p , 0 is an <math>L(f) space with $f(x) = x^p$, and every FKspace contains an L(f) space [2]. A natural question is: For which f is L(f) a locally convex space? It is known that $L(f) \subseteq l^1$, for all fmodulus (see [2]), and l^1 is the smallest locally convex FK space in which E is bounded (see [1]). Thus the question becomes: For which f does L(f) equal l^1 ? In this paper we characterize such f. (An FK space need not be locally convex here.) We also characterize those f for which L(f)contains a convex ball. The final result of this paper is to show that if fsatisfies $f(x \cdot y) \leq f(x) \cdot f(y)$ and $L(f) \neq l^1$ then L(f) contains no infinite dimensional subspace isomorphic to a Banach space.

Throughout f will be a modulus and

 $B_a = \{ X \in L(f) \colon |X|_f \leq a \}.$

LEMMA. If for some a > 0, $B_{f(a)}$ is convex then for any finite collection of positive real numbers $\{c_1, \ldots, c_n\}$ with $\sum c_i = 1$ we have $f(a) = \sum f(c_i a)$.

Proof. Let $X_m = ae_m$, m = 1, 2, ..., n then $X_m \in B_{f(a)}$, for all m and $X = \sum c_i X_i$ is in $B_{f(a)}$, since $B_{f(a)}$ is convex. So $|X|_f \leq f(a)$. But

 $|X|_f = \sum f(c_i a) \leq f(a).$

On the other hand

$$f(a) = f(\sum c_i a) \leq \sum f(c_i a),$$

so

$$f(a) = \sum f(c_i a).$$

THEOREM 1. For f a modulus, $L(f) = l^1$ if and only if there exist two positive numbers r and ϵ such that $f(x) \leq rx$ for all x in $[0, \epsilon)$.

Proof. Assume that for every positive real number r and for every positive real number ϵ , there exists an x in $(0, \epsilon]$ such that f(x) > rx. So

Received October 14, 1980 and in revised form February 23, 1981.

for every positive integer *n* there exists x_n in $(0, 1/n^2]$ such that $f(x_n) > nx_n$. Since *f* is continuous [**2**], we have for every *n* there exists an interval $I_n \subseteq (0, 1/n^2)$ such that f(x) > nx for all $x \in I_n$. For each *n* choose a finite number of points $x_{n1}, x_{n2}, \ldots, x_{nt(n)}$ in I_n such that

$$1/n^2 \leq \sum_{k=1}^{t(n)} x_{n_k} \leq 2/n^2.$$

This can be done because, for all x in I_n , $x_n \leq 1/n^2$ so pick any point x_{n_1} in I_n , then choose $x_{n_2}, \ldots, x_{n_l(n)}$ such that

$$\sum_{k=1}^{t(n)-1} x_{n_k} \leq 1/n^2 \quad \text{and} \quad \sum_{k=1}^{t(n)} x_{n_k} \geq 1/n^2.$$

Let

$$X = (x_{1_1}, x_{1_2}, \ldots, x_{1_t(1)}, x_{2_2}, \ldots, x_{2_t(2)}, \ldots)$$

then

$$|x|_{f} = \sum_{n=1}^{\infty} \sum_{k=1}^{l(n)} f(x_{nk}) \ge \sum_{n=1}^{\infty} \sum_{k=1}^{l(n)} nx_{nk} = \sum_{n=1}^{\infty} n \cdot \sum_{k=1}^{l(n)} x_{nk} \ge \sum_{1}^{\infty} n \cdot \frac{1}{n^{2}} = \sum \frac{1}{n}$$

so $X \notin L(f)$, while

$$||X|| = \sum_{n=1}^{\infty} \sum_{k=1}^{t(n)} x_{n_k} \leq \sum_{1}^{\infty} \frac{1}{n^2},$$

so $X \in l^1$ and $L(f) \neq l^1$.

Conversely, suppose $f(x) \leq rx$ in $(0, \epsilon]$ for some positive real numbers r and ϵ , so $l^1 \subseteq L(f)$, but $L(f) \subseteq l^1$ for all f modulus (see [2]). So $L(f) = l^1$ as sets, and this with the theorem in [4, page 203] imply their equality as topological spaces.

THEOREM 2. For f modulus, the following are equivalent:

- (1) $B_{f(a)}$ is convex for some a > 0;
- (2) there exists a positive real number a such that

$$f(x) = \frac{f(a)}{a} x,$$

for all x in [0, a];

(3) there exists a positive real number b such that $B_{f(r)}$ is convex for all $r \leq b$.

Proof. $(1) \Rightarrow (2)$: Let *n* be any positive integer. By the lemma we have

$$f(a) = nf(a/n).$$

Let *m* be a positive integer m < n; then

$$f(a) = f\left(\frac{m}{n}a + \frac{n-m}{n}a\right) = f\left(\frac{m}{n}a + \frac{1}{n}a + \frac{1}{n}a + \dots + \frac{1}{n}a\right),$$

(n-m) times
$$= f\left(\frac{m}{n}a\right) + (n-m)f\left(\frac{1}{n}a\right)$$

by the lemma. So

$$f(a) = f\left(\frac{m}{n}a\right) + \frac{n-m}{n}f(a).$$

Hence

$$\frac{m}{n}f(a) = f\left(\frac{m}{n}a\right) \ .$$

So for any rational number r < 1 we have f(ra) = rf(a). By the continuity of f we have

f(xa) = af(a) for any $x \in [0, 1]$.

Now for any $y \in [0, a]$, $y/a \leq 1$. So f(y) = y/a f(a). (2) \Rightarrow (3):

$$f(x) = \frac{f(a)}{a} x$$
 for all $x \in [0, a]$,

so $l^1 = L(f)$ and for any $r \leq a$

$$B_r = \{X \in L(f) : |X|_f \leq r\}$$

= $\{X \in L(f) : |X|_1 = |X|_f \leq r/\alpha\}, \alpha = f(a)/a$
= $\{X \in l^1 : ||X||_1 \leq r/\alpha\}.$

So B_r is a convex set for all $r \leq a$. (3) \Rightarrow (1) is trivial.

Remark. The equality of L(f) and l^1 does not guarantee the existence of convex balls in L(f). Take for example f(x) = x/(1 + x). f is a modulus. Since f(x) < 2f(x/2) for all x, no ball is convex. And it is clear that $L(f) = l^1$.

The final theorem is a generalization (in the method of the proof and the conclusion) of the one given by Stiles [3], for the l^p spaces 0 . In the proof we will use his terminology.

THEOREM 3. If $L(f) \neq l^1$ and f satisfy $f(xy) \leq f(x)f(y)$ then L(f) contains no infinite-dimensional subspace isomorphic to a Banach space.

Proof. First we will show that if B is a closed infinite dimensional subspace of L(f), then B contains a subspace isomorphic to L(f).

Now if B is infinite dimensional, it contains a sequence $\{b_n\}$ such that $|b_n|_f = 1$ where b_n is of the form

$$b_n = (0, \ldots, 0, b_{k_n}^n, b_{k_{n+1}}^n, 0, \ldots)$$

where k_n is chosen arbitrarily large. Select b_n such that

$$\sum_{k=k_{n+1}}^{\infty} f|b_{k_n}| < 1/2^{n+1}.$$

Let

$$C_n = (0, \ldots, 0, b_{k_n}^n, \ldots, b_{k_{n+1}-1}^n, 0, \ldots), n = 1, 2, \ldots$$

 $\{C_n\}$ is the basic sequence equivalent to $\{e_n\}$ in L(f) for

$$\left|\sum_{n=1}^{\infty} \lambda_n C_n\right|_f = \sum_{n=1}^{\infty} \sum_{k_n=1}^{k_n+1-1} f|b_k^n \lambda_n| \ge \sum_{n=1}^{\infty} f\left(\sum_{k_n=1}^{k_n+1-1} |\lambda_n b_k^n|\right)$$
$$= \sum_{n=1}^{\infty} f\left(\sum_{k_n=1}^{\infty} |\lambda_n b_k^n| - \sum_{k_n+1}^{\infty} |\lambda_n b_k^n|\right) = \sum_{n=1}^{\infty} f\left(|\lambda_n| \left(\sum_{k_n=1}^{\infty} |b_k^n| - \sum_{k_n+1}^{\infty} |b_k^n|\right)\right)$$
$$\ge \sum_{n=1}^{\infty} f\left(|\lambda_n| \left(1 - \frac{1}{2^{n+1}}\right)\right) \ge \sum_{n=1}^{\infty} f(\frac{1}{2} |\lambda_n|) \ge \frac{1}{2} \sum_{n=1}^{\infty} f|\lambda_n| \dots (*)$$

On the other hand

$$\left|\sum_{n=1}^{\infty} \lambda_n C_n\right|_f = \sum_{n=1}^{\infty} \sum_{k_n}^{k_n+1-1} f|\lambda_n b_k^n| \leq \sum_{n=1}^{\infty} f|\lambda_n| \sum_{k_n}^{k_n+1-1} f|b_k^n|$$
$$\leq \sum_{n=1}^{\infty} f|\lambda_n| \cdot |b_n|_f \leq |\lambda|_f.$$

We also have $\{C_n\}$ equivalent to $\{b_n\}$, for if $\sum \lambda_n b_n$ converges then $\sum \lambda_n C_n$ converges from the definition of $\{C_n\}$. On the other hand,

$$\left|\sum_{n=1}^{m} \lambda_n(b_n - C_n)\right|_f = \left|\sum_{n=1}^{m} \lambda_n(0, \dots, 0, b_{k_{n+1}}^n, \dots)\right| \leq \sum_{n=1}^{m} \sum_{k_{n+1}}^{\infty} f|\lambda_n b_k^n|$$
$$\leq \sum_{n=1}^{m} f|\lambda_n| \cdot \sum_{k_{n+1}}^{\infty} f|b_k^n| \leq \sum_{n=1}^{m} f|\lambda_n| \cdot \frac{1}{2^{n+1}} \leq \frac{1}{2} \sum_{n=1}^{m} f|\lambda_n| \leq \left|\sum_{n=1}^{m} \lambda_n C_n\right|,$$

the last inequality coming from (*). So $\{b_n\}$ is a basis for a subspace of B which is isomorphic to L(f).

Now if L(f) contains an infinite dimensional subspace isomorphic to a Banach space S then by the above result L(f) is isomorphic to a subspace of S. But $L(f) \neq l^1$ so by Theorem 1, L(f) contains no convex neighbourhood, which is a contradiction.

References

1. G. Bennett, Some inclusion theorems for sequence spaces, Pacific J. Math. 46 (1973), 17-30.

WALEED DEEB

- 2. W. Ruckle, FK spaces in which the sequence of coordinate vectors is bounded. Can. J. Math. 25 (1973), 973-978.
- 3. W. Stiles, On properties of subspaces of l^p , 0 , Trans. Amer. Math. Soc. 149 (1970), 405-415.
- 4. A. Wilansky, Functional analysis (Blaisdell, New York, 1964).

University of Jordan, Amman, Jordan