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A unified theory of slender wings in asymmetric
motion, with an application to a swimming sea
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The slender body theory is extended to accommodate cases where a wing, in generally
non-uniform motion, sideslips at sufficiently large angle to make the flow separate from
one of its long edges but not from any part of the other. In those cases, an approximately
triangular wake forms to the side of the wing, rendering the pressure loads on the wing
not only asymmetrical, but also dependent on the history of the wing’s motion. The theory
can have a wide range of possible applications, from estimating lift and drag of a slender
wing in pronouncedly asymmetric flight, through analysing an aero-elastic stability of that
wing, to estimating thrust, lift and power of a sea snake that swims at an angle to its body
axis. Coherence of the theory is demonstrated through numerous numerical simulations.
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1. Introduction

Oblique (or asymmetrically swept) wings can be envisioned as sailplane-like
high-aspect-ratio straight wings that fly at notable sideslip angles. They were extensively
studied at small to moderate sweep angles (e.g. Cheng 1978; Guermond & Sellier 1991),
with the idea of becoming a viable alternative to conventional wings at transonic and
supersonic speeds (Jones 1977). Slender symmetrical wings were extensively studied as
well, with uncountable applications in aerospace vehicles (e.g. Ashley & Landahl 1985)
and aquatic locomotion (e.g. Lightill 1960). However, highly swept oblique wings, which
can formally be categorized as asymmetric slender configurations, have been practically
unnoticed. Naturally representing slender wings in asymmetric flight, these configurations
can also be found in non-rotating blades of a helicopter on a windy platform, stern oars
during sculling or steering, flapping narrow flags and some swimming sea snakes. What
sets these configurations apart from widely studied oblique wings is their slenderness;
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Figure 1. Side (a) and top (b) views of the model body and its wake (shaded). The body is naturally divided
into two segments, forward (xn, 0) and aft (0, xt). The flow separates from the upper (‘+’) edge of the aft
segment and forms a well-defined wake. It does not separate from the lower (‘−’) edge for its entire length, and
it does not separate from the upper edge of the forward segment.

what sets them apart from widely studied slender wings and bodies is their pronounced
asymmetry with respect to the oncoming flow: one of the long edges of the wing ‘leads’
for its entire length, and at least a part of the other edge ‘trails’, with an inherently
asymmetric wake forming to its side (figure 1). In fact, the yellow-bellied sea snakes
Hydrophis platurus enter the list of asymmetric slender configurations because they swim
at an angle to their body axis, the rounded back leading the cusped belly (Graham et al.
1987). Aero- (hydro-) dynamic theory of slender asymmetric configurations in generally
non-uniform motion at high Reynolds numbers and subsonic speeds is the subject matter
of this study.

Limiting the scope of the study to high Reynolds numbers opens the possibility of
using potential theories to find the velocity and pressure fields in the exterior of the
boundary layer around the body and the wake behind it without finding them in their
rotational interior; limiting the scope to slender configurations opens the possibility of
obtaining these fields asymptotically, based on the ratio of the lateral and longitudinal
length scales of the wing as a small parameter. Indeed, quite a few asymptotic potential
theories of slender bodies at high Reynolds have been developed over the years, differing
in the rigor of their construction, geometrical features of the body, modes of motion and
geometry of the wake. Foundations of this study are found in the works of Wu (1971),
Neumann & Wu (1973), Yates (1983) and Lighthill & Blake (1990); the starting point
of this study is the theory of slender bodies in asymmetric motion with no wake to the
side of them (Iosilevskii & Rashkovsky 2020). The last work is referred to as ‘Part 1’
below.

The paper is organized in 8 sections and 8 appendices. The problem is formally
introduced in the next section (§ 2); its general solution is outlined in § 3. Particular
solutions for the forward and aft segments of the body – the aft segment starts where the
wake does, as in figure 1 – are presented in §§ 4 and 5, respectively. They are combined
in § 6 to obtain forces and moments acting on the entire body, as well as the power
needed to sustain its motion. A few examples from the problems mentioned earlier are
shown in § 7, and this is where the coherence of the theory is tested by comparison
with numerical simulations based on the vortex lattice method. A comparison with a
few numerical simulations based on Reynolds-averaged Navier–Stokes (RANS) equations
is found in the supplementary material available at https://doi.org/10.1017/jfm.2022.192.
Section 8 concludes the paper. Appendices A–E detail derivations of a few key equations;
Appendices F and G detail a few useful approximations of the indicial functions and their
quadratures; Appendix H details the numerical simulations.
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A unified theory of slender wings in asymmetric motion

(b)(a)

y′ y′

x′ x′

z′ z′

z

y

z

x x

Figure 2. Exaggerated lateral (a) and torsional (b) displacement waves. Model wake is light shaded. Global
(primed) and local (unprimed) reference frames are shown in black and red. The particular local reference
frame that is shown on both plates is adjacent to the red-coloured (last) cross-section.

2. Preliminaries

2.1. The model
Consider a slender body that moves, on average, along a straight path with constant speed
v in an unbounded domain of incompressible fluid of density ρ. The body is assumed flat
and of zero thickness, but is allowed to deform with time in such a way that its (otherwise
straight) cross-sections preserve both shape and dimensions (figure 2). Still, it can bend
and twist, and small-amplitude lateral and torsional displacement waves can propagate
along it, mimicking propulsion waves of an anguilliform (eel-like) swimmer.

The upper edge of the body will be universally marked by a ‘+’, the lower edge will be
marked by a ‘−’. Association of these edges with ventral and dorsal sides of a swimming
animal or with the edges of a flying wing will be made ad hoc as needed. The body is
assumed to comprise two distinct segments, divided in figure 1 by the y-axis. The width
(span) 2s of the forward segment is assumed to increase monotonically along it, reaching
2s0 at its aft end; both edges of this segment, upper and lower alike, face the flow (and
hence function as leading edges) at all times. The width 2s of the aft segment will be
ultimately assumed constant 2s0, with both edges forming a constant (strictly positive,
but small) angle λ with the direction of flow; at this stage, however, it suffices to assume
that the lower and upper edges of this segment are ‘leading’ and ‘trailing’ at all times,
respectively. s0, v, s0/v, s0v, ρv2, ρv2s0, ρv2s2

0, ρv2s3
0, ρv3s0 and ρv3s2

0 will be implicitly
used below as units of length, velocity, time, potential, pressure, force per unit length, force
(or moment per unit length), moment, power per unit length and power, respectively.

2.2. Reference frames
Two adjunct right-handed rectilinear reference frames, C and C′, will be used
interchangeably. Both have their x-axes opposing the (average) direction of motion, and
both follow the body along its average path. Frame C′ is a global (inertial) frame, its
y-axis lays in the mid plane of the un-deformed body, and, for the sake of definiteness,
points upwards through the upper tip of the body – where the leading edge of the forward
segment turns into the trailing edge of the aft one (figures 1 and 2). The complementary
z-axis points left. Coordinates of a point relative to C′ will be marked by a prime. Any
scalar or vector field parametrized using these coordinates will be marked by a prime as
well.

Frame C is a local (non-inertial) reference frame, affixed to each cross-section of the
body. Its origin is located in the y′ − z′ plane of C′, its x-axis passes through the middle
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of a particular section and the frame itself is rotated (twisted) about the x-axis through (a
supposedly small) angle θ(t, x), so as to make the y-axis parallel to that section (figure 2).
Coordinates of a point relative C will remain unmarked, and so will any scalar or vector
field parametrized using these coordinates. Formally,

ex′ = ex, (2.1)

ey′ = ey − ezθ(t, x), (2.2)

ez′ = eyθ(t, x) + ez (2.3)

relate the respective unit vectors;

x′ = x, (2.4)

y′ = y0(x) − zθ(t, x) + y, (2.5)

z′ = z0(t, x) + z + yθ(t, x) (2.6)

relate the coordinates. Because of their equivalence, x′ and x (as well as ex′ and ex) will be
used interchangeably; xn and xt (primed or unprimed, but mostly unprimed) will mark the
respective coordinates of the forward and aft ends of the body (figure 1).

2.3. Unit normal vectors
By interpretation, y′ = y0(x) and z′ = z0(t, x) are equations of the body centreline in C′;
y′ = y0(x) ± s(x) and z′ = z0(t, x) ± s(x)θ(t, x) are equations of its respective (‘+’ and
‘−’) edges in the same reference frame, and, in general,

z′ = z0(t, x) + yθ(t, x) (2.7)

is the equation of its surface; θ is the twist angle of the particular section relative to the
x′−y′ plane. All spatial derivatives of y0, z0, and θ are assumed small compared with unity.
Accordingly,

n(t, x) = −ex′

(
∂z0(t, x)

∂x
− θ(t, x)

dy0(x)
dx

+ y
∂θ(t, x)

∂x

)
− ey′θ(t, x) + ez′ + . . . (2.8)

is the (left-facing) unit normal vector to the surface of the body;

n±(t, x) = −ex′

(
±θ(t, x)

∂z0(t, x)
∂x

± dy0(x)
dx

+ ds(x)
dx

)
± ey′ ± ez′θ(t, x) + . . . (2.9)

are the unit normal vectors to its respective edges. The ellipses stand for the higher-order
terms with respect to spatial derivatives of z0, y0 and θ . Essentially, these are variants of
(A6)–(A8) and (A11) of Part 1 with |θ | � 1.

3. Slender body theory

3.1. Basics
As mentioned already, an attempt is made here to extend the slender (elongated) body
theory to the case where the wake exists to one side of the body only. Formulation of the
slender body theory can be found in quite a few references – notably, Ashley & Landahl
(1985), Wu (1971) and Newman & Wu (1973) – and it will not be repeated. Its (implicit)
basics are recapitulated below, preserving the notation of Part 1.
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A unified theory of slender wings in asymmetric motion

The slender body theory is usually constructed in the framework of the potential flow
approximation, which, in turn, is coherent under two fundamental assumptions. One is that
vortical regions in the flow are confined to a thin boundary layer around the body and a
thin wake behind it, whereas the flow is irrotational in their exterior (Thwaites 1960). The
other is that the boundary layer separates at the sharp trailing edges of the body and this
is where it turns into the wake (Thwaites 1960; Katz & Plotkin 1991). Under these two
assumptions, the velocity and pressure fields can be found in the exterior of the vortical
regions, without finding them in the entire domain occupied by the fluid. The slender body
theory furnishes these fields in the leading order with respect to a slenderness parameter,
which is a certain ratio of the lateral (along the y’- or z’- axes) and longitudinal (along the
x-axis) characteristic length scales.

When the thickness of the vortical regions is (vanishingly) small, a change in momentum
of the fluid in their exterior is effected through the pressure on the outer edge of the
boundary layer, which is essentially the same as the pressure (normal stress) on the surface
of the body. A change in momentum of the fluid in the interior of the vortical regions
is effected mainly through shear stresses on the surface of the body. In the case of a
self-propelling body, this natural subdivision allows for unambiguous separation of thrust
and (viscous) drag, associating thrust with the normal stresses and drag with the shear
ones; the work done by the body is associated with the normal stresses only. Induced drag
is akin to thrust in steady motion, and hence is associated with the normal stresses as well.
In other words, the slender body theory allows for the finding of all relevant aerodynamic
forces acting on the body, except for the viscous drag. The viscous drag is not addressed in
this paper, but in many practical cases it can be closely estimated using empirical methods
(Raymer 1992).

3.2. Boundary integral equation
In the leading order with respect to the slenderness parameter, the slender body theory
reduces the problem of finding the velocity and pressure fields in the irrotational proximity
of the body to that of finding a certain scalar field φ that satisfies two-dimensional Laplace
equation in every transverse (y–z) plane crossing the body, satisfies an impermeability
condition on its surface, has no pressure discontinuity across the wake and vanishes at
infinity. Location of the wake – indeed, its mere existence – has to be postulated (an
example can be found in figure 2), but in order to remain consistent with the potential
flow approximation, it has to start at the trailing edge. When the thickness of the body
is vanishingly small – and it is small in the present model – φ can be identified with the
scalar potential of the perturbation velocity (Wu 1971; Ashley & Landahl 1985).

Since the body is flat and of zero thickness, its footprint in a transverse (y–z) plane is the
segment (−s(x), s(x)) of the y-axis by definition of the local reference frame (figures 2–4).
The endpoints of this segment lay on the lower and upper edges of the body, respectively.
On the forward part of the body, both edges face the flow (are ‘leading edges’); on the aft
part of the body, the lower edge faces the flow, whereas the upper edge trails (figures 1–3).
Starting at this trailing edge, the wake leaves a footprint only in a transverse plane crossing
the aft part of the body. Its footprint starts at y = s(x), but its shape is hardly simple
(figure 3). It is reduced here to the segment (s(x), 1 − y0(x)) of the y-axis (figures 2–4) –
an assumption that can be formally justified only when deviation of the actual footprint
from the y-axis is small as compared with the length s(0) − y0(x) + s(x) of the body
and wake together. This is perhaps the strongest assumption of the present theory, and
its consequences will be demonstrated in § 8.
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(b)(a)

(c) (d )

Figure 3. Footprints (shown in red) of the aft segment of the body and the wake in the transverse plane.
Panels (a,c) show a typical (albeit exaggerated) combination of lateral and torsional deformation waves of an
anguilliform swimmer. Panels (b,d) show a more benign case of a uniform (steady) twist. Panels (a,b) show a
simplified wake as an extension of the body segment. Panels (c,d) show a more realistic wake shape where the
vorticity is carried away from the trailing edge along the direction of the oncoming flow.

z
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–s(x) –s(x)s(x) s(0) – y
0
 (x)s(x)

Body Body

Assumed

wake

y

z(b)(a)

Figure 4. Footprints of the forward (a) and aft (b) segments in the transverse plane (such as the one shown
in red on figure 2). The body occupies the segment (−s(x), s(x)) of the y-axis; it is shown in bold. The
wake occupies the segment (s(x), s(0) − y0(x)) of the y-axis; it is shown in red in (b). Solution domain is the
(irrotational) exterior of the body and the wake.

Pertinent solution of the two-dimensional Laplace equation in an unbounded exterior of
the segment (a, b) of the y-axis is

φ(t, x, y, z) = 1
2π

∫ b

a

μ(t, x, ζ )z dζ

( y − ζ )2 + z2
, (3.1)

where

μ(t, x, y) = φ(t, x, y, +0) − φ(t, x, y, −0) (3.2)

is the potential jump across it. Effectively, this is the potential of a distribution of
z-axis-oriented doublets of intensity μ (Katz & Plotkin 1991). This general solution is
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A unified theory of slender wings in asymmetric motion

yet to satisfy the impermeability condition

lim
z→±0

∂φ(t, x, y, z)
∂z

= −w(t, x, y) (3.3)

on the part of the segment containing the body (w will be defined shortly below), and no
pressure jump condition

Dμ′(t, x, y′)
Dt

= 0 (3.4)

on the part of the segment containing the wake and the trailing edge. Here, D/Dt stands
for the linearized Lagrangian derivative, ∂/∂t + ∂/∂x, and the prime with μ indicates
its parametrization using coordinates of C′; recall that x and x′are equivalent. When the
motion of the body is limited to a combination of a lateral displacement and a rigid
rotation, as was tacitly assumed in the first paragraph of § 2.1 and schematically shown
in figures 2 and 3, the quantity on the right-hand side of (3.3) can be expressed as

w(t, x, y) = w0(t, x) + w1(t, x)y, (3.5)

where

w0(t, x) = −Dz0(t, x)
Dt

+ θ(t, x)
dy0(x)

dx
, (3.6)

w1(t, x) = −Dθ(t, x)
Dt

; (3.7)

details can be found in Appendix C of Part 1. Additional pair of conditions,

μ(t, x, ±s(x)) = 0 for each x ∈ (xn, 0), (3.8)

μ(t, x, −s(x)) = 0 for each x ∈ (0, xt), (3.9)

manifest continuity of the velocity potential at the leading edges.
The conjunction of (3.1) and (3.3) furnishes two integro-differential equations for

μ(t, x, ·), one for the forward segment, and one for the aft. The first one is

1
2π

--
∫ s(x)

−s(x)

∂μ(t, x, ζ )

∂ζ

dζ

y − ζ
= w(t, x, y) (3.10)

for each x ∈ (xn, 0) and y ∈ (−s(x), s(x)); the second one is

1
2π

--
∫ s(0)−y0(x)

−s(x)

∂μ(t, x, ζ )

∂ζ

dζ

y − ζ
= w(t, x, y) (3.11)

for each x ∈ (0, xt) and y ∈ (−s(x), s(x)). The difference between the two is in the
integration limits. In both equations, the bar across the integral sign indicates the principal
value in the Cauchy sense. The simplest way to obtain the expressions on the left of (3.10)
and (3.11) is to integrate (3.1) by parts first, differentiate second and carefully pass to the
limit. The passage to the limit introduces the principal value to the integral. In this form it
appears in practically any textbook on aerodynamics (Katz & Plotkin 1991; Bisplinghoff,
Ashley & Halfman 1996).
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3.3. Post-processing
Solution of (3.10) can be found in Part 1 and it is briefly recapitulated in § 4 in a slightly
different form; solution of (3.11), which turns out to be quite involved – in fact, it is the
central contribution of this paper – can be found in § 5. Once solved, however, knowledge
of ∂μ/∂y and, consequently, of its first four moments,

μn(t, x) = 1
sn+1(x)

∫ s(x)

−s(x)

∂μ(t, x, y)
∂y

yn dy (3.12)

(n being 0, 1, 2 or 3), suffices to obtain the suction force (per unit length) on the leading
edges of the forward and aft segments,

f±(t, x) = π

4

(
lim

y→±s(x)

√
s(x) ∓ y

∂μ(t, x, y)
∂y

)2

, (3.13)

as well as all relevant moments

Πn(t, x) = −
∫ s(x)

−s(x)
�p(t, x, y)yn dy (3.14)

of the pressure jump

�p(t, x, y) = −Dμ′(t, x, y′)
Dt

= −Dμ(t, x, y)
Dt

+ ∂μ(t, x, y)
∂y

dy0(x)
dx

+ . . . (3.15)

across them. Equations (3.12)–(3.14) are (2.20), (2.36)–(2.37) and (2.32) of Part 1; (3.15)
is a variant of (2.31) of Part 1; the ellipsis in (3.15) stands for the higher-order terms with
respect to spatial and temporal derivatives of z0, y0 and θ . In turn, knowledge of the suction
force and of the first three moments of pressure suffices to obtain the fluid-dynamic force
(per unit length) acting on a cross-section of the body,

f (t, x) = −
∫ s(x)

−s(x)
�p(t, x, y)n(t, x, y) dy + f−(t, x)n−(t, x) + f+(t, x)n+(t, x); (3.16)

the fluid-dynamic moment (per unit length) about the centre of that section,

m0(t, x) = −
∫ s(x)

−s(x)
�p(t, x, y)( yey′ + y θ(t, x)ez′) × n(t, x, y) dy

+ s(x)(ey′ + θ(t, x)ez′) × (f+(t, x)n+(t, x) − f−(t, x)n−(t, x)); (3.17)

and the power (per unit length) needed to sustain the lateral motion of the body,

ι(t, x) =
∫ s(x)

−s(x)
�p(t, x, y)

∂zb(t, x, y)
∂t

dy. (3.18)
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A unified theory of slender wings in asymmetric motion

In fact, using (3.14), the components of f and m0 can be recast as

fx′(t, x) = −
(

∂z0(t, x)
∂x

− θ(t, x)
dy0(x)

dx

)
Π0(t, x) − ∂θ(t, x)

∂x
Π1(t, x)

− dy0(x)
dx

(f+(t, x) − f−(t, x)) − ds(x)
dx

(f+(t, x) + f−(t, x)), (3.19)

fy′(t, x) = −θ(t, x)Π0(t, x) + (f+(t, x) − f−(t, x)), (3.20)

fz′(t, x) = Π0(t, x), (3.21)

m0,x′(t, x) = (1 + θ(t, x))Π1(t, x), (3.22)

m0,y′(t, x) = −θ(t, x)m0,z′(t, x), (3.23)

m0,z′(t, x) =
(

∂z0(t, x)
∂x

− θ(t, x)
dy0(x)

dx

)
Π1(t, x) + ∂θ(t, x)

∂x
Π2(t, x)

+ s(x)(f+(t, x) + f−(t, x))
(

θ(t, x)
∂z0(t, x)

∂x
+ dy0(x)

dx

)

− 1
2
(f+(t, x) − f−(t, x))

ds2(x)
dx

, (3.24)

whereas

ι(t, x) = −∂z0(t, x)
∂t

Π0(t, x) − ∂θ(t, x)
∂t

Π1(t, x). (3.25)

Details can be found in Part 1; (3.19)–(3.21) and (3.25) are variants of (3.3)–(3.5) and
(3.21) of Part 1 with |θ | � 1.

4. The forward segment

4.1. Potential jump and its moment
As mentioned already, a solution for the forward segment can be found in Part 1, and it
remains unaffected by the presence of the aft segment. Being an inseparable part of the
present solution, however, it is very briefly recapitulated below under the assumption that
|θ | � 1.

Equation (3.10) is solved using a variant of Söhngen (1939) inversion,

∂μ(t, x, y)
∂y

= − 2
π

1√
s2(x) − y2

--
∫ s(x)

−s(x)

√
s2(x) − ζ 2 w(t, x, ζ ) dζ

y − ζ
, (4.1)

that prescribes square-root singularities of ∂μ/∂y at y = ±s(x). This variant can be
adapted from equation (5-66) in Ashley & Landahl (1985); a more general address can
be found in Muskhelishvili (1953). The nth moment of ∂μ/∂y,

μn(t, x) = −2
∫ 1

−1

√
1 − ζ 2An(ζ )w(t, x, ζ s(x)) dζ , (4.2)

follows by (4.1) and (3.12) with

An(ζ ) = 1
π

--
∫ 1

−1

1√
1 − y2

yn dy
y − ζ

. (4.3)
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G. Iosilevskii

It is shown in Appendix A that A0(ζ ) is zero for any |ζ | < 1, and −1/
√

ζ 2 − 1 otherwise.
It is also shown in Appendix A that subsequent functions satisfy the recurrence relation

An(ζ ) =
n−1∑
m=0

Cmζ n−1−m + A0(ζ )ζ n, (4.4)

in which

Cn = 1
π

∫ 1

−1

yn dy√
1 − y2

(4.5)

are standard integrals. Among them, C2n+1 is zero for any non-negative integer n by
symmetry considerations, whereas

C2n = (2n)!

22n(n!)2 . (4.6)

Noting that ∫ 1

−1

√
1 − ζ 2An(ζ ) dζ = 1

π

∫ 1

−1

√
1 − ζ 2 dζ --

∫ 1

−1

yn√
1 − y2

dy
y − ζ

=
∫ 1

−1

yn+1 dy√
1 − y2

= πCn+1, (4.7)

∫ 1

−1

√
1 − ζ 2An(ζ )ζ dζ =

∫ 1

−1

yn√
1 − y2

(
y2 − 1

2

)
dy = π

2
Cn

n
n + 2

(4.8)

by (4.3), (4.5) and (4.6), substitution of (3.5) in (4.2) furnishes

μ2n(t, x) = −πC2n
n

n + 1
w1(t, x)s(x), (4.9)

μ2n+1(t, x) = −2πC2n+2w0(t, x). (4.10)

4.2. Moments of the pressure jump
The nth moment of pressure,

Πn(t, x) =
∫ s(x)

−s(x)

(
Dμ(t, x, y)

Dt
− ∂μ(t, x, y)

∂y
dy0(x)

dx

)
yn dy, (4.11)

follows by (3.14) and (3.15). Because, on the forward segment, the potential jump vanishes
at both edges by (3.8), the convective derivative in the first term can be taken outside the
integral sign; followed by integration by parts it yields

Πn(t, x) = − 1
n + 1

D
Dt

(sn+2(x)μn+1(x)) − dy0(x)
dx

sn+1(x)μn(x) (4.12)

by (3.12). Consequently,

Π2n(t, x) = 2πC2n+2

2n + 1
D
Dt

(s2n+2(x)w0(t, x)) + πnC2n

n + 1
dy0(x)

dx
s2n+2(x)w1(t, x), (4.13)

Π2n+1(t, x) = πC2n+2

2(n + 2)

D
Dt

(s2n+4(x)w1(t, x)) + 2πC2n+2
dy0(x)

dx
s2n+2(x)w0(t, x) (4.14)

by (4.9) and (4.10).
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A unified theory of slender wings in asymmetric motion

4.3. Leading-edge suction
Suction force on the upper (‘+’) and lower (‘−’) edges of the forward segment is given by

f±(t, x) = π

4
A2

±(t, x), (4.15)

where

A±(t, x) = lim
y→±s(x)

(√
s(x) ∓ y

∂μ(t, x, y)
∂y

)
(4.16)

is the coefficient with the square-root singularity of μ at the respective edge. This pair of
equations comes instead of (3.13). Equation (4.16) yields

A±(t, x) = ∓ 2
π

1√
2s(x)

--
∫ s(x)

−s(x)

√
s(x) ± ζ

s(x) ∓ ζ
w(t, x, ζ ) dζ (4.17)

by (4.1), from which

A±(t, x) = ∓
√

2s(x)
(

w0(t, x) ± 1
2

w1(t, x)s(x)
)

(4.18)

follows by (3.5). Thus,

f±(t, x) = π

2
s(x)

(
w0(t, x) ± 1

2
w1(t, x)s(x)

)2

(4.19)

by (4.15).

4.4. Sectional force, moment and power
Introducing (4.19), (4.13), (4.14) and (4.6) in (3.19)–(3.25) yields

fx(t, x) = −π
D
Dt

(
s2(x)w0(t, x)

(
∂z0(t, x)

∂x
− θ(t, x)

dy0(x)
dx

)
+ s4(x)

8
w1(t, x)

∂θ(t, x)
∂x

)

− π

2
∂

∂x

(
s2(x)w2

0(t, x) + 1
8

s4(x)w2
1(t, x)

)
, (4.20)

fy′(t, x) = −π
D
Dt

(s2(x)w0(t, x)θ(t, x)), (4.21)

fz′(t, x) = π
D
Dt

(s2(x)w0(t, x)), (4.22)

ι(t, x) = −π
D
Dt

(
s2(x)w0(t, x)

∂z0(t, x)
∂t

+ 1
8

s4(x)w1(t, x)
∂θ(t, x)

∂t

)

− π

2
∂

∂t

(
s2(x)w2

0(t, x) + 1
8

s4(x)w2
1(t, x)

)
. (4.23)

Essentially, these are variants of (3.9), (3.7), (3.8) and (3.23) of Part 1 under the
assumption that the twist angle θ is small as compared with unity. Under the same
assumption,

m0,x(t, x) = π

8
D
Dt

(s4(x)w1(t, x)) + πs2(x)w0(t, x)
dy0(x)

dx
(4.24)

by (3.22) and (4.14); the remaining two components of m0, m0,y′ and m0,z′ , are rendered
insignificant in § 6, and hence are not shown.
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5. The aft segment

5.1. Boundary integral equation
The potential jump across the aft segment of the body is governed by (3.11), which has to
be satisfied for each x ∈ (0, xt) and y ∈ (−s(x), s(x)). Separating the part of the integration
interval containing the wake, it can be re-written as

1
2π

--
∫ s(x)

−s(x)

∂μ(t, x, ζ )

∂ζ

dζ

y − ζ
= w(t, x, y) − 1

2π

∫ s(0)−y0(x)

s(x)

∂μ(t, x, ζ )

∂ζ

dζ

y − ζ
. (5.1)

This move anticipates subsequent substitution of (3.4) for the potential jump across
the wake. Because μ′(t, x, y′) = μ(t, x, y′ − y0(x)) = μ(t, x, y) by (2.4) and (2.5), (3.4)
actually implies that for any point (x, y) of the wake with x ∈ (0, xt) and y ∈ (s(x), s(0) −
y0(x)),

μ(t, x, y) = μ(t − (x − x+(x, y)), x+(x, y), s(x+(x, y))), (5.2)

where x+(x, y) is the point of the trailing edge that has the same y′ coordinate as the point
of the wake, i.e. it is the solution of

y0(x+) + s(x+) = y + y0(x), (5.3)

whereas μ(t, x, s(x)) is the value of the potential jump at the trailing edge of the aft
segment (Wu 1971; Yates 1983). Consequently, for any point of the wake,

∂μ(t, x, ζ )

∂ζ
=
(

∂μ(t′′, x′′, s(x′′))
∂t′′

+ ∂μ(t′′, x′′, s(x′′))
∂x′′

)
t′′=t−(x−x+(x,ζ ))

x′′=x+(x,ζ )

∂x+(x, ζ )

∂ζ
. (5.4)

This relation allows changing of the integration variable in (5.1) to x+, which leads to

1
2π

--
∫ s(x)

−s(x)

∂μ(t, x, ζ )

∂ζ

dζ

y − ζ
= w(t, x, y)

+ 1
2π

∫ x

0

(
∂μ(t′′, x′′, s(x′′))

∂t′′
+ ∂μ(t′′, x′′, s(x′′))

∂x′′

)
t′′=t−(x−x+)

x′′=x+

dx+

y + y0(x) − (y0(x+) + s(x+))
;

(5.5)

the change in sign comes from exchanging the upper and lower integration limits: y = s(x)
corresponds to x+ = x, whereas y = s(0) − y0(x) corresponds to x+ = 0, both by (5.3).

Equation (5.5) has no analytical solution in the general case. At the same time, its
numerical solution (e.g. Baddoo, Hajian & Jaworski 2021) renders the slender body
approximation redundant. There is hardly any benefit in attempting a numerical solution of
an approximate model in the framework of the potential flow theory, when a fast numerical
solution of the exact model in the framework of the same theory is readily available
(Appendix H). Fortuitously, when the projection of the aft part of the body on the x–y
plane has straight and parallel edges, as in figures 1–3, i.e. when

y0(x) = −x tan λ, (5.6)

s(x) = s(0) = 1 (5.7)
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A unified theory of slender wings in asymmetric motion

for each x ∈ (0, xt), (5.5) takes on a much simpler form,

1
2π

--
∫ 1

−1

∂μ(t, x, ζ )

∂ζ

dζ

y−ζ
= w(t, x, y)

+ 1
2π

∫ x

0

(
∂μ(t′′, x′′, 1)

∂t′′
+ ∂μ(t′′, x′′, 1)

∂x′′

)
t′′=t−(x−x+)

x′′=x+

dx+

( y − 1) − (x − x+) tan λ
,

(5.8)
which is tractable analytically. It is solved in the next section. Although λ is a small
quantity by assumption, tan λ will not be replaced by λ to facilitate tracking. The reader is
reminded that λ was assumed in § 2.1 to be strictly positive.

5.2. Potential jump and its moments
We begin by applying a pair of Laplace transforms to (5.8): one,

L{f (·, . . .); q} =
∫ ∞

0
f (t, . . .) e−qt dt, (5.9)

with respect to time (here, f is an arbitrary function, q is the Laplace variable and the
ellipsis is a placeholder for possible additional arguments of f ), and the other,

L{f (∼, ·, . . .); p} =
∫ ∞

0
f (∼, x, . . .) e−px dx, (5.10)

with respect to x (p stands for another Laplace variable, and the tilde is a placeholder for
time or for the associated Laplace variable). It is agreed that a function receives a hat after
the ‘time’ transform (and time transform only), an inverted hat after the ‘space’ transform
(and space transform only) and a tilde-like hat after the two of them. Assuming, with no
loss of generality, that the body causes no perturbation to the oncoming flow prior to time
t = 0 – and hence both w(t, x, y) and μ(t, x, y) are zero for any t < 0 and any point along
the body – the outcome of these two transforms is

1
2π

--
∫ 1

−1

∂μ̃(q, p, y′)
∂y′

dy′

y − y′ = w̃(q, p, y) + κeκ

2π
μ̃(q, p, 1)

∫ ∞

1

e−κy′
dy′

y − y′ , (5.11)

in which
κ = ( p + q) cot λ; (5.12)

details can be found in Appendix B. Equation (5.11) has to be satisfied for every y ∈
(−1, 1).

Equation (5.11) is essentially the same as the one appearing in the theory of oscillating
wing sections (Bisplinghoff et al. 1996), and is solved here by following exactly the same
steps. Starting with the Söhngen (1939) inversion, it becomes

∂μ̃(q, p, y)
∂y

= − 2
π

√
1−y
1+y

--
∫ 1

−1

√
1+ζ

1−ζ

dζ

y−ζ

×
(

w̃(q, p, ζ )+ κeκμ̃(q, p, 1)

2π

∫ ∞

1

e−κy′
dy′

ζ −y′

)
. (5.13)

This particular variant of the inversion is the same as in the theory of wing sections (Ashley
& Landahl 1985; Bisplinghoff et al. 1996), but different for the one used for the forward

940 A34-13

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.192


G. Iosilevskii

segment – here, it prescribes a square-root singularity of ∂μ̃/∂y at the leading edge ( y =
−1) and no singularity at the trailing edge ( y = 1). Evaluating the integral with respect to
ζ in the last term furnishes (5.13) in somewhat simpler form,

∂μ̃(q, p, y)
∂y

=
√

1 − y
1 + y

(
− 2

π
--
∫ 1

−1

√
1 + ζ

1 − ζ

w̃(q, p, ζ ) dζ

y − ζ

+ κeκμ̃(q, p, 1)

π

∫ ∞

1

√
y′ + 1
y′ − 1

e−κy′
dy′

y − y′

)
, (5.14)

which is the one to be used below.
Bearing in mind that μ̃(q, p, −1) = 0 by (3.9), (5.14) can be integrated on both sides

with respect to y between −1 and 1 to obtain an algebraic equation

μ̃(q, p, 1) = 2 --
∫ 1

−1

√
1 + ζ

1 − ζ
w̃(q, p, ζ ) dζ − κeκμ̃(q, p, 1)

∫ ∞

1

(√
y′ + 1
y′ − 1

− 1

)
e−κy′

dy′

(5.15)

for μ̃(q, p, 1). The last term on the right (containing
∫∞

1 e−κy′
dy′) cancels

out with the term on the left; the second term from the right (containing∫∞
1

√
( y′ + 1)/( y′ − 1) e−κy′

dy′) is identified with the combination K0(κ) + K1(κ) of
Bessel functions; what is left, reduces to

μ̃(q, p, 1) = 2Φ̃
(0)

0 (κ) --
∫ 1

−1

√
1 + ζ

1 − ζ
w̃(q, p, ζ ) dζ, (5.16)

where

Φ̃
(0)
k (κ) = 1

κk+1 eκ(K0(κ) + K1(κ))
(5.17)

is the Laplace transform of the kth-order Küssner function (Sears 1940; Iosilevskii 2007,
2012). The proper Küssner function – the one representing the lift response of a wing
section to a sharp-edged gust, or the potential jump at the trailing edge due to a step in the
angle of attack – is of the first order. The purpose of the superscript with Φ̃k will become
clear shortly.

By definition, μ̃(q, p, 1) is also the zeroth-order moment μ̃0(q, p) of ∂μ̃(q, p, y)/∂y –
exactly as μ(t, x, 1) is the zeroth-order moment μ0(t, x) of ∂μ(t, x, y)/∂y by (3.12) and
(5.7). In general, however, the nth moment of ∂μ̃(q, p, y)/∂y,

μ̃n(q, p) =
∫ 1

−1

∂μ̃(q, p, y)
∂y

yn dy, (5.18)

is given by

μ̃n(q, p) = −2
∫ 1

−1

√
1 + ζ

1 − ζ
w̃(q, p, ζ )(An(ζ ) − An+1(ζ )) dζ

+ κeκμ̃(q, p, 1)

∫ ∞

1

√
y′ + 1
y′ − 1

e−κy′
(An( y′) − An+1( y′)) dy′; (5.19)
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this particular form follows (5.18) by (5.14) and (4.3). Further reduction of this equation is
quite bulky, but can be found in full in Appendix C. Eventually, it yields

μ̃2n(q, p) = −πw̃1(q, p)
nC2n

n + 1
+ 2πΦ̃

(2n)
0 (κ)w̃3/4(q, p), (5.20)

μ̃2n+1(q, p) = −2πw̃0(q, p)C2n+2 + 2πΦ̃
(2n+1)
0 (κ)w̃3/4(q, p), (5.21)

where, for each n > 0,

Φ̃
(n)
k (κ) = (−1)n

κk(K0(κ) + K1(κ))

⎛
⎝ dn

dκn
e−κ

κ
+

floor((n−1)/2)∑
m=0

C2m
dn−1−2m

dκn−1−2m
K1(κ)

κ

⎞
⎠
(5.22)

is an ad hoc combination of Bessel and exponential functions, whereas

w̃3/4(q, p) = w̃0(q, p) + (1/2)w̃1(q, p) (5.23)

can be interpreted as the double transform of the velocity normal to the body at the
respective three-quarter chord point,

w3/4(t, x) = w0(t, x) + (1/2)w1(t, x); (5.24)

see (3.5).
Now, let

Φ
(n)
k (x) = L−1{Φ̃(n)

k ; x} = 1
2πi

∫
Br

Φ̃
(n)
k (κ) eκx dκ (5.25)

be the inverse transform of Φ̃
(n)
k ; Br is the Bromwich contour. When κ → ∞, K0(κ),

K1(κ) and their derivatives of any order with respect to κ behave as e−κ/
√

κ , and,
consequently, Φ̃

(n)
k (κ) = O(

√
κ/κk+1) by (5.22). Consequently, for any n ≥ 0,

Φ
(n)
k (0) = 0 (5.26)

when k > 0, but has a square-root singularity when k = 0. Moreover, for any x > 0,

Φ
(n)
0 (x) = dΦ

(n)
1 (x)/dx. (5.27)

With these, the pair of inverse transforms in (5.20) and (5.21) furnish

μ2n(t, x) = −πw1(t, x)
nC2n

n + 1
+ 2π tan λ

∫ x∗

0
Φ

(2n)
0 (x′ tan λ)w3/4(t − x′, x − x′) dx′,

(5.28)

μ2n+1(t, x) = −2πw0(t, x)C2n+2 + 2π tan λ
∫ x∗

0
Φ

(2n+1)
0 (x′ tan λ)w3/4(t − x′, x − x′) dx′,

(5.29)

where

x∗ = min(t, x); (5.30)
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details can be found in Appendix E. In view of (5.26) and (5.27), their alternative forms
are

μ2n(t, x) = −πC2n
n

n + 1
w1(t, x) + 2πΦ

(2n)
1 (x∗ tan λ)w3/4(t − x∗, x − x∗)

+ 2π

∫ x∗

0
Φ

(2n)
1 (x′ tan λ)

D
Dt

w3/4(t − x′, x − x′) dx′, (5.31)

μ2n+1(t, x) = −2πC2n+2w0(t, x) + 2πΦ
(2n+1)
1 (x∗ tan λ)w3/4(t − x∗, x − x∗)

+ 2π

∫ x∗

0
Φ

(2n+1)
1 (x′ tan λ)

D
Dt

w3/4(t − x′, x − x′) dx′. (5.32)

5.3. Moments of the pressure jump
The nth moment of the pressure jump on the aft segment is related to the potential jump
by the same expression as on the forward one, (4.11). In the present case, however, the
potential jump does not vanish at the trailing edge, but constancy of the integration limits
still allows for use of the same sequence of operations as on the forward segment. Thus,

Πn(t, x) =
∫ 1

−1

(
Dμ(t, x, −x tan λ+ y)

Dt
+ ∂μ(t, x, −x tan λ+ y)

∂y
tan λ

)
yn dy

= 1
n + 1

D
Dt

(μ0(t, x) − μn+1(t, x)) + tan λμn(t, x) (5.33)

by (4.12), (5.6) and (5.7). Introducing (5.28)–(5.32), it becomes

Π2n(t, x) = 2π
C2n+2

2n + 1
Dw0(t, x)

Dt
− π tan λw1(t, x)

nC2n

n + 1

+ 2π tan λ
(

G2n(x∗ tan λ)w3/4(t − x∗, x − x∗)

+
∫ x∗

0
G2n(x′ tan λ)

D
Dt

w3/4(t − x′, x − x′) dx′
)

, (5.34)

Π2n+1(t, x) = π

2
C2n+2

n + 2
Dw1(t, x)

Dt
− 2π tan λw0(t, x)C2n+2

+ 2π tan λ
(

G2n+1(x∗ tan λ)w3/4(t − x∗, x − x∗)

+
∫ x∗

0
G2n+1(x′ tan λ)

D
Dt

w3/4(t − x′, x − x′) dx′
)

, (5.35)

where Gn stands for the combination

Gn(x) = 1
n + 1

Φ
(0)
0 (x) − 1

n + 1
Φ

(n+1)
0 (x) + Φ

(n)
1 (x) (5.36)

of functions Φ
(n)
m , which were defined in (5.22) and (5.25).
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A unified theory of slender wings in asymmetric motion

Remarkably, the Laplace transform of Gn reduces to

G̃2n(κ) = C2n

K0(κ) + K1(κ)

K1(κ)

κ
= C2nΨ̃1(κ), (5.37)

G̃2n−1(κ) = C2n

K0(κ) + K1(κ)

K0(κ)

κ
= C2n

(
1
κ

− Ψ̃ 1(κ)

)
, (5.38)

where

Ψ̃k(κ) = 1
κk

K1(κ)

K0(κ) + K1(κ)
(5.39)

is identified with the Laplace transform of the kth-order Wagner function Ψk (Sears 1940;
Iosilevskii 2007). Consequently,

G2n(x) = C2nΨ1(x), (5.40)

G2n−1(x) = C2n(H(x) − Ψ1(x)), (5.41)

where Ψ̃k(κ) behaves as (1/2 + 1/8κ + . . .)(1/κk) when κ → ∞, and therefore Ψ0
behaves at the origin as a combination of a delta function δ and a step H; Ψ1 (this is the
proper Wagner function) behaves as a step with Ψ1(+0) = 1/2; all higher-order functions
properly vanish. To avoid ambiguity hereafter, it will be agreed that

Ψk(0) = 0 (5.42)
for any k ≥ 0, and, under this assumption,

Ψk−1(x) = dΨk(x)/dx (5.43)
for any k > 0. Rational approximations for Ψ0, Ψ1, . . . can be found in Appendix F.

Using (5.40) and (5.41), equations (5.34) and (5.35) for the pressure moments can be
recast as

Π2n(t, x) = πC2n

n + 1

(
Dw0(t, x)

Dt
+ tan λw1(t, x)

)
− πC2n tan λ(w1(t, x) − 2W3/4(t, x, tan λ)), (5.44)

Π2n+1(t, x) = 1
2

πC2n+2

n + 2
Dw1(t, x)

Dt
+ πC2n+2 tan λ(w1(t, x) − 2W3/4(t, x, tan λ)),

(5.45)
where

W3/4(t, x, tan λ) = Ψ1(x∗ tan λ)w3/4(t − x∗, x − x∗)

+
∫ x∗

0
Ψ1(x′ tan λ)

D
Dt

w3/4(t − x′, x − x′) dx′ (5.46)

embodies the contribution of the wake. It manifests the dependence of the pressure
moments on the history of the wing’s motion. When writing (5.44), equation (4.6) was
used to relate C2n+2 and C2n. Since

D
Dt

w3/4(t − x′, x − x′) = − d
dx′ w3/4(t − x′, x − x′), (5.47)

the last term on the right-hand side of (5.46) can be integrated by parts to obtain

W3/4(t, x, tan λ) = tan λ
∫ x∗

0
Ψ0(x′ tan λ)w3/4(t − x′, x − x′) dx′; (5.48)

note the delta-function content of Ψ0 at the origin, as well as equations (5.42) and (5.43).
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G. Iosilevskii

5.4. Leading-edge suction
Suction force works only on the lower (leading) edge of the aft segment. Essentially, it is
given by the same pair of equations as on the forward one ((4.15) and (4.16)), but lacking
a closed form expression for the potential jump in the time domain, finding the coefficient

A−(t, x) = lim
y→−1

(√
1 + y

∂μ(t, x, y)
∂y

)
(5.49)

with the square-root singularity at the leading edge becomes more involved. A possible
solution here is to apply the pair of Laplace transforms (one with respect to time and the
other with respect to x), exploit (5.14) and bring the expression back to physical variables.
In this case, the pair of Laplace transforms yields

Ã−(q, p) = lim
y→−1

(√
1 + y

∂μ̃(q, p, y)
∂y

)
, (5.50)

from which

Ã−(q, p) =
√

2
π

⎛
⎝2

∫ 1

−1

w̃(q, p, ζ ) dζ√
1 − ζ 2

− μ̃(q, p, 1)κeκ

∫ ∞

1

e−κy′
dy′√

y′2 − 1

⎞
⎠ (5.51)

by (5.14). The integral in the right-most term is identified with the respective zeroth order
Bessel function K0(κ); substituting (3.5) for w, and the combination of (5.16) and (5.17)
for μ̃(q, p, 1), result in

Ã−(q, p) =
√

2
π

(2πw̃0(q, p) − μ̃(q, p, 1)κeκK0(κ))

= 2
√

2
(

w̃0(q, p) − K0(κ)

K0(κ) + K1(κ)
w̃3/4(q, p)

)
(5.52)

by (5.23), from which

Ã−(q, p) = 2
√

2(−(1/2)w̃1(q, p) + Ψ̃0(κ)w̃3/4(q, p)) (5.53)

by (5.39) and (5.23).
The pair of the respective inverse transforms applied to (5.53) furnishes

A−(t, x) = −
√

2(w1(t, x) − 2W3/4(t, x, tan λ)) (5.54)

by (5.48), from which the leading-edge suction

f−(t, x) = (π/2)(w1(t, x) − 2W3/4(t, x, tan λ))2 (5.55)

follows by (4.15).
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A unified theory of slender wings in asymmetric motion

5.5. Sectional force, moment and power
Introducing (5.55), (5.44) and (5.45) in (3.19)–(3.25) yields

fx(t, x) = −π
D
Dt

(
w0(t, x)

(
∂z0(t, x)

∂x
+ θ(t, x) tan λ

)
+ 1

8
w1(t, x)

∂θ(t, x)
∂x

)

− π

2
∂

∂x

(
w2

0(t, x) + 1
8

w2
1(t, x)

)
+ π tan λw3/4(t, x)

∂θ(t, x)
∂t

− 2π tan λW2
3/4(t, x, tan λ) − 2π tan λW3/4(t, x, tan λ)

×
(

∂z0(t, x)
∂x

+ θ(t, x) tan λ− 1
2

∂θ(t, x)
∂x

− w1(t, x)
)

, (5.56)

fy′(t, x) = −π
D
Dt

(θ(t, x)w0(t, x)) − πw3/4(t, x)w1(t, x)

+ 2πW3/4(t, x, tan λ)(w1(t, x) − θ(t, x) tan λ) − 2πW2
3/4(t, x, tan λ), (5.57)

fz′(t, x) = π
Dw0(t, x)

Dt
+ 2π tan λW3/4(t, x, tan λ), (5.58)

ι(t, x) = −π
D
Dt

(
w0(t, x)

∂z0(t, x)
∂t

+ 1
8

w1(t, x)
∂θ(t, x)

∂t

)

− π

2
∂

∂t

(
w2

0(t, x) + 1
8

w2
1(t, x)

)
− π tan λw3/4(t, x)

∂θ(t, x)
∂t

− 2π tan λ
(

∂z0(t, x)
∂t

− 1
2

∂θ(t, x)
∂t

)
W3/4(t, x, tan λ), (5.59)

m0,x(t, x) = π

8
Dw1(t, x)

Dt
+ π

2
tan λ(w1(t, x) − 2W3/4(t, x, tan λ)) (5.60)

by (4.6). As on the forward segment, the remaining two components of m0, m0,y′ and m0,z′ ,
are rendered insignificant in § 6, and hence are not shown.

Broadly speaking, terms appearing first on the right-hand side of (5.56)–(5.60) embody
the same terms as those appearing in (4.20)–(4.24), and they can be associated with
fluid inertia. Terms involving W3/4 are associated with circulatory loads – this conjecture
follows by (5.31) and (5.48) because cancelling w3/4 cancels both W3/4 and the potential
jump μ(t, x, 1) = μ0(t, x) at the trailing edge; they manifest the dependence of the
aerodynamic loads on the history of the body’s motion. The remaining (underlined) terms
are associated with inertial coupling between translational and rotational motions.

Noteworthy is the sectional moment about the quarter-chord point,

m1/4,x(t, x) = m0,x(t, x) + (1/2)fz(t, x). (5.61)

Its explicit form

m1/4,x(t, x) = π

8
Dw1(t, x)

Dt
+ π

2
tan λw1(t, x) + π

2
Dw0(t, x)

Dt
, (5.62)

which follows by (5.58) and (5.60), does not involve W3/4, and hence is independent of
the history of the body’s motion. This result accords with the same result for the theory
of wing sections in non-uniform motion (Sears 1940; Bisplinghoff et al. 1996; Iosilevskii
2007), where all circulatory loads on a wing section are shown to act at its quarter chord.
More details can be found in § 7.1 below.
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G. Iosilevskii

6. The entire body

6.1. Integral force, moment and power
The force acting on the entire body,

F (t) =
∫ xt

xn

f (t, x) dx, (6.1)

follows the sectional force on the forward (4.20)–(4.22) and aft (5.56)–(5.58) segments by
integration. Its components are

Fx(t) = −π
∂

∂t

∫ xt

xn

(
s2(x)w0(t, x)

(
∂z0(t, x)

∂x
− θ(t, x)

dy0(x)
dx

)
+ s4(x)

8
w1(t, x)

∂θ(t, x)
∂x

)
dx

− π

(
w0(t, x)

(
∂z0(t, x)

∂x
+ θ(t, x) tan λ+ w0(t, x)

2

)
+ w1(t, x)

8

(
∂θ(t, x)

∂x
+ w1(t, x)

2

))
x=xt

− 2π tan λ
∫ xt

0
W3/4(t, x, tan λ)

(
∂z0(t, x)

∂x
+ θ(t, x) tan λ− 1

2
∂θ(t, x)

∂x
− w1(t, x)

)
dx

+ π tan λ
(∫ xt

0
w3/4(t, x)

∂θ(t, x)
∂t

dx − 2
∫ xt

0
W2

3/4(t, x, tan λ) dx
)

, (6.2)

Fy′(t) = −π
∂

∂t

∫ xt

xn

s2(x)w0(t, x)θ(t, x) dx − πθ(t, xt)w0(t, xt) − π

∫ xt

0
w3/4(t, x)w1(t, x) dx

+ 2π

∫ xt

0
W3/4(t, x, tan λ)(w1(t, x) − θ(t, x) tan λ) dx − 2π

∫ xt

0
W2

3/4(t, x, tan λ) dx, (6.3)

Fz′(t) = π
∂

∂t

∫ xt

xn

s2(x)w0(t, x) dx + πw0(t, xt) + 2π tan λ
∫ xt

0
W3/4(t, x, tan λ) dx. (6.4)

Likewise, the power needed to sustain the motion,

P(t) =
∫ xt

xn

ι(t, x) dx, (6.5)

follows the sectional power on the forward (4.23) and aft segments (5.59) with

P(t) = −π
∂

∂t

∫ xt

xn

s2(x)w0(t, x)
(

∂z0(t, x)
∂t

+ 1
2

w0(t, x)
)

dx

− π

8
∂

∂t

∫ xt

xn

s4(x)w1(t, x)
(

∂θ(t, x)
∂t

+ 1
2

w1(t, x)
)

dx

− π

(
w0(t, xt)

∂z0(t, xt)

∂t
+ 1

8
w1(t, xt)

∂θ(t, xt)

∂t

)
−π tan λ

∫ xt

0
w3/4(t, x)

∂θ(t, x)
∂t

dx

− 2π tan λ
∫ xt

0

(
∂z0(t, x)

∂t
− 1

2
∂θ(t, x)

∂t

)
W3/4(t, x, tan λ) dx. (6.6)
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A unified theory of slender wings in asymmetric motion

Given the sectional moment (per unit length) about the centre of a section, m0(t, x), the
moment acting on the body about the origin of C′ is

M(t) =
∫ xt

xn

m0(t, x) dx +
∫ xt

xn

r0(t, x) × f (t, x) dx, (6.7)

where

r0(t, x) = xex + y0(x)ey′ + z0(t, x)ez′ (6.8)

is the radius vector from the origin of C′ to the centre of the respective cross-section.
Straightforward collection of terms here leads to excessively long expressions, which
render the result practically useless. The dominant contributions here (established
based on the dominant arm) are

∫ xt
xn

xex × f (t, x) dx in the y- and z- components, and∫ xt
xn

m0,x(t, x) dx + ∫ xt
xn

y0(x)fz′(t, x) dx in the x-component; f is found in (4.20)–(4.22) and
(5.56)–(5.58); m0,xis found in (4.24) and (5.60). Thus, approximately,

Mx(t) = π
∂

∂t

∫ xt

xn

(
y0(x)s2(x)w0(t, x) + 1

8
s4(x)w1(t, x)

)
dx

+ π

8
w1(t, xt)−πw0(t, xt)xt tan λ+π tan λ

∫ xt

0
(w3/4(t, x)−W3/4(t, x, tan λ)) dx

− 2πtan2λ

∫ xt

0
W3/4(t, x, tan λ)x dx + . . . , (6.9)

My′(t) = −π
∂

∂t

∫ xt

xn

s2(x)w0(t, x)x dx − 2π tan λ
∫ xt

0
W3/4(t, x, tan λ)x dx − πxtw0(t, xt)

+ π

∫ xt

xn

s2(x)w0(t, x) dx + . . . , (6.10)

Mz′(t) = −π
∂

∂t

∫ xt

xn

s2(x)w0(t, x)θ(t, x)x dx − π

∫ xt

0
w3/4(t, x)w1(t, x)x dx

− πw0(t, xt)θ(t, xt)xt + π

∫ xt

xn

s2(x)w0(t, x)θ(t, x) dx

− 2π

∫ xt

0
W2

3/4(t, x, tan λ)x dx

+ 2π

∫ xt

0
W3/4(t, x, tan λ)(w1(t, x) − θ(t, x) tan λ)x dx + . . .; (6.11)

the ellipses stand for terms of the order of x−1
t as compared with the leading ones.

6.2. Corroboration
Equations (4.20)–(4.22) and (5.56)–(5.58) for the sectional forces, (4.23) and (5.59) for
the sectional power and (6.2)–(6.4), (6.6) and (6.9)–(6.11) for their integrals along the
body, comprise the main practical result of this study. A few examples in the next section
elucidate how they can be effectively used. Some of these examples are also used to test
the coherence of these results by comparison with numerical simulations based on the
vortex lattice method.
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Vortex lattice method is a widely accepted numerical technique for solving the flow field
in the irrotational exterior of a body and its wake (Katz & Plotkin 1991). In its simplest
form, it is based on the same fundamental assumptions as the present theory – isolation of
the rotational regions of the flow field (infinitesimally thin boundary layer and wake), and
placement of the wake as a continuation of the boundary layer across the trailing edge – but
it is free from the specific assumptions that made the present theory analytically tractable.
These specific assumptions were the smallness of the slenderness parameter (the ratio
between lateral and longitudinal length scales of the problem), smallness of the spatial
derivatives of z0, θ and s, and the shape of the wake footprint in a transverse plane. An
agreement between numerical simulations based on this method and the theory in a variety
of cases complying with the specific assumptions of the theory can be seen an indication
that no significant errors were made in the algebraic derivations. A disagreement between
the two in the cases that do not comply with the specific assumptions can broadly outline
the applicability limits of the slender body theory within the potential flow approximation.
Most of the examples of § 7 were chosen in the first category; examples of § 8 were
chosen in the second one. Of course, the true test of the theory should scrutinize all
its assumptions, including those of the potential flow approximation (the thinness of the
rotational regions of the flow and their location), which can be done experimentally or by
numerical simulations of viscous fluid flow – see § 8.

6.3. Notations
As the examples of § 7 are divided between aerodynamics of slender bodies and the
hydrodynamics of aquatic propulsion, it is worthwhile to relate the present notation with
commonly accepted ones in each of these areas. Referring to the end of § 2.1, the reader is
reminded that the units of pressure, length and area are ρv2, s0 = s(0) and s2

0, respectively.
In aerodynamics, the commonly accepted unit of pressure is (1/2)ρv2, and the unit of
area is (typically) the area of the body projection onto the x–y plane, Sw; the unit of length
is hardly uniform and depends on the particular circumstances. Having the shape of the
forward segment left undefined, the projected body area remains undefined as well, but
the notion of the aspect ratio

A = (2 + xt tan λ)2/Sw, (6.12)

which is the ratio of the square of the body span 2 + xt tan λ and the area of its projection
onto the x–y plane, can be effectively used to replace the area. Thus, keeping the unit of
length as s0, the aerodynamic coefficients of lift CL = CFz′ , drag CD = CFx′ and side force
CY = CFy′ , as well as those of roll CR = −CMx′ , pitch CM = CMx′ and yaw CN = CMz′
moments, follow the present results with

C... = 2
Sw

(. . .) = 2A

(2 + xt tan λ)2 (. . .), (6.13)

where the ellipsis is a placeholder for Fx′, Fy′, Fz′ and Mx′, My′, Mz′ .
There is no commonly adopted choice of units in hydrodynamics of aquatic propulsion,

and hence no different normalization is needed. Nonetheless, the common names do
change. Thus, Fy′ becomes the dorso-ventral component of the hydrodynamic force and,
to within a sign, it becomes associated with ‘lift’ (practically no biological swimmer
is neutrally buoyant, and hence relies on hydrodynamic lift to counteract gravity); Fz′
becomes the ‘side force’ and −Fx′ becomes the ‘thrust’.
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A unified theory of slender wings in asymmetric motion

7. Examples

7.1. A rigid wing
As a first example, consider the sectional lift fz′ and rolling (twisting) moment m1/4,x
acting on the aft segment of a (rigid, non-flexible) wing that moves in such a way that z0
and θ do not change along it, but do change with time. One can envision this motion as a
combination of heave and rotation about the long axis of the wing. A change of variables,
t̄ = t tan λ and x̄ = x tan λ, will prove helpful here. Consistently marking functions of t̄ and
x̄ by overbars, as in z0(t) = z0(t̄ cot λ) = z̄0(t̄) and θ(t) = θ(t̄ cot λ) = θ̄ (t̄), one will find
w0 related to w̄0 by

w0(t) = tan λw̄0(t̄), (7.1)

where

w̄0(t̄) = −dz̄0(t̄)
dt̄

− θ̄ (t̄) (7.2)

by (3.6). One will also find w1 and w3/4 related to w̄1 and w̄3/4 by variants of (7.1), where
w̄1 and w̄3/4are replicas of (3.7) and (5.24) with overbars. Subsequently, (5.58) and (5.62)
become

fz′(t, x) = tan2λ f̄z′(t tan λ, x tan λ), (7.3)

m1/4,x(t, x) = tan2λ m̄1/4,x(t tan λ), (7.4)

where

f̄ z′(t̄, x̄) = −π

(
d2z̄0(t̄)

dt̄2
+ dθ̄ (t̄)

dt̄

)

+ 2π

(
Ψ1(x̄∗)w̄3/4(t̄ − x̄∗) +

∫ x̄∗

0
Ψ1(x̄′)

dw̄3/4(t̄ − x̄′)
dt̄

dx̄′
)

, (7.5)

m̄1/4,x(t̄) = −π

2

(
d2z̄0(t̄)

dt̄2
+ 1

4
d2θ̄ (t̄)

dt̄2
+ 2

dθ̄ (t̄)
dt̄

)
(7.6)

by (5.46). Recall that x̄∗ = min(t̄, x̄) by (5.30). An alternative form of (7.5),

f̄z′(t̄, x̄) = −π

(
d2z̄0(t̄)

dt̄2
+ dθ̄ (t̄)

dt̄

)
+ 2π

∫ x̄∗

0
Ψ0(x̄′)w̄3/4(t̄ − x̄′) dx̄′, (7.7)

follows by (5.43) and (5.42) after integration by parts, but it could have been derived
directly using (5.48) instead of (5.46).

Here, f̄z′ and m̄1/4,x can be interpreted as reduced loads that are based on v tan λ
as the unit of speed instead of v. Because λ� 1 by assumption, tan λ and sin λ are
essentially the same, and therefore v tan λ is practically the velocity component normal
to the leading edge of the aft segment. With this interpretation, (7.5) and (7.6) can
be compared with the corresponding equations from the theory of wing sections in
unsteady motion – for example, equations (5-370) and (5-312) of Bisplinghoff et al. (1996).
Adjusting notation with b → s0, α → θ , h → s0(z0 + aθ), a = −1/2, U → v tan λ and
an overdot → (v tan λ/s0) d/dt̄, equation (5-370) yields f̄z′(t̄, t̄) instead of f̄z′(t̄, x̄∗) in
(7.5), whereas equation (5-312) recovers (7.6) exactly. The difference between f̄z′(t̄, t̄) and
f̄z′(t̄, x̄∗) is the extent of the wake: it is t̄ = t tan λ with a section of an infinite wing, and
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x̄∗ = tan λmin(t, x) with the (particular) section of a slender wing, situated at distance x
from the forward end of the aft segment. The two are equal when t̄ ≤ x̄, but once t̄ exceeds
x̄, the variable extent of the wake to the side of a slender wing introduces non-uniformity in
the aerodynamic loads acting on its aft segment. In a sense, it resembles the impulsive start
analogy of Cheng (1954) for a delta wing. The equivalence between (5-312) and (7.6) is
consistent with the idea that circulatory loads (the term with the integral in (7.5)), although
dependent on the extent of the wake, act at the quarter-chord point.

When the wing oscillates harmonically with no twist, i.e. when z̄0(t̄) = Re(ẑ0 eiω̄t̄) and
θ̄ (t̄) = 0, and it does so for sufficiently long time (t̄ ≥ x̄), (7.7) reduces to f̄z′(t̄, x̄) =
Re(f̂z′(x̄) eiω̄t̄), where

f̂z′(x̄) = πẑ0

(
ω̄2 + 2iω̄

∫ x̄

0
Ψ0(x̄′) e−iω̄x̄′

dx̄′
)

. (7.8)

Because Ψ0 is strictly positive on (0, ∞) (Appendix F), the absolute value of its integral in
(7.8) can be bounded by its zero-frequency limit, which is Ψ1(x̄) by (5.43). It is an order-1
quantity (Appendix F). Consequently, when ω̄  1, the sectional force is dominated by its
inertial constituent πẑ0ω̄

2, which is unaffected by the presence of the wake. Noting that
ω̄ = ω cot λ (in fact, ω̄t̄ = ωt), the case ω̄  1 can be a very real possibility, even at low
frequencies. In fact, when λ = 0, only inertial forces act on the aft segment.

7.2. Impulsive start
As a second example, consider integral forces acting on a wing that is impulsively thrown
into a fixed bent z0(t, x) = H(t)ẑ0(x) and a uniform cant-in angle θ(t, x) = H(t)θ̂0. In this
case,

w0(t, x) = −δ(t)ẑ0(x) + H(t)ŵ0(x), (7.9)

ŵ0(x) = −dẑ0(x)
dx

+ θ̂0
dy0(x)

dx
(7.10)

by (3.6);
w1(t, x) = −δ(t)θ̂0 (7.11)

by (3.7); w3/4 follows w0 and w1 by (5.24). The three components of the force and the
pitching moment acting on the wing after its shape has been set (i.e. at t > 0),

Fx(t) = π

2
ŵ2

0(xt) + 2π tan λ
(∫ xt

0
W3/4(t, x, tan λ)ŵ0(x) dx −

∫ xt

0
W2

3/4(t, x, tan λ) dx
)

,

(7.12)

Fy′(t) = −θ̂0Fz′(t) − 2π

∫ xt

0
W2

3/4(t, x, tan λ) dx, (7.13)

Fz′(t) = πŵ0(xt) + 2π tan λ
∫ xt

0
W3/4(t, x, tan λ) dx, (7.14)

My′(t) = π

∫ 0

xn

s2(x)ŵ0(x) dx + π

∫ xt

0
(ŵ0(x) − ŵ0(xt)) dx

− 2π tan λ
∫ xt

0
W3/4(t, x, tan λ)x dx + . . . , (7.15)
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follow by (6.2)–(6.4), (6.1), (5.7) and the identity ŵ0(xt)xt = ∫ xt
0 ŵ0(xt) dx. As in the

classical slender body theory, the force acting on the wing is explicitly independent of
the shape of the forward segment.

Being the only time-dependent quantity in (7.12)–(7.15), the wake contribution, which
presently takes on the form

W3/4(t, x, tan λ) = − tan λΨ0(t tan λ) H(x − t)
(

ẑ0(x − t) +
1
2
θ̂0

)

+ tan λ
∫ min(t,x)

0
Ψ0(x′ tan λ)ŵ0(x − x′) dx′, (7.16)

is the one that governs the transient response of aerodynamic loads. In this particular form,
it follows (5.48) by (7.9), (7.11), (5.24) and (5.30). It vanishes when λ→ 0 and no wake
forms near the body. It becomes independent of time when t exceeds x,

W3/4(t, x, tan λ) = tan λ
∫ x

0
Ψ0(x′ tan λ)ŵ0(x − x′) dx′, (7.17)

and hence all aerodynamic loads reach a steady state when t exceeds xt.
Equations (7.12)–(7.16) become much simpler when

ŵ0(x) = α (7.18)

does not change along the wing (α in this case can be interpreted as the angle of attack),
and when it is set by rotation of the wing about the 3/4-chord line of the aft segment, so
that

θ̂0 = −α cot λ and ẑ0(x) = −(1/2)θ̂0 (7.19a,b)

for every point along it. Rotation about the 3/4-chord line eliminates the velocity spike
when θ is set (at t = 0), and thus cancels the first term on the right-hand side of (7.16). In
fact, with (7.18) and (7.19), (7.16) reduces to

W3/4(t, x, tan λ) = αΨ1(min(t, x) tan λ) (7.20)

by (5.43), and (7.12)–(7.15) become

Fx(t) = πα2(1
2 + 2Ω10(t tan λ, xt tan λ) − 2Ω20(t tan λ, xt tan λ)), (7.21)

Fy′(t) = πα2 cot λ(1 + 2Ω10(t tan λ, xt tan λ) − 2Ω20(t tan λ, xt tan λ)), (7.22)

Fz′(t) = πα(1 + 2Ω10(t tan λ, xt tan λ)), (7.23)

My′(t) = πα

(∫ 0

xn

s2(x) dx − 2 cot λ�11(t tan λ, xt tan λ) + . . .

)
, (7.24)

where

Ωnm(t, x) =
∫ x

0
Ψ n

1 (min(t, x′))x′m dx′ (7.25)

are standard quadratures of Ψ1 (Appendix G). The terms enclosed by parentheses in
(7.21)–(7.24) are shown in figure 5. The transient response indeed weakens with decreasing
λ and the steady state is indeed reached at t = xt.
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Figure 5. Drag (a), side force (b) and lift (c) as functions of time after an impulsive start for a few values
of λ shown to the right of the respective lines. Pitching moment about the origin is shown in (d). Numerical
simulations are represented by circles (down sampled for display); (7.21)–(7.24) are shown by solid lines.
Simulation details are those of case 1 in table 1 with θ̂0 = −0.1. α = θ̂0 tan λ.

7.3. Steady flight
When t exceeds xt, Ωnm reduce to their respective limits

Ωnm(x, x) = Ωnm(∞, x) =
∫ x

0
Ψ n

1 (x′)x′m dx′, (7.26)

and (7.21)–(7.24) become

Fx(∞) = πα2
(

1
2

+ 2Ψ2(xt tan λ) − 2
∫ xt tan λ

0
Ψ 2

1 (x) dx
)

, (7.27)

Fy′(∞) = πα2 cot λ
(

1 + 2Ψ2(xt tan λ) − 2
∫ xt tan λ

0
Ψ 2

1 (x) dx
)

, (7.28)

Fz′(∞) = πα(1 + 2Ψ2(xt tan λ)), (7.29)

My′(∞) = πα

∫ 0

xn

s2(x) dx − 2παxt

(
Ψ2(xt tan λ) − Ψ3(xt tan λ)

xt tan λ

)
+ . . . ; (7.30)

details can be found in Appendix G.
The three components of the force are shown in figure 6(a,b). Two limits of lift,

limxt tan λ→0Fz′(∞) = πα and limxt tan λ→∞Fz′(∞) = 2παxt tan λ, follow (7.29) by (F5)
and (F6). Using (6.13) to adjust notation, the former yields limxt tan λ→0CL = παA/2,
which recovers the lift coefficient of a slender wing (Jones 1946; Katz & Plotkin 1991);
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Figure 6. Drag (black) (a), side force (blue) (a), lift (b), induced drag fraction (c) and aerodynamic centre (d)
of straight swept wing as functions of λ. Circles mark numerical simulations; lines represent (7.27)–(7.29),
(7.31) and (7.34). Note the scale in (c). Simulation details are those of cases 2 (θ̂0 = −0.02, circles) and
3 (θ̂0 = −0.08, diamonds) from table 1. α = θ̂0 tan λ.

the latter yields limxt tan λ→∞CL = 2πα sin λ+ . . ., which recovers the lift coefficient of a
swept wing of infinite aspect ratio (Thwaites 1960). Recall that, for small λ, tan λ and sin λ
are equivalent, whereas for large xt, Sw = 2xt + . . . .

Location of the aerodynamic centre,

xac = 1
1 + 2Ψ2(xt tan λ)

(
−
∫ 0

xn

s2(x) dx + 2xt

(
Ψ2(xt tan λ) − Ψ3(xt tan λ)

xt tan λ

))
, (7.31)

follows (7.29) and (7.30) by its definition

xac = −∂My′(∞)/∂α

∂Fz′(∞)/∂α
(7.32)

as a point where the pitching moment is independent of the angle of attack. The first
term on the right-hand side of (7.31) can be identified with the aerodynamic centre of the
forward segment,

xac,f = −
∫ 0

xn

s2(x) dx. (7.33)

This conjecture can be accepted either as a formal limit xac,f = limxt→0xac (note (F6)),
or as a manifestation of the well-known result of the slender body theory (Jones 1946;
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Katz & Plotkin 1991). For a triangular shaped forward segment, such as the one used in
the numerical simulations, xac,f = xn/3. With increasing length of the aft segment, the
aerodynamic centre moves from xac,f toward the mid-length section of the aft segment
(figure 6d).

The ratio F̄x between the drag of the wing Fx′(∞) and the drag Fx,e = 2F2
z′(∞)/π(2 +

xt tan λ)2 of a hypothetical wing of the same aspect ratio that generates the same overall lift
with an elliptical spanwise distribution (equivalence between this expression and C2

L/πA
can be verified using (6.13)), is a measure of its aerodynamic efficiency. Its explicit form,

F̄x =
(

2 + xt tan λ
2 + 4Ψ2(xt tan λ)

)2 (
1 + 4Ψ2(xt tan λ) − 4

∫ xt tan λ

0
Ψ 2

1 (x) dx
)

, (7.34)

follows by (7.27) and (7.29). It equals unity when xt tan λ→ 0 by (F5), manifesting an
elliptical lift distribution over the span of a small-aspect-ratio wing. It cannot be unity for
all xt tan λ, and hence one can say with confidence that F̄x > 1 (figure 6c), and that the
lift distribution is not elliptical. Having only the leading-order asymptotic behaviour of
the indicial functions involved (manifested in (F6) and (G3)), the limit xt tan λ→ ∞ is
meaningless.

7.4. Anguilliform swimming gait
As the last example, consider an anguilliform (an eel-like) swimmer that propels itself by
small-amplitude lateral deformation waves

z0(t, x) = ẑtζ(x) cos(ωt − kx) (7.35)

that propagate backwards along its body with phase velocity u = ω/k > 1. Here, ẑt is the
tail amplitude, ζ is the (monotonic) modulating shape function (xn, xt) → (0, 1) and ω

and k are the (angular) frequency and wavenumber. To simplify this example, it will be
assumed that the swimmer does not twist, i.e.

θ(t, x) = 0. (7.36)

Consistent with preceding assumptions, λ is assumed strictly positive; notwithstanding,
it is presently assumed to be sufficiently small to justify keeping only the leading-order
terms with respect to tan λ – this is not a trivial assumption because some of these terms
involve its product with xt, which can be a large quantity. Positiveness of λ implies that
when associating this model swimmer with a yellow-bellied sea snake, which swims with
its dorsal side leading (Graham et al. 1987), the lower edge on figures 1–3 should be the
dorsal one.

The components of the force acting on the body are given by (6.2)–(6.4); the power
needed to move it is given in (6.6). The value of W3/4, that appears in each one of them, is
given by (5.48). For (very) small λ, it can be approximated by

W3/4(t, x, tan λ) = tan λ
∫ x∗

0

(
δ(x′ tan λ)

2
+ H(x′ tan λ)

8
+ . . .

)
w3/4(t − x′, x − x′) dx′

= 1
2

w3/4(t, x) + 1
8

tan λ
∫ x∗

0
w3/4(t − x′, x − x′) dx′ + . . . , (7.37)

where the ellipsis stands for terms of the higher order with respect to tan λ, and the term in
the parentheses on the first line of this equation is the expansion of Ψ0 near the origin (F3).
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It is tacitly assumed that the swimmer has been moving for some time already, so that
x∗ = min(t, x) in the upper limit can be replaced by x. Moreover, with θ(t, x) = 0, w3/4 =
−Dz0/Dt by (3.6), (3.7) and (5.24). Consequently,

W3/4(t, x, tan λ) = −1
2

Dz0(t, x)
Dt

+ 1
8

tan λ(z0(t − x, 0) − z0(t, x)) + . . . (7.38)

by (5.47), and (6.2)–(6.4) and (6.6) reduce to

Fx(t) = π
∂

∂t

∫ xt

xn

s2(x)
Dz0(t, x)

Dt
dx − π

2

((
∂z0(t, x)

∂t

)2

−
(

∂z0(t, x)
∂x

)2)
x=xt

−π

2
tan λ

∫ xt

0

((
∂z0(t, x)

∂t

)2

−
(

∂z0(t, x)
∂x

)2)
dx + . . . , (7.39)

Fy′(t) = −π

2

∫ xt

0

(
Dz0(t, x)

Dt

)2

dx + . . . , (7.40)

Fz′(t) = −π
∂

∂t

∫ xt

xn

s2(x)
Dz0(t, x)

Dt
dx − π

Dz0(t, xt)

Dt
− π tan λ

∫ xt

0

Dz0(t, x)
Dt

dx + . . . ,

(7.41)

P(t) = π

2
∂

∂t

∫ xt

xn

s2(x)
((

∂z0(t, x)
∂t

)2

−
(

∂z0(t, x)
∂x

)2)
dx+π

(
∂z0(t, x)

∂t
Dz0(t, x)

Dt

)
x=xt

+ π tan λ
∫ xt

0

∂z0(t, x)
∂t

Dz0(t, x)
Dt

dx + . . . , (7.42)

where the ellipses stand for the higher-order terms with respect to tan λ. No term
explicitly involving tan λ was included in (7.40), because the term retained is already the
leading-order term with respect to λ – it would have vanished identically if λ were zero. Its
existence is a direct consequence of the assumption that λ is strictly positive (§ 2.1), that
made the long edges of the aft segment dissimilar, with suction acting only on the lower
(leading) edge (§ 5.4). With no sweep and no twist, there would have been no difference
between the edges, and Fy′ would have vanished. The zeroth-order terms with respect to
tan λ in the remaining equations can be identified with the respective results of Part 1.
Coherence of (7.39)–(7.42) is verified in figure 7.

Swimming performance is commonly characterized by period-averaged quantities.
Under a tacit assumption that z0 is periodic with zero mean, time averages of (7.39)–(7.42)
furnish

〈Fx〉 = −π

2

〈(
∂z0

∂t

)2

−
(

∂z0

∂x

)2〉
x=xt

− π

2
tan λ

∫ xt

0

〈(
∂z0

∂t

)2

−
(

∂z0

∂x

)2〉
dx + . . . ,

(7.43)

〈Fy′ 〉 = −π

2

∫ xt

0

〈(
Dz0

Dt

)2〉
dx + . . . , (7.44)

〈P〉 = π

〈
Dz0

Dt
∂z0

∂t

〉
x=xt

+ π tan λ
∫ xt

0

〈
Dz0

Dt
∂z0

∂t

〉
dx + . . . , (7.45)

and, of course, 〈Fz′ 〉 = 0. The zeroth-order terms in (7.43) and (7.45) are those found in
(3.26) and (3.29) of Part 1 for the swimmer that ends at xt = 0. The zeroth-order term in
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ẑ t2

–F
x/

π
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ẑ t

P
/
π
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Figure 7. Time histories of thrust −Fx, power P, lift Fy′ and side force Fz′ during a single tail beat for a
few values of λ indicated to the right of the respective lines. Points mark numerical simulations, (6.2)–(6.4)
and (6.6) are represented by solid lines; (7.39)–(7.42) are dashed. The set with λ = 0.1 is not shown in (c) to
avoid clutter; the dashed line in this panel is the same for both data sets shown. Schematic top views of the
swimmer during the tail beat are shown between the two lines; they correspond to the times where its head
lays. Simulation details are those of case 4 in table 1.

(7.44) is zero. Explicit forms of (7.43)–(7.45) under (7.35) are

〈Fx〉 = −π

4
ẑ2

t

(
ω2 − k2 − ζ̇

2
(xt) + tan λ

∫ xt

0
((ω2 − k2)ζ 2(x) − ζ̇

2
(x)) dx + . . .

)
,

(7.46)

〈Fy′ 〉 = −π

4
ẑ2

t

∫ xt

0
((ω − k)2ζ 2(x) + ζ̇

2
(x)) dx + . . . , (7.47)

〈P〉 = π

2
ẑ2

t ω(ω − k)
(

1 + tan λ
∫ xt

0
ζ 2(x) dx + . . .

)
, (7.48)

where an overdot marks a derivative. Recall that ζ(xt) = 1 by assumption (see the
paragraph following (7.35)).

Propulsion efficiency can be defined as a ratio

η = −〈Fx〉/〈P〉 (7.49)

of the period-averaged power made good 〈Fx〉 (recall that the swimming velocity is used as
a unit of speed) and the power actually spent 〈P〉. It follows by (7.43) and (7.45) in general,
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ẑ t2

Figure 8. Period-averaged thrust −Fx (a), power P (b) and lift Fy′ (c), and the propulsion efficiency, η =
−〈Fx〉/〈P〉 (d), as functions of λ. Points mark numerical simulations; ‘exact’ theory, based on (6.2)–(6.4), (6.6)
and (7.49), is represented by solid lines; approximations based on (7.46)–(7.48) are dashed. Simulation details
are those of case 4 in table 1.

and by (7.46) and (7.48) in particular. The last pair yields

η = ω2 − k2 − ζ̇
2
(xt)

2ω(ω − k)

(
1 + tan λ

∫ xt

0

ζ 2(x)ζ̇ 2
(xt) − ζ̇

2
(x)

ω2 − k2 − ζ̇
2
(xt)

dx + . . .

)
. (7.50)

Exponential modulating amplitude,

ζ(x) = eβ(x−xt), (7.51)

makes the integral on the right-hand side of (7.50) vanish, rendering the effect of λ on
propulsion efficiency negligible. Modulating amplitude with ζ̇ (xt) = 0 renders this effect
detrimental (as long as positive thrust is being generated). Thus said, an ‘exact’ solution,
based on (6.2)–(6.4), (6.6) and (7.49), suggests that the efficiency does improve with λ for
larger values of this parameter (figure 8).

In view of relative insensitivity of the propulsion efficiency on λ, one can ask why
the yellow-bellied sea snake has developed the dorso-ventral asymmetry and swims with
its body inclined relative to the swimming direction (Graham et al. 1987). There is no
definite answer at this stage. A possible explanation can come from the need to generate
hydrodynamic lift to compensate for hydrostatic imbalance. In fact, because 〈Fy′ 〉 is a
negative definite, whereas 〈Fx〉 is not, their ratio,

〈Fy′ 〉
〈Fx〉 = −

∫ xt

0

(ω − k)2ζ 2(x) + ζ̇
2
(x)

ω2 − k2 − ζ̇
2
(xt)

dx + . . . , (7.52)

is, in principle, unbounded – even with no companion torsional deformation wave.
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ẑ t2

〈P
〉/π
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Figure 9. Period-averaged thrust (a) and power (b) as functions of λ. Solid lines represent the ‘exact’ theory
based on (6.2), (6.6) and (7.49); they are the same as in figure 8. Points represent numerical simulation with tail
amplitude ẑt from 0.5 (circles, as in figure 8) through 2 (squares) and up to 4 (diamonds). Simulation details
are those of cases 4 and 5 in table 1.

Another explanation is suggested by the averages

−〈fx′ 〉 = π

2

(
d

dx
+ tan λ

) 〈(
∂z0

∂t

)2

−
(

∂z0

∂x

)2〉
+ . . . , (7.53)

〈ι〉 = π

(
d

dx
+ tan λ

) 〈
Dz0

Dt
∂z0

∂t

〉
+ . . . (7.54)

of the sectional thrust generated by the aft segment and the sectional power needed to
this end. These two expressions follow (5.56) and (5.59) by (7.36), (7.37), (3.6), (3.7)
and (5.24). When swimming with λ = 0, thrust can be generated by the aft segment only
through increasing the amplitude of the lateral wave along the body (this is the ‘d/dx’
term). When swimming with λ > 0, it can be generated with a constant amplitude as well,
possibly improving the overall chemo-mechanical efficiency of the swimmer (Iosilevskii
2017).

8. Concluding remarks

8.1. Slender body theory
The agreement between numerical simulations based on the vortex lattice method and the
theory implies that no apparent errors were made in the algebraic derivations that led to
(5.56)–(5.59), (5.62), (6.2)–(6.4), (6.6), (6.9)–(6.11) and variants thereof. In other words,
the theory seems to be coherent in the framework of the potential flow approximation
under the particular assumptions made. These assumptions concern the shape of the
body, the smallness of the ratio between the lateral and longitudinal length scales of the
body–wake configuration and the shape of the wake that the body leaves behind. Indeed,
the theory gradually loses its accuracy as λ increases, and the slenderness assumption
becomes abused. This loss is apparent in figures 5–8. More severe, however, is the
loss of accuracy when the assumed shape of the wake footprint in the transverse plane
(figure 3a,b) significantly deviates from the actual one (figure 3c,d). An example can be
found in figure 9 that shows the same case as in figure 8, but with larger amplitude of the
lateral wave. The footprint of the wake in this case looks like that in figure 3(c), and an
increase in amplitude increases the width of the wake’s ‘s’.
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A unified theory of slender wings in asymmetric motion

Broadly speaking, replacing the actual wake shape by a segment of the y-axis, as was
done here, is equivalent to linearization of the boundary conditions in the thin airfoil
theory (Ashley & Landahl 1985), and hence can be formally justified only when deviation
of the footprint from the respective y-axis is small as compared with the combined length
of the body and wake in that plane. Large displacement of the actual wake shape from the
assumed one invariably leads to an overestimate of the velocity induced by it, and to an
underestimate of the fluid-dynamic forces. Thus said, because the content of the wake is
generally non-uniform, there is no way to know a priori when an abuse of the assumptions
underlying the present solution renders it unusable for a particular application.

8.2. Applicability limits
Remarks of the previous section concern the validity of the assumptions of the slender
body theory within the potential flow approximation, and coherence of algebraic steps that
led to its final results. The vortex lattice method cannot be used, of course, to establish
the applicability limits of these results. To find them, the verifying standards should be
free from any of the assumptions underlying the present results – in particular, thinness of
the boundary layer and the wake. In principle, RANS simulations could have been used to
generate these standards, but in unsteady cases they are complex and deserve a separate
study. A few steady RANS simulations for a wing of finite thickness and the same planform
as in figure 11 (Appendix H) can be found in the supplementary material. They practically
recover the numerical simulations based on the vortex lattice method.

8.3. Gust response
Aerodynamic loads acting on an oblique wing flying through a non-uniform wind gust
were not formally addressed herein. Strictly speaking, the flow field of a non-uniform
unidirectional gust is rotational, and violates the assumption of its being otherwise
everywhere in the exterior of the boundary layer and the wake. Ignoring this caveat,
however – as done in all theoretical studies of gust response (e.g. von Kármán & Sears
1938; Sears 1940) – all equations derived in §§ 4–6 become applicable ‘as is’ to a wing
traversing a z′-directional gust. The only difference is conceptual, as w0 and w1 become
the velocity of the gust at the centreline of the wing and its spanwise gradient.

Supplementary material. Supplementary material is available at https://doi.org/10.1017/jfm.2022.192.
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Appendix A. Functions An

Functions A0, A1, A2, . . . were defined in (4.3). The substitution y = (t2 − 1)/(t2 + 1)

brings A0(ζ ) to a readily manageable form:

A0(ζ ) = 1
π

--
∫ ∞

0

2 dt
t2(1 − ζ ) − (1 + ζ )

. (A1)
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The integral here vanishes when |ζ | < 1 and equals −1/
√

ζ 2 − 1 otherwise. Subsequent
functions, A1, A2, . . ., satisfy the recurrence relation

An(ζ ) = Cn−1 + ζAn−1(ζ ) =
n−1∑
m=0

ζmCn−1−m + ζ nA0(ζ ), (A2)

which follows (4.3) by definition (4.5) of Cn and the identity

yn = yn−1( y − ζ + ζ ). (A3)

Equation (4.4) follows (A2) after an inversion of the summation index, m → n − 1 − m.
Among the standard integrals, C0, C1, C2, . . ., defined in (4.5), the odd ones vanish by

symmetry considerations, whereas the even ones are easily evaluated using the substitution
y = − cos ζ and, in turn, 2 cos ζ = eiζ + e−iζ :

C2n = 1
π

∫ π

0
cos2nζ dζ = 1

π22n

∫ π

0
(eiζ + e−iζ )

2n
dζ

= 1
π22n

2n∑
m=0

(
2n
m

)∫ π

0
e2i(m−n)ζ dζ = (2n)!

22n(n!)2 . (A4)

Vanishing of the odd integrals allows rewriting of (A2) as

An(ζ ) =
floor((n−1)/2)∑

m=0

C2mζ n−1−2m + A0(ζ )ζ n, (A5)

which is the form actually used in the text.

Appendix B. Derivation of (5.11)

This appendix addresses the pair of Laplace transforms applied to the last term in (5.8),

W(t, x, y) = 1
2π

∫ x

0

(
∂μ(t − (x − x+), x′′, 1)

∂t
+ ∂μ(t − (x − x+), x′′, 1)

∂x′′

)
x′′=x+

dx+

( y − 1) − (x − x+) tan λ
.

(B1)

It is implicitly assumed that no perturbation to the flow was present prior to time t = 0,
and, consequently,

μ(t, x, y) = 0 (B2)

for all t < 0.
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A unified theory of slender wings in asymmetric motion

Laplace transform with respect to the time variable furnishes∫ ∞

0

∂μ(t − τ, x, 1)

∂t
e−qt dt = e−qτ

∫ ∞

0

∂μ(t, x, 1)

∂t
e−qt dt = q e−qτ μ̂(q, x, 1), (B3)

∫ ∞

0

∂μ(t − τ, x, 1)

∂x
e−qt dt = e−qτ

∫ ∞

0

∂μ(t, x, 1)

∂x
e−qt dt = e−qτ ∂μ̂(q, x, 1)

∂x
, (B4)

and hence

Ŵ(q, x, y) = 1
2π

∫ x

0

qμ̂(q, x+, 1) + ∂μ̂(q, x+, 1)

∂x+
( y − 1) − (x − x+) tan λ

e−q(x−x+) dx+. (B5)

Followed by the transform with respect to the space variable, it yields

W̃(q, p, y) = 1
2π

∫ ∞

0
e−px dx

∫ x

0

qμ̂(q, x+, 1) + ∂μ̂(q, x+, 1)

∂x+
( y − 1) − (x − x+) tan λ

e−q(x−x+) dx+. (B6)

Changing the order of integration (between x and x+) leads to

W̃(q, p, y) = 1
2π

∫ ∞

0
dx+

∫ ∞

x+

qμ̂(q, x+, 1) + ∂μ̂(q, x+, 1)

∂x+
( y − 1) − (x − x+) tan λ

e−q(x−x+) e−px dx, (B7)

which furnishes

W̃(q, p, y) = 1
2π

∫ ∞

0
dx+

∫ ∞

0

(
qμ̂(q, x+, 1) + ∂μ̂(q, x+, 1)

∂x+

)
e−( p+q)x′

e−px+ dx′

( y − 1) − x′ tan λ
(B8)

after substitution of x′ = x − x+. This substitution decouples the two integrals, and the one
with respect to x+ can be readily identified with the Laplace transform ( p + q)μ̃(q, p, 1)

of qμ̂(q, x+, 1) + ∂μ̂(q, x+, 1)/∂x+ with respect to x+. Note that, because μ(t, 0, 1) = 0
by (3.8) (x = 0 is the last point of the forward segment), μ̂(q, 0, 1) = 0 as well. What is
left can be recast as

W̃(q, p, y) = 1
2π

( p + q)μ̃(q, p, 1)

∫ ∞

0

e−( p+q)x′
dx′

( y − 1) − x′ tan λ
. (B9)

Change of the integration variable to y′ = 1 + x′ tan λ brings (B9) into the form

W̃(q, p, y) = 1
2π

cot λ ( p + q)μ̃(q, p, 1)

∫ ∞

1

e−( p+q) cot λ( y′−1) dy′

y − y′ , (B10)

which yields

W̃(q, p, y) = 1
2π

κeκμ̃(q, p, 1)

∫ ∞

1

e−κy′
dy′

y − y′ (B11)

with
κ = ( p + q) cot λ. (B12)

940 A34-35

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.192


G. Iosilevskii

Appendix C. Derivation of (5.20) and (5.21)

This passage starts with (5.19). Noting that An(ζ ) − An+1(ζ ) = (1 − ζ )An(ζ ) − Cn by
(A2), and also noting (5.15), (5.19) can be written as

μ̃n(q, p) = −2
∫ 1

−1

√
1 − ζ 2 w̃(q, p, ζ )An(ζ ) dζ

− κeκμ̃(q, p, 1)

∫ ∞

1

√
y′2 − 1 e−κy′

An( y′) dy′. (C1)

Introducing (4.4) (or, better, (A5)) for An, it yields

μ̃n(q, p) = −2
floor((n−1)/2)∑

m=0

C2m

∫ 1

−1

√
1 − ζ 2 w̃(q, p, ζ )ζ n−1−2m dζ

+ κeκμ̃(q, p, 1)

∫ ∞

1
e−κy′

y′n dy′

− κeκμ̃(q, p, 1)

floor((n−1)/2)∑
m=0

C2m

∫ ∞

1

√
y′2 − 1 e−κy′

y′n−1−2m dy′; (C2)

recall that A0(ζ ) = −1/
√

ζ 2 − 1 when |ζ | > 1, and zero otherwise – see the paragraph
following (A1). The integral in the last term can be identified with a combination

∫ ∞

1

√
y′2 − 1 e−κy′

y′n dy′ =
∫ ∞

1

y′n+2 − y′n√
y′2 − 1

e−κy′
dy′

= (−1)n
(

dn+2

dκn+2 − dn

dκn

)∫ ∞

1

e−κy′
dy′√

y′2 − 1

= (−1)n
(

dn+2

dκn+2 − dn

dκn

)
K0(κ) = (−1)n dn

dκn
K1(κ)

κ
(C3)

of Bessel functions, whereas the integral in the second term can be expressed as a
combination ∫ ∞

1
e−κy′

y′n dy′ = (−1)n dn

dκn

∫ ∞

1
e−κy′

dy′ = (−1)n dn

dκn
e−κ

κ
(C4)

of the exponential function. Consequently, (C2) can be recast as

μ̃n(q, p) = −2
floor((n−1)/2)∑

m=0

C2m

∫ 1

−1

√
1 − ζ 2 w̃(q, p, ζ )ζ n−1−2m dζ

+ κeκμ̃(q, p, 1)(−1)n
(

dn

dκn
e−κ

κ
+

floor((n−1)/2)∑
m=0

C2m
dn−1−2m

dκn−1−2m
K1(κ)

κ

)
.

(C5)
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Substituting μ̃(q, p, 1) from (5.16), it yields

μ̃n(q, p) = −2
floor((n−1)/2)∑

m=0

C2m

∫ 1

−1

√
1 − ζ 2 w̃(q, p, ζ )ζ n−1−2m dζ

+ 2Φ̃
(n)
0 (κ)

∫ 1

−1

√
1 + ζ

1 − ζ
w̃(q, p, ζ ) dζ, (C6)

where Φ̃
(n)
k (κ) has been defined in (5.22).

The last simplification step starts with substitution of

w̃(q, p, ζ ) = w̃0(q, p) + y w̃1(q, p), (C7)

which is actually a variant of (3.5) under the pair of transforms (5.9) and (5.10). Evaluating
the integrals, (C6) now yields

μ̃n(q, p) = −2πw̃0(q, p)

floor((n−1)/2)∑
m=0

C2m(Cn−1−2m − Cn+1−2m)

− 2πw̃1(q, p)

floor((n−1)/2)∑
m=0

C2m(Cn−2m − Cn+2−2m) + 2πΦ̃
(n)
0 (κ)w̃3/4(q, p),

(C8)

where w̃3/4(q, p) is given by (5.23). Equations (5.20) and (5.21) follow (C8) with

C2n−2m − C2n+2−2m = C2n−2m

(
1 − 2n − 2m + 1

2(n − m + 1)

)
= C2n−2m

2(n − m + 1)
, (C9)

n∑
m=0

C2mC2n−2m

n − m + 1
= 2C2n+2, (C10)

n−1∑
m=0

C2mC2n−2m

n − m + 1
= nC2n

n + 1
. (C11)

The first of these three identities can be verified by direct substitution of (4.6); the last two
are derived in Appendix D below.

Appendix D. Derivation of (C10) and (C11)

To derive (C10), we start with the integral
∫ 1
−1

√
1 − ζ 2 A2n+1(ζ ) dζ . Introducing (4.3) for

A2n+1, and integrating with respect to ζ , yields∫ 1

−1

√
1 − ζ 2 A2n+1(ζ ) dζ =

∫ 1

−1

y2n+2 dy√
1 − y2

= πC2n+2 (D1)

by (4.5). At the same time,∫ 1

−1

√
1 − ζ 2 A2n+1(ζ ) dζ =

n∑
m=0

C2m

∫ 1

−1

√
1 − ζ 2 ζ 2n−2m dζ (D2)

by (4.4) – A0(ζ ) = 0 because |ζ | < 1 (see the paragraph following (4.3)), whereas all odd
terms in the series vanish by symmetry considerations. With substitution ζ = − cos ξ and
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sin2ξ = 1 − cos2ξ , (D2) yields
n∑

m=0

C2m

∫ 1

−1

√
1−ζ 2 ζ 2n−2m dζ =π

n∑
m=0

C2m(C2n−2m−C2n+2−2m) = π

2

n∑
m=0

C2mC2n−2m

n − m + 1
(D3)

by (4.6). The conjunction of (D1)–(D3) yields (C10).
Equation (C11) actually follows (C10). In fact,

n−1∑
m=0

C2mC2n−2m

n − m + 1
=

n∑
m=0

C2mC2n−2m

n − m + 1
− C2nC0 = 2C2n+2 − C2n (D4)

by (C10); whereas

2C2n+2 − C2n = C2n

(
2(2n + 2)(2n + 1)

4(n + 1)2 − 1
)

= C2n

(
2n + 1
n + 1

− 1
)

= C2n
n

n + 1
(D5)

by (4.6).

Appendix E. Derivation of (5.28) and (5.29)

Consider the pair of inverse Laplace transforms,

P(t, x) = 1

(2πi)2

∫
Brq

eqt dq
∫

Brp

epxP̃( p, q) dp, (E1)

applied to the product

P̃(q, p) = Φ̃
(k)
0 (( p + q) cot λ)w̃3/4(q, p), (E2)

which appears in (5.20) and (5.21). Here, k is a positive integer, Brp and Brq stand for the
respective Bromwich contours,

Φ̃
(k)
0 (κ) =

∫ ∞

0
Φ

(k)
0 (ξ ) e−κξ dξ (E3)

is the Laplace transform of Φ
(k)
0 and

w̃3/4( p, q) =
∫ ∞

0
e−pt′ dt′

∫ ∞

0
e−qx′

w3/4(t′, x′) dx′ (E4)

is the time-and-space Laplace transform of w3/4. Introducing (E2)–(E4) in (E1), one will
find

P(t, x) = 1

(2πi)2

∫ ∞

0
dξ

∫ ∞

0
dt′
∫ ∞

0
dx′Φ(k)

0 (ξ)w3/4(t′, x′)

×
∫

Brq

eq(t−t′−ξ cot λ) dq
∫

Brp

ep(x−x′−ξ cot λ) dp. (E5)

Having identified the last pair of integrals with the respective delta functions, (E5)
becomes

P(t, x) =
∫ ∞

0
dξ

∫ ∞

0
dt′
∫ ∞

0
dx′Φ(k)

0 (ξ)w3/4(t′, x′)δ(t − t′ − ξ cot λ)δ(x − x′ − ξ cot λ)

=
∫ ∞

0
Φ

(k)
0 (ξ)w3/4(t − ξ cot λ, x − ξ cot λ) dξ, (E6)
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from which, after changing the integration variable to x′ = ξ cot λ,

P(t, x) = tan λ
∫ ∞

0
Φ

(k)
0 (x′ tan λ)w3/4(t − x′, x − x′) dx′ (E7)

follows. The upper integration limit is to be replaced by the smallest of t and x, x∗ =
min(t, x), because w3/4(t, x) = 0 for any x and t < 0, whereas all x < 0 are located
within the forward segment and beyond the range of the wake segment reflected in this
convolution. Equations (5.28) and (5.29) follow.

Appendix F. Functions Φ
(0)
n and Ψn

This appendix addresses two canonical functions, Φ
(0)
0 and Ψ0, as well as their integrals,

Φ
(0)
1 , Φ

(0)
2 , . . . and Ψ1, Ψ2, . . . . Zeroth-order Küssner function Φ

(0)
0 is an inverse Laplace

transform of Φ̃
(0)
0 , defined in (5.17). As mentioned already in the paragraph following

(5.25), it diverges as a square root at the origin and vanishes at infinity. It can be furnished
with an asymptotically accurate rational approximation

Φ
(0)
0 (x) ≈ 1

π
√

2x
−

√
2x

8π

b1

b1 + x
, (F1)

where b1 = 0.208 best fits Φ
(0)
0 over the interval (0,10). Higher-order functions

Φ
(0)
1 , Φ

(0)
2 , . . . vanish at the origin, and all, but Φ

(0)
1 , which tends to unity, diverge at

infinity. They can be closely approximated with

Φ(0)
n (x) ≈ b0n

√
x + b2nx

1 + b1n
√

x + b2nx
xn−1

(n − 1)!
, (F2)

where b0n = (
√

2/π)(2n−1(n − 1)!/(2n − 1)!!), whereas b1n and b2n can be fitted to each
function. The pairs [0.289,0.157], [0.252,0.085] and [0.217,0.057] of these coefficients best
fit Φ

(0)
1 , Φ

(0)
2 and Φ

(0)
3 over the interval (0,10), respectively – see figure 10(b). These

approximations do not satisfy the recurrence relation Φ
(0)
n (x) = dΦ

(0)
n+1(x)/dx for any x,

but they are asymptotically accurate for small and large values of x alike.
Zeroth-order Wagner function Ψ0 is an inverse Laplace transform of Ψ̃0, defined in

(5.39). It behaves as a delta function at the origin,

Ψ0(x) = 1
2δ(x) + 1

8 H(x) − 1
16 x + . . . , (F3)

and vanishes at infinity. It can be closely approximated with

Ψ0(x) ≈ 1
2
δ(x) + 1

8
40

40 + 20x + 2x2 H(x). (F4)

Higher-order functions have no singularities at the origin, behaving as

Ψn(x) = 1
2

xn−1

(n − 1)!
+ 1

8
xn

n!
− 1

16
xn+1

(n + 1)!
+ . . . , (F5)

and all, but Ψ1, which tends to unity, diverge at infinity. They can be approximated with

Ψn(x) = xbn + an

xbn + 2an

xn−1H(x)
(n − 1)!

, (F6)

where the pairs [2.06,1.08], [4.03,0.94], [5.86,0.91], [7.68,0.90], [9.50,0.90], [11.32,0.90]
and [13.19,0.91] of [a1, b1], . . . , [a7, b7] best fit the respective seven functions over the
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Figure 10. Values of Ψ̄0(x) = Ψ0(x) − (1/2)δ(x), Ψ1 and Ψ̄n(x) = (n − 1)!Ψn(x)/xn−1 are shown in panel
(a); Φ̄

(0)
0 (x) = Φ

(0)
0 (x) − (π

√
2x)−1, Φ

(0)
1 and Φ̄

(0)
n (x) = (n − 1)!Φ(0)

n (x)/xn−1 are shown in panel (b).
Approximations (F1), (F2), (F4) and (F6) are shown by dashed lines. They are graphically indistinguishable
from the ‘exact’ numerical values.

interval (0,10) – see figure 10(a). For a simpler approximation, one may use 1.83, 4.57,
7.10, 9.50, 11.80, 14.05, 16.25 for a1, . . . , a7 and 1 for b1, . . . , b7. As with (F2), the
approximations in (F6) do not satisfy the recurrence relation Ψn(x) = dΨn+1(x)/dx for
any x, but they are asymptotically accurate for small and large values of x alike.

Appendix G. Quadratures of Ψ1

Functions Ωnm were defined in (7.25) as integrals of Ψ1(min(t, x′)) with respect to x′
over the interval (0, x). Splitting the integration interval in into two parts, (0, min(t, x))
and (min(t, x), x), and integrating over the last one – where Ψ1(min(t, x′)) is constant –
furnishes

�nm(t, x) =
∫ min(t,x)

0
Ψ n

1 (x′)x′m dx′ + Ψ n
1 (t)

∫ x

min(t,x)
x′m dx′

=
∫ min(t,x)

0
Ψ n

1 (x′)x′m dx′ + Ψ n
1 (min(t, x))

m + 1
(xm+1 − min (t, x)m+1); (G1)

the replacement of t with min(t, x) in the last term on the right is justified by the vanishing
of the entire term for any t > x. By interpretation, the first term on the right is the
respective long-time asymptotic value of Ωnm, Ωnm(∞, x) = Ωnm(x, x).

Using (5.43), a few integrations by parts can bring Ω1m to a combination

Ω1m(t, x) =
m∑

m=0

(−1)km!
(m − k)!

Ψ2+k(min(t, x)) min (t, x)m−k

+ Ψ1(min(t, x))
m + 1

(xm+1 − min (t, x)m+1) (G2)

of Wagner functions Ψ1, Ψ2, . . . , which, in turn, can be approximated using (F6). At the
same time, Ω2m – and, probably any Ωnm with n > 1 – cannot be significantly reduced, but
they can be fitted with asymptotically accurate Padé-like approximations, similar to those
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A unified theory of slender wings in asymmetric motion

Figure 11. Side view of the model wing set at λ = 0.1. xn = −5 and xt = 40. The particular grid shown here
has 21 points in each direction.

Case Geometry Motion Grid and simulation
λ θ̂0 ẑt ωxt/2π kxt/2π βxt Ns Nc Nt �t

1 0.05,0.1,0.2,0.3 0.01, 0.1 81 45 60 1
2 0.0125, 0.025, 0.05,0.1, . . . ,0.3 0.02 81 45 10 10
3 same 0.08 81 45 10 10
4 0.04,0.1,0.15, . . . ,0.3 0.5 1 2/3 2 81 45 100 1
5 0.04,0.1,0.15, . . . ,0.3 2,4 1 2/3 2 81 45 100 1

Table 1. The test cases. In all the cases, the lengths of the forward and aft segments were fixed with xn = −5
and xt = 40. Here, Nc and Ns are the number of grid junctions along the x′- and y′-axes; Nt is the number of
simulation steps; �t is the simulation time step; θ̂0 was introduced in (7.11); ẑt, ω and k were introduced in
(7.35); β was introduced in (7.51).

in (F6). For example, the quadratures of Ψ 2
1 can be approximated by

∫ x

0
Ψ 2

1 (x′)x′k dx′ ≈ xb′
k + a′

k

xb′k + 4a′k
xk+1H(x)

k + 1
, (G3)

where a′
0 = 2.95 and b′

0 = 0.98 fit Ω20 over the interval (0,10), whereas a′
1 = 2.26 and

b′
1 = 1.05 fit Ω21. For a simpler approximation, one can use a′

0 = 3.05 and a′
1 = 2.09

with b′
0 = b′

1 = 1.

Appendix H. Numerical simulations

The implementation of the vortex lattice method for this study was based on vortex ring
elements; it followed the paradigm described in Katz & Plotkin (1991), practically to a
point. It was carefully corroborated on a few previous occasions (Iosilevskii 2014a,b;
Part 1). Wake rollup was inhibited, but the wake followed the trace of the trailing edge
(as in figure 3c,d). The body had the shape shown in figure 11; the associated grid can be
inferred from the same figure. Grid points were concentrated near the edges and corners
both in chord-wise and spanwise directions using trigonometric mapping. All simulations
were done with the lowest grid density at which the results seemed to converge. Details
can be found in table 1. Only the last period is shown in figure 7.

Theoretical predications in all figures have used approximation (F6) to compute
the wake influence integrals. The integrals themselves were computed using a simple
trapezoidal rule, with 102 points uniformly distributed along the body, except at the
junction between the fore and aft segments, which promptly replaced the closest point
of the uniform distribution.

940 A34-41

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.192


G. Iosilevskii

REFERENCES

ASHLEY, H. & LANDAHL, M. 1985 Aerodynamics of Wings and Bodies, pp. 80–86, 89–92. Dover.
BADDOO, P.J., HAJIAN, R. & JAWORSKI, J.W. 2021 Unsteady aerodynamics of porous aerofoils. J. Fluid

Mech. 913, A16.
BISPLINGHOFF, R.L., ASHLEY, H. & HALFMAN, R.L. 1996 Aeroelasticity, pp. 245, 273–276. Dover.
CHENG, H.K. 1954 Remarks on nonlinear lift and vortex separation. J. Aeronaut. Sci. 21 (3), 212–214.
CHENG, H.K. 1978 Lifting-line theory of oblique wings. AIAA J. 16 (11), 1211–1213.
GRAHAM, J.B., LOWELL, W.R., RUBINOFF, I. & MOTTA, J. 1987 Surface and subsurface swimming of the

sea snake Pelamis platurus. J. Expl Biol. 127 (1), 27–44.
GUERMOND, J.L. & SELLIER, A. 1991 A unified unsteady lifting-line theory. J. Fluid Mech. 229, 427–451.
IOSILEVSKII, G. 2007 Control with trim tabs and history-dependent aerodynamic forces. J. Fluids Struct. 23

(3), 365–389.
IOSILEVSKII, G. 2012 Indicial functions in weak ground effect. Eur. J. Mech. (B/Fluids) 33, 40–57.
IOSILEVSKII, G. 2014a Hydrodynamics of the undulatory swimming gait of batoid fishes. Eur. J. Mech.

(B/Fluids) 45, 12–19.
IOSILEVSKII, G. 2014b Forward flight of birds revisited. Part 1: aerodynamics and performance. R. Soc. Open

Sci. 1 (2), 140248.
IOSILEVSKII, G. 2017 The undulatory swimming gait of elongated swimmers revisited. Bioinspir. Biomim. 12

(3), 036005.
IOSILEVSKII, G. & RASHKOVSKY, A. 2020 Hydrodynamics of a twisting slender swimmer. R. Soc. Open Sci.

7, 200754.
JONES, R.T. 1946 Properties of low-aspect-ratio pointed wings at speeds below and above the speed of sound.

NACA Tech. Rep. 835. National Advisory Committee for Aeronautics.
JONES, R.T. 1977 The oblique wing—aircraft design for transonic and low supersonic speeds. Acta Astronaut.

4 (1–2), 99–109.
VON KARMAN, T.H. & SEARS, W.R. 1938 Airfoil theory for non-uniform motion. J. Aeronaut. Sci. 5 (10),

379–390.
KATZ, J. & PLOTKIN, A. 1991 Low Speed Aerodynamics, pp. 85, 103–105, 216, 221, 222, 380–386, 479–486.

McGraw Hill.
LIGHTHILL, J. 1960 Note on the swimming of slender fish. J. Fluid Mech. 9 (2), 305–317.
LIGHTHILL, J. & BLAKE, R. 1990 Biofluiddynamics of balistiform and gymnotiform locomotion. Part 1.

Biological background, and analysis by elongated-body theory. J. Fluid Mech. 212, 183–207.
MUSKHELISHVILI, N.I. 1953 Singular Integral Equations: Boundary Problems of Function Theory and their

Application to Mathematical Physics, pp. 249–252. Noordhoff.
NEWMAN, J.N. & WU, T.Y.T. 1973 A generalized slender-body theory for fish-like forms. J. Fluid Mech. 57

(4), 673–693.
RAYMER, D.P. 1992 Aircraft Design: A Conceptual Approach. AIAA Educational Series, pp. 279–281. AIAA.
SEARS, W.R. 1940 Operational methods in the theory of airfoils in non-uniform motion. J. Franklin Institute

230 (1), 95–111.
SÖHNGEN, H. 1939 Die Lösungen der Integralgleichung und deren Anwendung in der Tragflügeltheorie.

Math. Z. 45 (1), 245–264.
THWAITES, B. 1960 Incompressible Aerodynamics, pp. 26, 179, 298. Oxford University Press.
WU, T.Y.T. 1971 Hydromechanics of swimming propulsion. Part 3. Swimming and optimum movements of

slender fish with side fins. J. Fluid Mech. 46 (3), 545–568.
YATES, G.T. 1983 Hydromechanics of body and caudal fin propulsion. In Fish Biomechanics (ed. D. Weihs &

P.W. Webb), pp. 177–213. Praeger.

940 A34-42

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
2.

19
2 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2022.192

	1 Introduction
	2 Preliminaries
	2.1 The model
	2.2 Reference frames
	2.3 Unit normal vectors

	3 Slender body theory
	3.1 Basics
	3.2 Boundary integral equation
	3.3 Post-processing

	4 The forward segment
	4.1 Potential jump and its moment
	4.2 Moments of the pressure jump
	4.3 Leading-edge suction
	4.4 Sectional force, moment and power

	5 The aft segment
	5.1 Boundary integral equation
	5.2 Potential jump and its moments
	5.3 Moments of the pressure jump
	5.4 Leading-edge suction
	5.5 Sectional force, moment and power

	6 The entire body
	6.1 Integral force, moment and power
	6.2 Corroboration
	6.3 Notations

	7 Examples
	7.1 A rigid wing
	7.2 Impulsive start
	7.3 Steady flight
	7.4 Anguilliform swimming gait

	8 Concluding remarks
	8.1 Slender body theory
	8.2 Applicability limits
	8.3 Gust response

	A Appendix A. Functions An
	B Appendix B. Derivation of (5.11)
	C Appendix C. Derivation of (5.20) and (5.21)
	D Appendix D. Derivation of ([eqn189]C10) and ([eqn189]C11)
	E Appendix E. Derivation of (5.28) and (5.29)
	F Appendix F. Functions n(0) and n
	G Appendix G. Quadratures of 1
	H Appendix H. Numerical simulations
	References

