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UNIQUE FACTORIZATION THEOREMS FOR 
SUBALGEBRAS OF THE INCIDENCE ALGEBRA 

K. L. YOCOM 

1. Introduction. H. Scheid [4] has found necessary and sufficient conditions 
on a partially ordered set S(^) which is a direct sum of a countable number 
of trees for a certain subalgebra G ( + , *) of the incidence algebra F(-\-, *) 
to be an integral domain. In this paper we prove that under similar conditions 
on S, G ( + , *) is actually a unique factorization domain or, failing this, that 
there is a subalgebra H(-\-, *) of F(-\-, *) which is a unique factorization 
domain and contains G. Similar results are then obtained as corollaries in the 
regular convolution rings of Narkiewicz. 

2. Definitions and notations. Throughout this paper S(^) will denote 
a locally finite partially ordered set. By this we mean ^ is a partial ordering 
of the nonempty set 5 and for all a, b £ S with a ^ b the interval [a, b] of all 
x £ S with a ^ x ^ b is a finite set. A one-element interval is called a unit 
interval. A chain is a totally ordered set. If C ( ^ ) is a finite chain of n elements 
then the length \(C) of C is n — 1 while if C is infinite then X(C) = oo. A tree 
T is a partially ordered set with a least element such that every interval of T 
is a finite chain. A tree consisting of a single element is called trivial. The 
length \{T) of the tree T is the supremum of the lengths of all the intervals 
of T. The incidence algebra [5] on S(^) will be denoted by F(+, *). The 
set F consists of all functions/ from S X S to the field K such that / (x, y) = 0 
if x $ y. The addition in F ( + , *) is pointwise addition and the product is 
defined for/, g £ F at (x, y) in 5 X S by 

(f*g)(x,y) = T,(f(*,z)g(z,y) : x ^ z ^y)> 

The characteristic function of unit intervals e G F is the unity of -F(+, *) 
a n d / (E T7 is a unit if and only if x 6 «S implies/(x, x) ^ 0. 

We shall use = to denote isomorphism between both algebras and partially 
ordered sets. The field K will be of characteristic zero. We shall denote the 
ring of formal power series over K in a finite number n of indeterminants by 
Kn and in a countably infinite number of indeterminants by Kœ. The sub
algebra G ( + , *) of F(+, *) consists of all g Ç F such that if x, y, u,v (i S 
with [x, 3/] == [u, v] then g(x, 3/) = g(u, v). Thus G consists of all functions in F 
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which cannot distinguish between isomorphic intervals. If 7 = [x, y] we shall 
write f(x, y) = / (7) . Note that g Ç G is a unit if and only if for some unit 
interval 70, g(70) ?* 0. 

3. The main theorems. Scheid [4] proved the following. 

THEOREM A. (a) If S(^) = 7\ © . . . 0 Tn is the direct sum of nontrivial 
trees T\, . . . , Tn then G ( + , *) is an integral domain if and only if \{Tt) = oo 
for 1 ^ i ^ n. 

(b) If S(S) = Ti © T2 © . . . is the direct sum of a countably infinite 
number of trees T\, T2, . . . then G ( + , *) is an integral domain if and only if for 
each Ti with X(7\) < GO there are infinitely many Tj with X(7\,) ^ X(7\). 

In proving our theorems we shall exhibit an isomorphism between the 
subalgebra and either Kn or Kw. The ring Kn is known [7, p. 148] to be a 
unique factorization domain as is X"w[l]. 

LEMMA. If I = Ci © . . . © Cn is the direct sum of finite nontrivial chains 
Ci, . . . , Cn then I satisfies the Jordan-Dedekind chain condition that all maximal 
chains M in I are of the same length, namely 

\(M) = X(7) = X(Ci) + . . . +X(Cn). 

If V — C\ © . . . © Cm' then I ~ V if and only if m = n and the number of 
Ci of any given length equals the number of d of that length. 

Proof. The facts stated in this lemma are probably well known but for 
lack of a reference we prove the first part. Suppose 7 = C\ © . . . © Cn as in 
the lemma and let X(C*) = lu Ct = {a^, aih . . . , aiu}, 1 ^ i S n. Each a 
in 7 is then of the form 

a = ( t t i j i , a2j2, . . . , anjn) 

where 0 ^ j t ^ lt for 1 ^ i ^ n. The elements a0 = (ai0, a2o, . . . , an0) and 
^i = (ûizi» ^2z2J • • • »

 awzn)
 a r e the least and greatest elements of 7, respect

ively, and must be contained in any maximal chain of 7. Let 

a-o = Xo < Xi < x2 < . . . < xL = ai 

be a maximal chain of 7. For convenience of notation let us think of an ele
ment a Ç 7 as an ordered n-tuple (ji, . . . ,jn) of nonnegative integers. Thus 
a0 = (0, 0, . . . , 0) and a\ = (/i, . . . , ln). Now Xi in the maximal chain must 
be an n-tuple of n — 1 zeros and one 1 for if not then there would be a y in 7 
with Xo < y < X\ contrary to the maximality of the chain. Similarly x2 must 
be an ^-tuple of n — 1 zeros and a 2 or n — 2 zeros and two l's. In general 
xk+i is an w-tuple which agrees with xk except that a 1 has been added to some 
entry of xk where 0 ^ k < L. Thus L = /i + . . . + ln = X(Ci) + . . . +X(Cn) 
and all maximal chains in 7 are of the same length, X(7) = X(Ci) + . . . + 
X(C„). 
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T h e second pa r t of the lemma follows from a known theorem [6, p . 200]. 

Our first theorem concerns the case when 5 is the direct sum of infinitely 
many trees bu t we impose a slightly stronger condition on S than Scheid did 
in par t (b) of Theorem A. 

T H E O R E M 1 . 7 / 5 = T\ 0 T2 © . . . is the direct sum of a countably infinite 
number of trees T\, T2> . . . and if for each tree Tt and each interval C of Tt there 
are infinitely many Tj each containing an interval isomorphic to C, then G ( + , *) 
is a unique factorization domain. 

Proof. Since each interval of 5 is a direct sum of a finite number of chains 
of finite length it follows from the lemma tha t two intervals of S are isomorphic 
if and only if their representations as direct sums of chains contain the same 
number of chains of each possible positive length. Thus we may associate with 
each isomorphism equivalence class of intervals of 5 the sequence 

(1) r(I) = ( n ( / ) , r2 (I), . . . ) 

where rj(I) is the number of chains of length j in the representation of I 
as a direct sum of chains. Thus two intervals I and I' of 5 are isomorphic if 
and only if r(I) = r(I'). 

W e divide the proof into two cases. 
Case 1. Suppose there is a non-negative integer m such t ha t X(7\) ^ m 

for all i ^ 1 and X(7\) = m for some i ^ 1. Then the hypothesis of the 
theorem implies t h a t X(7\-) = m for infinitely many i ^ 1. If m = 0 then all 
the trees are trivial, 5 is a single element set and F(+, *) = G ( + , *) ^ K, 
which is trivially a unique factorization domain. T h u s assume tha t m ^ 1. 

Note t ha t r^{I) = 0 for all j > m and all intervals I of S. We define TTJ 
for 1 ^ j ^ m to be the characteristic function of chains of length j . Then we 
shall show tha t every g £ G has a unique representation in the form 

(2) g = £ a( i i , . . . , v W 1 * . . . *Tn*" 

where the summation extends over all m-tuples (i\, . . . , im) of nonnegat ive 
integers, a(ii, . . . , im) G K, 7r/?' = Tj* . . . *TTJ with ij factors if ij ^ 1 and 
Tj0 = e. Once this representation has been established, there is an imme
diate isomorphism between G ( + , *) and the formal power series ring Km. For 
if xi, . . . , xm are the indeterminants in Km, simply correspond Tj to Xj for 
1 _: j _: m. 

If (Vi, . . . , im) is a fixed m-tuple of nonnegative integers and I is an interval 
of S then we claim tha t 

iriil * . . . * 7rm
im (I) = 0 

unless 

(3) X (/) = ii + 2i2 + . . . + mi, 
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Recall from the proof of the lemma that 

X(I) = n(I) + 2r2(I) + . . . + mrm(I). 

To prove the claim suppose I — [a,b] and that 

Tiil * . . . *Tm
im(I) 9* 0. 

Then there is a chain, a = x0 ^ %\ ^ . . . ^ xm = b in J such that 

for 1 S. j = m- Thus X(x;_i, x^) = ji;- and the chain x0 ^ Xi ^ . . . ^ xm 

refines to a maximal chain in I of length ii + 2i2 + . . . + wim which equals 
X(7) by the lemma. This proves the claim. 

Thus if the series in (2) is evaluated at an interval I the only terms which 
can be nonzero are those for which the m-tuple (ii, . . . , im) satisfies (3) and 
these are finite in number. In fact the number of solutions (iu . . . , im) of (3) 
is the number of partitions of the integer X(7) into positive integers less than 
or equal to m. 

Now let L be a fixed nonnegative integer and consider all intervals I of 
5 such that X(7) = L. Since we are not distinguishing between isomorphic 
intervals we need only consider those w-tuples (Vi(I), . . . , rm(I)) for which 
r±(I) + 2r2(I) + . . . + mrm(I) = L. We now arrange all such m-tuples as 
follows: 

(L, 0, 0, 0 0), (L - 2, 1, 0, 0 0), . . . , (0 or 1, [L/2], 0, 0, . . , 0), 

(L - 3, 0, 1, 0, . . . , 0), (L - 5, 1, 1, 0, . . . . 0), . . . . (0 or 1, 

[ ( L - 3 ) / 2 ] , 1 , 0 , 0 , . . . ,0) 
(L - 6, 0, 2, 0, . . . , 0), (L - 8, 1, 2, 0, . . . . 0), . . . . (0 or 1, 

[(L - 6)/2], 2, 0, . . . , 0 ) , 

(0 or 1 or 2, 0, [i/3], 0, . . . , 0), (0 or 1, 0 or 1, [L/3], 0, . . . , 0), 
(L - 4, 0, 0, 1, 0, ... , 0), (L - 6, 1, 0, 1, 0, . . . , 0), . . . , (0 or 1, 

[(L-4)/2],0, 1,0, ...,0) 

(L - 7, 0, 1, 1, 0, ... , 0), (L - 9, 1, 1, 1, 0 0), . . . , (0 or 1, 
[(L-7)/2],l, 1,0, ...,0) 

where the brackets denote the greatest integer function. 
As an example, if m = 4 and L = 7 the above arrangement is 

(7, 0, 0, 0), (5, 1, 0, 0), (3, 2, 0, 0), (1, 3, 0, 0), 

(4 ,0 ,1 ,0 ) , (2 ,1 ,1 ,0 ) , (0 ,2 ,1 ,0 ) , 
(1 ,0 ,2 ,0 ) , 

(3 ,0 ,0 ,1 ) , (1 ,1 ,0 ,1 ) , 
(0 ,0 ,1 ,1 ) . 
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For any given ra-tuple (ii, . . . , im) the hypothesis of the theorem ensures 
the existence of an interval I oi S with r(I) = (ii, i2, . . . , im, 0, 0, . . . ) . 
We now select intervals 7i, 72, • • • such t ha t \(Ij) = L and the m-tuples 
(ri(Ij), r2(Ij), . . . , rm(Ij)) for j = 1, 2, . . . are the m-tuples in the above 
arrangement , i.e., 

(ri(Ii),r2(Ii),...,rm(h)) = ( L , 0 , 0 , . . . , 0 ) 

(ri(h), r2(I2), . . . , rw (7 2 ) ) = (L - 2, 1, 0, . . . , 0) 

We now proceed to evaluate (2) successively a t Ii, I2, . . . forcing equali ty 
and thereby determining the coefficients a(ii, . . . , im): 

g(Ii) = E a (ii, • • • > im) vi*1 * . . . * 7rm
2- (Ii) 

and since the only subintervals of Ii which are chains are chains of length 1 
we have 

g(h) = a ( L , 0 , 0 , . . . , 0 ) ^ ( 7 1 ) , 
and 

a ( L , 0 , 0 , . . . , 0 ) = g(Ii)/(>KiL (h)). 

Actually ir\L(Ii) = L\ bu t we only need tha t it is nonzero. Continuing, 

g(Ii) = E a (ii, . . . , im) T!11 * . . . * irm
im(I2) 

and since the only subintervals of I2 which are chains are chains of length 
1 or 2, we have 

g(h) = E a (ii, i*> 0, 0, . . . , 0) T!il *x2
l '2( /2) . 

There is only one subinterval of I2 which is a chain of length 2 and thus 

g(I2) = a(L, 0, 0, . . . , 0)7nL(l2) + a(L - 2, 1, 0, . . . , O ) ^ - 2 * 7r2(/2). 

Since wiL~2 * 7r2(I2) ^ 0, the coefficient a(L — 2, 1, 0, . . . , 0) is thus de
termined. Continuing in this way we can evaluate all the coefficients 
a (ii, . . . , im) for which 

(4) ii + 2i2 + . . . + mim = L. 

Since every w-tuple (ii, . . . , im) satisfies (4) for one and only one L this 
procedure uniquely determines all the coefficients in (2) and completes the 
proof of this case. 

Case 2. Suppose tha t for each integer m ^ 1 there is a tree 7 \ which contains 
an interval of length m. In this case we claim tha t each g G G has a unique 
representation in the form 

(5) g = E a(ii, H, • • • ) ITI*1 *T2
i2 * . . . 

where the summat ion now extends over all sequences (ii, i2, . . .) of nonneg-
at ive integers all bu t a finite number of which are zero. 
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Once this representation is established the isomorphism between G ( + , *) 
and Ku is immediate. 

We throw the proof back to case 1 by considering for each nonnegative 
integer L all sequences (ii, i2, . . .) satisfying 

(6) ii + 2i2 + . . . = L. 

The number of solutions (Vi, i2, . . .) of (6) is the number of unrestricted 
partitions of L into positive integers and in any solution ij = 0 for j > L. 
Thus if we take m = L in case 1 the solutions of (6) coincide with the solutions 
of (4) and the coefficients a(ii, . . . , iLj 0, 0, . . .) in (5) can be determined 
as in case 1. When the series in (5) is evaluated at an interval of 5 it reduces 
to a finite sum as in case 1 and equals the value of g at that interval. 

In part (a) of Theorem A, Scheid found necessary and sufficient conditions 
for G ( + , *) to be an integral domain if 5 is the direct sum of a finite number 
of trees. We have not been able to prove (or disprove) that such a G is a 
unique factorization domain but we do have the following. 

THEOREM 2. If S = TI ® . . . ® Tn is the direct sum trees with \ ( 7 \ ) = oo 
for 1 ^ i ^ n then there is a subalgebra 27(+, *) of F(+, *) which is a unique 
factorization domain and contains G ( + , *). 

Proof. Each interval I of 5 is of the form 

(7) i = d e . . . e cn 

where C* is a chain from 7\ for 1 ^ i S n. Define 

(8) A (I) = (X(Ci) , . . . ,X(C n ) ) 

where Ct is given by (7). Note that A(7) = A(7') implies 7 ~ V but not 
conversely. We now define for each w-tuple (iu . . . , in) of nonnegative integers 
the function e(i\, . . . , in) to be the characteristic function of those intervals 
7 of 5 with A(7) = (ily . . . , in). Then e(ii, . . . , in) Ç G if and only if ix = 
i2 = . . . = in, for if A (7) = (i1} . . . , in) and ij 9^ ik for some j , k with 1 ^ 
j < k S n, say for convenience, i± ^ i2 then by choosing I' with A(7') = 
(̂ 2, ii, iz, • • • , in) we have I = Ir but e(iu . . . , in) (I) = 1 while e(n, . . . , ?'n) 
(/ ') = 0. 

We now define the subset H of F to consist of all h G F representable in 
the form 

(9) A = £ a (ii, . . . , i„)e(i!, . . . , in) 

where the summation extends over all ^-tuples (ii, . . . , in) of nonnegative 
integers and a(ii, . . . , in) G K. 

We claim that any pair of functions e(i\, . . . , in), e(k\, . . . , kn) multiply 
according to the rule 

(10) e(iu . . . , in)*e(ku . . . , kn) = e{n + ku . . . , in + fen). 
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For suppose for some interval I = [a, b] of 5 t ha t 

(11) e(ih ...,in)*e(ki, . . . , * „ ) ( / ) ^ 0 . 

If a = (#i, . . . , an)> b = (6i, . . . , bn) then there is an x = (xi, . . . , xn) £ S 
with a S oc S b such that 

e(ii, . . . , iw) (a, x) 7e 0 and e(&i, . . . , few) (x, 6) ^ 0. 
T h u s 

A (a, x) = (X(ai, Xi), . . . , X(aw, x j ) = (ix, . . . , iw) 
and 

A(x, 6) = (X(xi, 6i), . . . , X(*w, 6W)) = (fei, . . . , kn) 
and hence 

A(/) = (n + ku . . . , in + kn). 

Fur thermore the above x is unique and there is exactly one nonzero term in 
the convolution (11). Thus (10) is established. 

Because of (10) there is an isomorphism between H(-\-, *) and the power 
series ring Kn if we make the correspondence 

Y, a(ii, . . . , in)e(iu . . . , in) «-» £ a(ix, • • • , in)x\il • • • xn
in. 

T o complete the proof we must show tha t G C H. T o this end we define for 
each ?z-tuple (ii, . . . , in) the function 

(12) ê(n, . . . , in) = £ eOr(ii), . . . , ir(*»)) 

where the summation extends over all distinct permutat ions (ir(ii), . . . , ir(in)) 
of (ii, . . . , in). For example 

ë(i, i, . . . , i) = e(i, i, . . . , i) 
and 

ë(\, 0, 0, . . . , 0) = e(l, 0, 0, . . . , 0) + e(0, 1, 0, . . . , 0) + . . . + 

g ( 0 , 0 , 0 , . . . , 0 , 1). 

Then each ë £ G and if g £ G then g is expressible in the form 

(13) g = E &(*i, • • • , in)ë(ii, . . . , *»)• 

T o see this, note t ha t e(ii, . . . , in) is the characteristic function of intervals 
isomorphic to the interval / with A CO = (ii, . . . , in) and the coefficient 
b(ii, . . . , in) in (13) is simply g(I). Since each ë is a finite sum of the e's, (13) 
implies t ha t G C H and the proof is complete. 

Equat ion (13) leads one to suspect tha t G(-\-, *) is isomorphic to Kn also 
bu t the e functions do not have a "nice multiplication rule". Perhaps some 
other choice of "generat ing functions" in place of the ê's would produce a 
representat ion of the type in (13) and have a "nice multiplication ru le" b u t 
we have been unable to find such functions. 

We return now to the case when 5 is the direct sum of infinitely many 
trees. In Theorem 1 we imposed a stronger condition on 5 than Scheid did in 
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pa r t (b) of Theorem A. Those 5 which satisfy Scheid's condition bu t not ours 
all satisfy 

Condition B. Suppose 5* = 7 \ © T2 © . . . is the direct sum of trees Ti, 
T2, . . . , a finite number of which, say 7 \ , . . . , Tn, are of infinite length 
while there is an integer m ^ 0 such t h a t A(2^) ^ m for all i > n and X(7\) = 
m for infinitely many i > n. 

T H E O R E M 3. If 5 satisfies Condition B then there is a subalgebra H(+, *) of 
F(-{-, *) which is a unique factorization domain isomorphic to Km+n and con
tains G. 

Proof. T h e method of proof is a combination of the methods used in proving 
Theorems 1 and 2. 

Each interval / of 5 is of the form 

(14) I = d © C2 © . . . © Cn © C„+i © . . . 

where d is a chain from T\ for i ^ 1 and all bu t a finite number of the Ct 

are trivial one element chains. Since T\, . . . , Tn are of infinite length the 
first n chains in (14) may be of any arb i t ra ry length while \{Ct) ^ m for all 
i > n. For each interval / of .S we define 

(15) A'(J) = ( n ' ( / ) , . . . , rm'{I), X(Ci), . . . , \{Cn)) 

where r/(I) is the number of chains d in (14) of length j with i > n. We 
define ir/ for 1 ^ j ^ w to be the characteristic function of intervals / of 
S with 

A'(J) = ( 0 , 0 , . . . , 0 , 1 , 0 , . . . , 0) 

where the 1 appears in position j . T h u s ir/ is the characteristic function of a 
chain of length j which is an interval in a tree Tt with i > n. 

W e also define for each ^- tuple (&i, . . . , kn) of nonnegat ive integers the 
function e' (ki, . . . , kn) to be the characteristic function of intervals / of S with 

A'(J) = ( 0 , 0 , . . . , 0 , ku k2, . . . , * „ ) . 

Note t ha t none of the 7r/'s or the ens are in G except for e'(0, 0, . . . , 0) = e. 
W e then let H be the set of all h G ^ representable in the form 

(16) h = E » (ii, . . . , 4 + » K i M l * • . • irm
fW(im+lt . . . , im+n), 

where the summat ion extends over all m + n-tuples (i\, . . . , v+ r e) of 
nonnegative integers and the coefficients a(ii, . . . , im+n) G -K. 

As in the proof of Theorem 2, two ef functions mult iply according to 

e'(ki, . . . , kn)*e'(ki, . . . , kn) = e'(ki + ki, . . . , * „ + è / ) 

and H(-\-, *) is isomorphic to Km+n. 
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The proof will be complete if we show that G C H. To see this observe 
for 1 ^ j S m, 

(17) TJ = TT/ + e'(j, 0, 0, . . . , 0) + e'(0,j, 0, . . . , 0) + . . . + 

e '(0,0,0, . . . , 0 , j ) 

and for j > m, 

(18) TJ = e'(j, 0, 0, . . . , 0) + ^ (0 , i , 0, . . . , 0) + . . . + e'(0, 0, . . . , 0,j). 

We then claim that each g G G has a representation of the form 

(19) g = E b(H, i2} . . OTT^1*^**'2 . . . 

where b(ii,i2,...) (z K and the summation extends over all sequences 
(ii, i2, . . .) of nonnegative integers all but a finite number of which are zero. 
Once (19) has been established we are done since (17), (18) and (19) imply 
GCH. 

The coefficients b(i\, . . . , im, 0, 0, . . .) in (19) can be evaluated by the 
method used in case 1 of the proof of Theorem 1. The difficulty in extending 
the same method to evaluate all the b(ii, i2, . . .) is that not all possible direct 
sums of chains appear in S. For example, no interval of S is the direct sum 
of n + 1 chains each of length m + 1. However, this is not a serious difficulty 
for our present purpose. It merely allows some freedom in selecting the 
coefficients b(iit i2, . . .) for which no interval I exists in S with r(I) = (i1} 

i2, . . .)• I n fact all such b's may be chosen arbitrarily. Thus each g Ç G has a 
representation of the type (19) although this representation is not unique. 
This completes the proof of Theorem 3. 

If 5 = Ti © T2 © . . . is the direct sum of trees and X(7\) = 1 for all 
i ^ 1 then G ( + , *) = K\ and every element g G G is uniquely expressible in 
the form ^2(anirin : n ^ 0). Furthermore -K\ is the only prime element (up to 
associates) in G and every g G G is of the form u*inno where u is a unit of G 
and n0 is the minimum n such than an 9^ 0. In contrast to this situation we 
have the following. 

THEOREM 4. If S(^) is a locally finite partially ordered set which contains 
intervals Ci and C2 which are chains of length 1 and 2 respectively, and if S also 
contains an interval isomorphic to C\ © C\, then <?(+, *) contains infinitely 
many irreducible elements, no two of which are associates. 

Proof. We claim that the set 

P = {ni + a-K2 : a G K] 

is a set of nonassociated irreducible elements. Suppose that 

7Ti + air2 = gi * g2 
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where g\ and g2 are nonuni ts of G. Then (recall t h a t nonuni ts of G vanish on 
uni t intervals of S) 

1 = (TTI + a7r2)(Ci) = (gi *g 2 ) (C i ) = 0, 

a contradiction. T h u s ir\ + &7r2 is irreducible. Now suppose t h a t two elements 
7Ti + <27T2 and 7Ti + bw2 of P are associates, say 

Tl + CL-^2 = g * (?ri + 6TT2) 

where g is a uni t of G. Then using 70 to denote a un i t interval and evaluat ing 
this equation successively a t Ci, C2 and Ci © C\ we obtain 

1 = g( /o) , a = 6g(J0) + g ( d ) and 0 = 2 g ( G ) . 

T h u s a = b and the proof is complete. 

4. A p p l i c a t i o n s to regular c o n v o l u t i o n r ings . Let A( + , *c) be a regular 
convolution ring as defined by Narkiewicz [2], i.e., A is the set of ar i thmet ic 
functions, + is pointwise addition and * c is a convolution product defined as 
follows. Le t C be a mapping from the natura l numbers N to the finite subsets 
of N such t h a t C{n) is a subset of the set of divisors of n for each n Ç N. 
Then for a, (3 ^ A and n £ N, 

(a*cP)(n) = T,(a(d)0(n/d) :d € C(» ) ) . 

Then Narkiewicz calls A(+, * c ) regular if it is a commuta t ive ring with 
uni ty , the multiplicative functions form a semigroup under * c and the " M ô b -
ius" function assumes only the values 0 or —1 a t a prime power pk > 1. 
As Narkiewicz showed [2, Theorem I I ] , every regular convolution is deter
mined by selecting for each prime p G N a collection of ar i thmet ic progressions 
of the type {m, 2m, 3m, . . .} (finite or infinite) which par t i t ion N and then 
defining for each power pk, C(pk) = {1, pm, p2m, . . . , prm\ where k = rm and 
{m, 2m, . . . } is the progression in which k appears . 

Le t S c be the relation on N defined by: a ^ cb if and only if a G C(b). 
Then N(S c) is a locally finite part ial ly ordered set and can be expressed as 
a direct sum of trees as Scheid has shown [3]. For each prime p £ N let 
Tv — {1, p, p2, . . .}. Then Tp(^ c) is a t ree and 

(20) N(£ c) = T2 © T3 © T5 © . . . © TPn © . . . 

where pn is the nth prime. Let F(-\-, *) be the incidence algebra on N(^ c) 
and G ( + , *) be the subalgebra defined previously. Then A(-\-, * c ) can be 
imbedded in F(-\-, *) under the mapping a <-> a ' where a r satisfies a (m, n) = 
a (I, n/rn) = a(n/m) for all m, n ^ N such t h a t m G C(n). W e shall denote 
the image of - 4 ( + , *c) in ^ ( + , *) by ^ 4 ( + , * ) . Then it is easily seen t h a t 
G ( + , *) C ^ 4 ( + , *) and the following theorems are then corollaries of the 
theorems in section 3. We shall use the notat ion \(pk) = \(l,pk), i.e., the 
length of the prime power pk is the length of the chain [1, pk] in the tree Tv. 
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THEOREM 5. If N(S c) is given by (20) and for each prime power pk, there are 
infinitely many primes a such that \(ql) è X(/>*) for some power q\ then G(+, *) 
is a unique factorization domain. 

THEOREM 6. If N(^ c) is given by (20) and there are positive integers m and n 
such that \(TP.) = oo for n values ofi,\(Tv.) S m for all other i and \{TP.) = m 
for infinitely many i, then A{-\-, *) contains a subalgebra H(-\-, *) which is a 
unique factorization domain isomorphic to Km+n and contains G ( + , *). 

THEOREM 7. If N(^ c) is given by (20) and if \(TP.) ^ 2 for some i then 
G ( + , *) contains infinitely many nonassociated irreducible elements. 

The only thing requiring a proof in the above theorems is that H C A in 
Theorem 6. Going back to the definition of H in Section 3, this amounts to 
showing that the 7r/'s and the e"s lie in A and it is not difficult to verify this. 

An interesting special case is when each Tpn is an infinite chain and ^ c is 
the usual divisibility order on TV. Then A(+, *) is the Dirichlet convolution 
ring which Cashwell and Everett have shown to be isomorphic to Kw. Thus by 
Theorem 5, A ( + , *) is isomorphic to its proper subring G(+, *). 

Another case of interest is when \{Tpn) = 1 for all n ^ 1. Then A ( + , *) 
is the unitary convolution ring of arithmetic functions and G ( + , *) = Ki. 
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