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1. Introduction. Motivated by a problem in mathematical economics [4] Gretsky
and Ostroy have shown [S] that every positive operator T:L'[0, 1]— ¢, is a Dunford—
Pettis operator (i.e. T maps weakly convergent sequences to norm convergent ones), and
hence that the same is true for every regular operator from L'[0, 1] to ¢,. In a recent
paper [6] we showed the converse also holds, thereby characterizing the D-P operators
by this condition. In each case the proof depends (as do so many concerning D-P
operators on L'[0, 1]) on the following well-known result (see, e.g., [2]): If u is a finite
measure, an operator T:L'(u)— E is a D-P operator & T.i:L*(u)-> L'(u) 5 E is
compact, where i : L”(u)— L'(u) is the canonical injection of L*(u) into L'(u). If u is not
a finite measure this characterization of D—P operators is no longer available, and hence
results based on its use (e.g. [5], [6]) do not always have straightforward extensions to the
case of operators on more general L'(u) spaces.

The purpose of this paper is two-fold. First, we show in §2 how arguments
concerning D—P operators on a space L'(u) for u a o-finite measure can be reduced in a
natural way to analogous arguments concerning operators on associated spaces L'(u,),
where each y, is a finite measure and hence where the above mentioned result may be
applied to good effect. In particular, the results of Gretsky—Ostroy [5] and of the author
[6] proved for L'[0, 1] are shown to be valid in this more general setting. Second, we
explore in more detail the important distinction between the cases of a finite and of a
o-finite measure by introducing in §3 the concept of a strongly-Dunford—Pettis operator
from a space L'(u) to some Banach space E. The strongly D-P operators turn out to be
precisely the D—P operators when u is a finite measure, but are a strictly smaller set
otherwise. The interest in these strongly D-P operators lies in the fact that certain
well-known results concerning D—P operators on the space L!(u) for u finite, which are
either meaningless or false when p is infinite, find their natural statement and meaning in
the context of strongly-D—P operators. Thus the strongly-D-P operators seem to play a
unifying role in the study of operators on L'(u).

2. Throughout this paper (X, ¥, u) will denote a positive measure space, E will
denote some Banach space, and T:L'(u)— E a bounded linear operator. In the case

where p is a o-finite measure we will write X = |_J X,,, where X, c X, and u(X,,) < +%

n=1
for all n. In this case we denote by L'(X,) the subspace of L'(u) defined by
L'(X,)={f e L'(»)| support f < X,}. Clearly L'(X,) is isometrically isomorphic to
L'(u,), where u, is the measure induced on X,, by restricting u to the measurable sets in
¥ NX,, under the mapping Q,:L'(u,)— L'(X,) defined by Q, = f for f(t) the function
in X which equals g(¢) when ¢ € X,, and is zero otherwise.
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The principal tool for extending results concerning D—P operators on the space L'(u)
for u a finite measure to the case where u is o-finite is the following:

THEOREM 2.1. Suppose u is a o-finite measure. The operator T :L'(u)— E is a D-P
operator & for every n=1,2, . . . the operator T, : L'(u,)— E defined by T,(f) = T(Q.,f)
is a D-P operator (where Q, f is the extension of f from X, to X defined above).

Proof. (=): If T is a D-P operator and {f;};~, is a sequence in L'(u,) which
converges weakly to O then clearly {Q,f}, converges weakly to zero in L'(u).
Therefore {T(Q.f;)}i=, converges weakly to zero in E, so by definition {T,f;},
converges to zero in £ and T, is a D-P operator.

(&): Suppose T, is a D-P operator for every n and {f;};—, is a sequence in L'(u)
which is weakly convergent to zero. Define the operator

U:L'(u)—1'" by U(f)= {fxn+.—xnf(t) dll(l‘)}:=

Clearly U is continuous, hence weakly continuous, and so maps weakly compact sets in

L'(p) to weakly compact hence compact [3, p. 296], sets in /'. Since the set {f}r, is
weakly compact in L'(u) the set {|f;|};=, has the same property [3, p. 293] so by the
above the set {U |f|}i=, is compact in /'. Therefore given € >0 there is an N =1 so that

L_x A du() = 2 f ) du(t)

Xn+1—Xp

€
S29T0

for all i {3, p. 260].

If for each n we define a projection P, on L'(u) by P,f =f. xx, then P, projects
L'(u) onto L' (X ) and for each i we have f =F, f, + (f; — P,f;). Hence when n =N and
i=1,2,3,... we have

WTEN = ITPnfll + IT(f: = Pufill,

where

ITCE =PI =TS = Pufill = 1T £l du(t) < g

X —Xn

Since {Pyf;}iZ: converges weakly to 0 (and is in L'(X,)){TPvf;}i=, = {Tng:}i~,, where g;
is f; restricted to Xy for all i, and hence where {g;};Z, converges weakly to zero in L'(uy).
By assumption Ty is a D-P operator so if i =i, then

€
ITPufill = 1 Tngill <35

It follows that {f};=, converges to 0 in E, hence that T is a D-P operator, and the proof
is complete.
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It is now a simple matter to combine this result with others concerning D-P
operators on a space L'(u) for u finite to get analogous results in the case where p is
o-finite. In particular we derive the following extensions of the results of Gretsky—Ostroy
[5] and of the author [6] proved for the space L'[0, 1].

CoRrOLLARY 2.2. Let E be a Banach space with an order compatible basis, u a o-finite
measure, and T : L'(u)— E a positive operator. Then T is a D-P operator.

Proof. If T:L'(u)— E is a positive operator then it is clear from the definition of the
isometry Q,,: L'(u,)— L'(X,,) that T, = TQ,,: L'(u,)— E is also positive for all n, hence a
D-P operator [5], and it follows from Theorem 2.1 that T is also a D-P operator.

CoroLLARY 2.3. If p is any o-finite measure and T :L'(u)— ¢, is a bounded linear
operator, then the following are equivalent:

1) T is regular

2) T is a D-P operator

3) {|T*e;|};=, is w*-convergent to 0 in L™(u).

Proof. (1)=>(2): If T is regular (i.e. a difference of positive operators) it follows
from Corollary 2.2 that T is a D-P operator, since the unit vector basis {e;}i~, for ¢, is
certainly order compatible.

(2)=>(3): If T:L(u)—>c, is a D-P operator then according to Theorem 2.1 we
know that each operator T,,: L'(u,)— ¢, is a D-P operator. We also know that T has the

representation T = ¥ T*e; ® e;, where {T*¢;} is w*-convergent to 0 in L”(u) (see, e.g.,
i=1 o
(6]). Let T*e;=h; for all i, so T=Y h;®e¢. Given any n=1,2,... we see that
i=1 o -
T,:L'(u,)— c, then has the representation 7, = ¥, h; ® e: where k; is the restriction of h;
i=1

to X,,, a function in L*(u,) for all i. Since T, is a D-P operator and u, is a finite measure
we know from our earlier work {6] that {|A;|};, is w*-convergent to 0 in L*(u,,) for all n.
Given any f € L'(u) and any € > 0 choose »n so that

€

L_xn O <5

and write f = P,f + (f — P,f) where P,f = fxx, (as in the proof of Theorem 2.1). Then
(lhil, U= KIRdl, Pf I+ KR, f = Puf )

< || mO1P.£O du) +sup 5

= | E@is0du +3,

where

g =f X, € Ll(“n)
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We noted above that {|i;|}; is w*-convergent to 0 in L*(u,), so there is an integer i,
such that if i = i, then

| eng du| <,

and hence so that ||k, f) <e if i=i,. Since feL'(u) is arbitrary it follows that
{|T*e;|}i=1 is w*-convergent to 0 in L™(u). -
(3)=>(1): If{T*e|}i=,is w*-convergent to 0in L'(u) then the operator | T|: L' (1) — ¢,
with representation |T|= Y, |T*e¢,|®e; is well-defined. Hence, since |T|+ T and
i=1

|T| — T are both positive and T =(|T| + T) — 3(|T| — T), it follows that T is regular.

3. We have just shown that if u is a o-finite measure and T is an operator from
L'(u) to ¢y, then T is a D-P operator <& {|T*e;|}7, is w*-convergent to 0 in L”(u). In
the case where p is actually a finite measure the statement that {|T*e|}i~, i
w*-convergent to 0 in L™(u) is easily seen to be equivalent to the condition that {T*e;}7>,
converges to zero in L'(u) or that {T*e;}7_, converges to 0 in measure on X, since

{T*e;}, is bounded in L™(u). However in the case where u(X)= +o this latter
condition is a strictly stronger one than that of the Dunford—Pettis property. In fact, we
have:

PropOSITION 3.1. Let u be a o-finite, non-finite, measure on X and T:L(u)—c, a
bounded linear operator. If the sequence {T*e;};—, in L™(u) converges in measure to 0 on
X then T is a D-P operator. However there exists a D—P operator T for which {T*e;}i~,
does not converge in measure to 0.

Proof. Suppose {T*e;};~; = {h;};=,, a bounded sequence in L™(u) which converges

in measure to 0. If, as in §2, X = X, for X, c X, ,, and u(X,) <+ for all n then
n=1

certainly for any fixed n the sequence {h;};=; = {h; | x,}i— is a sequence in L™(u,) (where

we recall u, is the restriction of u to X,,) which converges in y,-measure to zero on X,,.

Hence, as noted above, the operator T,,: L'(u,)— ¢, defined by T, = ¥ h; ®e¢, is a D-P
i=1

operator, and it follows from Theorem 2.1 that T is a D—P operator.
On the other hand, since u is not a finite measure there exist disjoint measurable sets
{E,}n=1 in X with

0<inf u(E,) <sup u(E,) < +w.

Let h,=xg, for n=1,2,..., so {h,},—, is a bounded sequence of non-negative
functions which is w*-convergent to 0 in L™(u) but which does not converge to 0 in

measure. Setting T= Y h, ®e, we get a positive operator from L'(u) to ¢, for which

n=1
{T*e,}n-1={h,}n=1 does not converge in measure to zero. Since by Corollary 2.2 T is a
D-P operator, we have produced the desired example.

https://doi.org/10.1017/50017089500007539 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007539

DUNFORD-PETTIS OPERATORS ON L'(u) 53

Thus we see that for an arbitrary o-finite measure p the set of operators
T:L'(u)— co for which {T*e;};Z, converges in measure to 0 is a subset of the D-P
operators, with equality holding if and only if u is finite. In fact, rather than being
peculiar to the study of operators from L'(u) to ¢,, these operators are a special case of
what we call strongly-D—P operators on an L'-space.

DEerFINITION. An operator T:L'(u)— E is called a strongly-Dunford—-Pettis operator if
it maps bounded, uniformly integrable subsets of L'(u) into compact subsets of E.

(Recall that a subset A < L'(u) is uniformly integrable if for every € >0 there is a
6 >0 so that |[ g f(f) du(t)| < € whenever f € A and u(E) < 6; see e.g., [7, p. 134)).

It is well known that for any measure u every weakly compact subset of L'(u) is both
bounded and uniformly integrable and that the converse is true if p is finite [3, p. 294].
Thus we see from the definition that every strongly-D—P operator is a D—P operator and
that the two sets of operators coincide when u is finite. In the case where pu(X) = +w it is
the strongly-D—P operators, rather than the D-P operators themselves, which have an
analogous characterization to that of [2].

THEOREM 3.2. An operator T': L'(u)— E is a strongly-D-P operator & the operator
T.i:L>(u) 0 L'(u)5 L' (1) 5 E is compact (where the norm on the space L*(u) 0 L' ()
is defined by ||f1| = max {||fll», Ilf1l1})-

Proof. (=): Suppose T is a strongly D-P operator. If u denotes the unit ball of
Lm(u) N L'(u) then i(U) < L'(x) and is clearly a bounded, uniformly integrable subset of
L'() (since by definition U is in the unit ball of L“(u)). Hence T(i(U)) is a compact set
in E, implying 7. is compact.

(<) Suppose T.i is compact and that A is any bounded, uniformly integrable
subset of L'(u). Clearly the set |A|={|f]||f € A} has the same properties. Therefore,
given any € >0 choose 6 >0 so that if u(E) < then

L roraun <0

for all f € A. Since A is bounded in L'(u) there is an M so that if f € A then |f(f)| < M for
all t e X — E; where E; is a measurable subset of X for which u(E;) <4. It follows that if
f €A we have f =g +r, where g =fxx_g is in the M-ball of L™(u) N L'(1) and where

E
r=ftee vith lirll= | Ol a0 < oo

Hence if {f,} is any sequence then f, =g, +r, as above for all n, and for all m and
€ .

P ITF, = Tholl = 10 = TRll + I Tr, = Trll <11Tg = Tgall + 5 (since ||rl] < €/4 for all

i). But by assumption {Tg,},~, is compact in E so there is a subsequence {Tg, };~; and an

€
integer N so that if i, j = N then ||Tg,, — TGn,_|| <§. Hence, by the above, if i, j = N then

https://doi.org/10.1017/50017089500007539 Published online by Cambridge University Press


https://doi.org/10.1017/S0017089500007539

54 JAMES R. HOLUB

I TS, — Tf, |l < €, so the subsequence {Tf,};=, of {Tf,} ., converges in E. Thus the set
T(A) is compact in E, and T is a strongly-D—P operator.

Now let us return to the study of operators T:L'(u)— c,. We have seen that for any
o-finite measure p, T is a D-P operator & T is regular < {|T*e¢,|};~, is w*-convergent to
0 in L™(u), and the condition that {T*e;};2, converges in measure to 0 is sufficient for T
to be a D-P operator, but not necessary unless u(X) < +w«. As promised earlier, we now
show that the operators for which {T*e;} converges in measure to 0 are precisely the
strongly-D-P operators, thereby emphasizing the distinction which we find in general
between the D—P and the strongly-D-P operators in the case where u(X) = +oo.

THeEOREM 3.3. Let u be a o-finite measure and T:L'(u)—c, a bounded linear
operator. Then T is a strongly-D-P operator < {T*e;};, converges in measure to 0 in
L*(p). :

Proof. (>): Let T:L'(u)—co be a strongly-D-P operator having the repre-

sentation T = .El h; ® e;, where {h;};L,={T*e;};~, is w*-convergent to 0 in L*(u). If
{h;}iz, does not converge in measure to 0 then there exist €>0, 6>0, and a
subsequence {h; }n_; of {h;}i~, for which u{re X ||h, ()|=€}>6, n=1,2,.... Since,
for each n, either u{t | h, (£)=¢€} or p{t | h, (f) < —e} must be greater than 8/2 we may
assume without loss of generality that pu{t | h(t)=e}>06 forall n=1,2,3,..., and
hence for each n there is a set E, = X so that

gs inf u(E,) =sup u(E,) <+«

and h, ()= eforall te E,. If fy = x., for k=1,2,3,..., then the set {f}5-, is clearly a
uniformly integrable subset of L'(u) (being a bounded subset of L*(u1)). Moreover,

T/, = 2 (e fi)es

so for any k and any

N

g\l (hi: fk)ei

=sup (i, i) =sup || 10 duc)

=sup [ (0 duto)|

If we choose k =i, (for any n = N) we then get this last is

>

j edu(t)lze.é,
s, 2

by definition of {h; },-, and E, . Therefore

Tf, = ; (hi, fe)ei
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where this series converges, but not uniformly, over the set {f; }s—,. It follows that the set

{Tf.}%=1 is not compact in ¢, [3, p. 260] and hence that T is not strongly-D-P, a

contradiction. Consequently it must be that {T*e;};_, converges in u-measure to zero.
(&): On the other hand, assume {7 *e;};~, converges to 0 in u-measure and write

T= 2 T*ei®e,‘= 2 hi®ei'
i=1 i=1

Let A be any bounded, uniformly integrable subset of L'(u) and let € >0 be given. By
assumption, if E; = {t | |h,(¢)] = €} then u(E,)—0. Therefore if feA andi=1,2,... we
have

|<hirf>|=

| moirordsei=sw . | 170140 + - [ 1r01du)

Since A is uniformly integrable there is a 6 >0 so that if u(E) <& then [ |f(¢)| du(r) < e
for all feA, so since u(E;)— 0 there is a N for which u(E;)< & whenever i =N and
hence for which [z |f(¢)| du(¢) < € for all f € A. Therefore for any f € A

@

2 (hi’ f)ei

i=N

=sup [<hs, £ <sup [|4]] . € +sup Ifll:- € (by the above),

Co

so Tf = X (T*e;, f)e; converges in ¢, uniformly over f € A, implying that the set T(A) is
i=1 .
compact in ¢, and hence that T is a strongly-D—P-operator.

More generally, we have the following characterization of strongly-D-P operators
from L'(u) to any separable Banach space:

THEOREM 3.4. Let u be a o-finite measure and E a separable Banach space. An
operator T:L'(u)— E is a strongly-D-P operator & whenever {w}}u_, is a sequence in
E* which is w*-convergent to 0, then the sequence {T*w,},-, in L*(u) converges in
measure to 0.

Proof. (3): Suppose T:L'(u)—E is a strongly-D-P operator. If {w}}>_, is
w*-convergent to 0 in E* then V = Zl w, ® e, is a well-defined, bounded linear operator
from E to ¢, and hence V. T:L'(u) 5 E% ¢, is also a strongly-D—P operator. According
to Theorem 3.3 above the sequence {(V. T)*e,},—, in L*(u) converges to 0 in measure.
But (V. T)*e, = T*w;, for all n, so {T*w,};_, converges to 0 in measure.

(€): Conversely, suppose whenever {w}},_, is w*-convergent to 0 in E* then
{T*w,}n-1 converges in measure to 0 in L™(u). Since E is separable there is an isometric
isomorphism Q of E into C[0, 1] [1, Chap. XI, Theorem 10], where C[0, 1] has a
Schauder basis {®;},-; with coefficient functionals {®;}, in C[0, 1]* (see e.g. [8, p.
11]). If A is a bounded, uniformly integrable set in L'(u) for which T(A) is not compact

in E, then Q. T(A) is not compact in C[0, 1], so ¥ (®/, QT(f))®; is not uniformly
i=1
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convergent in C[0, 1] over f € A. Therefore there is an £ >0, a sequence {f, },-, = A, and
an increasing sequence of integers {p,, },-1 for which

X (e, o1,

i=p,+1

N >e€ for n=1,2,3,....

Correspondingly, for each n there is a functional a, € C[0, 1]* with ||a,|| =1 for which

Pn+1

E <(I)l*’ QT(ﬁl)>(q)u an) > 6)
i=p,+1
and hence for which

pZ (D;, @, ) (D, QT(f))| > €.

i=p,+1

If we set

Prn+1
> (P, @)@ for n=1,2,...,

i=p,+1

then {g,}n-, is a bounded sequence in C[0, 1}*, and hence clearly converges to 0 in the
w*-topology on C[0, 1]* (since {®;, ®;}i~, is a basis for C[0, 1]). But then {w,}r_; =
{Q*(q,)}n=1 is w*-convergent to 0 in E*, so by assumption {T*(Q*q,)},=; converges in
measure to 0 in L™(u).

As the second part of the proof of Theorem 3.3 shows, it follows that
{{T*Q*q,, ) }n=1 converges to 0 uniformly over f in any bounded, uniformly integrable
subset of L'(u), in particular over the subset {f,};-, = A. Thus there is an N so that if
n =N then |{T*Q*q,, f,)| < €. That is,

<e for n=N.

an 0T =|( 3 (@1 a)er, o7

i=p,+1

But this is just

(3 <or om)(e, o),

i=p,+1

which is >e€ for all n, a contradiction. Hence it must be that T maps bounded, uniformly
integrable subsets of L'(u) to compact subsets of E, and it follows that T is a
strongly-D—P operator.

Finally, we note that in the case where u(X) < +o Theorem 3.4 yields the following
characterization of D—P operators.

CoroLLARY 3.5. If u is a finite measure and E a separable Banach space, then an
operator T:L'(u)— E is a D-P operator & T* maps w*-convergent sequences in E* to
L'(u)-convergent sequences in L™(u).
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