DUNFORD-PETTIS AND STRONGLY-DUNFORD-PETTIS OPERATORS ON $L^1(\mu)$

by JAMES R. HOLUB

(Received 12 August, 1987)

1. Introduction. Motivated by a problem in mathematical economics [4] Gretsky and Ostroy have shown [5] that every positive operator $T:L^1[0,1]\to c_0$ is a Dunford-Pettis operator (i.e. T maps weakly convergent sequences to norm convergent ones), and hence that the same is true for every regular operator from $L^1[0,1]$ to c_0 . In a recent paper [6] we showed the converse also holds, thereby characterizing the D-P operators by this condition. In each case the proof depends (as do so many concerning D-P operators on $L^1[0,1]$) on the following well-known result (see, e.g., [2]): If μ is a finite measure, an operator $T:L^1(\mu)\to E$ is a D-P operator $\Leftrightarrow T:i:L^\infty(\mu)\overset{i}{\to}L^1(\mu)\overset{T}{\to}E$ is compact, where $i:L^\infty(\mu)\to L^1(\mu)$ is the canonical injection of $L^\infty(\mu)$ into $L^1(\mu)$. If μ is not a finite measure this characterization of D-P operators is no longer available, and hence results based on its use (e.g. [5], [6]) do not always have straightforward extensions to the case of operators on more general $L^1(\mu)$ spaces.

The purpose of this paper is two-fold. First, we show in §2 how arguments concerning D-P operators on a space $L^1(\mu)$ for μ a σ -finite measure can be reduced in a natural way to analogous arguments concerning operators on associated spaces $L^1(\mu_n)$, where each μ_n is a finite measure and hence where the above mentioned result may be applied to good effect. In particular, the results of Gretsky-Ostroy [5] and of the author [6] proved for $L^1[0, 1]$ are shown to be valid in this more general setting. Second, we explore in more detail the important distinction between the cases of a finite and of a σ -finite measure by introducing in §3 the concept of a strongly-Dunford-Pettis operator from a space $L^1(\mu)$ to some Banach space E. The strongly D-P operators turn out to be precisely the D-P operators when μ is a finite measure, but are a strictly smaller set otherwise. The interest in these strongly D-P operators lies in the fact that certain well-known results concerning D-P operators on the space $L^1(\mu)$ for μ finite, which are either meaningless or false when μ is infinite, find their natural statement and meaning in the context of strongly-D-P operators. Thus the strongly-D-P operators seem to play a unifying role in the study of operators on $L^1(\mu)$.

2. Throughout this paper (X, Σ, μ) will denote a positive measure space, E will denote some Banach space, and $T:L^1(\mu)\to E$ a bounded linear operator. In the case where μ is a σ -finite measure we will write $X=\bigcup_{n=1}^{\infty}X_n$, where $X_n\subset X_{n+1}$ and $\mu(X_n)<+\infty$ for all n. In this case we denote by $L^1(X_n)$ the subspace of $L^1(\mu)$ defined by $L^1(X_n)=\{f\in L^1(\mu)|\text{ support }f\subset X_n\}$. Clearly $L^1(X_n)$ is isometrically isomorphic to $L^1(\mu_n)$, where μ_n is the measure induced on X_n by restricting μ to the measurable sets in $\Sigma\cap X_n$, under the mapping $Q_n:L^1(\mu_n)\to L^1(X_n)$ defined by $Q_n=f$ for f(t) the function in X which equals g(t) when $t\in X_n$ and is zero otherwise.

Glasgow Math. J. 31 (1989) 49-57.

The principal tool for extending results concerning D-P operators on the space $L^1(\mu)$ for μ a finite measure to the case where μ is σ -finite is the following:

THEOREM 2.1. Suppose μ is a σ -finite measure. The operator $T:L^1(\mu)\to E$ is a D-P operator \Leftrightarrow for every $n=1,2,\ldots$ the operator $T_n:L^1(\mu_n)\to E$ defined by $T_n(f)=T(Q_nf)$ is a D-P operator (where Q_nf is the extension of f from X_n to X defined above).

Proof. (\Rightarrow): If T is a D-P operator and $\{f_i\}_{i=1}^{\infty}$ is a sequence in $L^1(\mu_n)$ which converges weakly to 0 then clearly $\{Q_n f_i\}_{i=1}^{\infty}$ converges weakly to zero in $L^1(\mu)$. Therefore $\{T(Q_n f_i)\}_{i=1}^{\infty}$ converges weakly to zero in E, so by definition $\{T_n f_i\}_{i=1}^{\infty}$ converges to zero in E and T_n is a D-P operator.

(\Leftarrow): Suppose T_n is a D-P operator for every n and $\{f_i\}_{i=1}^{\infty}$ is a sequence in $L^1(\mu)$ which is weakly convergent to zero. Define the operator

$$U: L^{1}(\mu) \to l^{1}$$
 by $U(f) = \left\{ \int_{X_{n+1} - X_{n}} f(t) d\mu(t) \right\}_{n=1}^{\infty}$.

Clearly U is continuous, hence weakly continuous, and so maps weakly compact sets in $L^1(\mu)$ to weakly compact, hence compact [3, p. 296], sets in l^1 . Since the set $\{f_i\}_{i=1}^{\infty}$ is weakly compact in $L^1(\mu)$ the set $\{|f_i|\}_{i=1}^{\infty}$ has the same property [3, p. 293] so by the above the set $\{U|f_i|\}_{i=1}^{\infty}$ is compact in l^1 . Therefore given $\epsilon > 0$ there is an $N \ge 1$ so that

$$\int_{X-X_N} |f_i(t)| d\mu(t) = \sum_{n=N}^{\infty} \int_{X_{n+1}-X_n} |f_i(t)| d\mu(t)$$
$$= \left\| \sum_{n=N}^{\infty} \langle Uf, e_n \rangle e_n \right\| < \frac{\epsilon}{2 \|T\|}$$

for all i [3, p. 260].

If for each n we define a projection P_n on $L^1(\mu)$ by $P_n f = f$. χ_{X_n} , then P_n projects $L^1(\mu)$ onto $L^1(X_n)$ and for each i we have $f = P_n f_i + (f_i - P_n f_i)$. Hence when n = N and $i = 1, 2, 3, \ldots$ we have

$$||Tf_i|| \le ||TP_N f_i|| + ||T(f_i - P_N f_i)||,$$

where

$$||T(f_i - P_N f_i)|| \le ||T|| ||f_i - P_N f_i|| = ||T|| \int_{X - X_N} |f_i(t)| d\mu(t) < \frac{\epsilon}{2}.$$

Since $\{P_N f_i\}_{i=1}^{\infty}$ converges weakly to 0 (and is in $L^1(X_n)$) $\{TP_N f_i\}_{i=1}^{\infty} = \{T_N g_i\}_{i=1}^{\infty}$, where g_i is f_i restricted to X_N for all i, and hence where $\{g_i\}_{i=1}^{\infty}$ converges weakly to zero in $L^1(\mu_N)$. By assumption T_N is a D-P operator so if $i \ge i_0$ then

$$\|TP_Nf_i\|=\|T_Ng_i\|<\frac{\epsilon}{2}.$$

It follows that $\{f_i\}_{i=1}^{\infty}$ converges to 0 in E, hence that T is a D-P operator, and the proof is complete.

It is now a simple matter to combine this result with others concerning D-P operators on a space $L^1(\mu)$ for μ finite to get analogous results in the case where μ is σ -finite. In particular we derive the following extensions of the results of Gretsky-Ostroy [5] and of the author [6] proved for the space $L^1[0, 1]$.

COROLLARY 2.2. Let E be a Banach space with an order compatible basis, μ a σ -finite measure, and $T:L^1(\mu) \to E$ a positive operator. Then T is a D-P operator.

Proof. If $T: L^1(\mu) \to E$ is a positive operator then it is clear from the definition of the isometry $Q_n: L^1(\mu_n) \to L^1(X_n)$ that $T_n = TQ_n: L^1(\mu_n) \to E$ is also positive for all n, hence a D-P operator [5], and it follows from Theorem 2.1 that T is also a D-P operator.

COROLLARY 2.3. If μ is any σ -finite measure and $T:L^1(\mu) \to c_0$ is a bounded linear operator, then the following are equivalent:

- 1) T is regular
- 2) T is a D-P operator
- 3) $\{|T^*e_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$.

Proof. (1) \Rightarrow (2): If T is regular (i.e. a difference of positive operators) it follows from Corollary 2.2 that T is a D-P operator, since the unit vector basis $\{e_i\}_{i=1}^{\infty}$ for c_0 is certainly order compatible.

(2) \Rightarrow (3): If $T:L^1(\mu) \to c_0$ is a D-P operator then according to Theorem 2.1 we know that each operator $T_n:L^1(\mu_n) \to c_0$ is a D-P operator. We also know that T has the representation $T = \sum_{i=1}^{\infty} T^* e_i \otimes e_i$, where $\{T^* e_i\}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$ (see, e.g., [6]). Let $T^* e_i = h_i$ for all i, so $T = \sum_{i=1}^{\infty} h_i \otimes e_i$. Given any $n = 1, 2, \ldots$ we see that $T_n:L^1(\mu_n) \to c_0$ then has the representation $T_n = \sum_{i=1}^{\infty} \bar{h}_i \otimes e$: where \bar{h}_i is the restriction of h_i to X_n , a function in $L^{\infty}(\mu_n)$ for all i. Since T_n is a D-P operator and μ_n is a finite measure we know from our earlier work [6] that $\{|\bar{h}_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu_n)$ for all n. Given any $f \in L^1(\mu)$ and any $\epsilon > 0$ choose n so that

$$\int_{X-X_n} |f(t)| \, d\mu(t) < \frac{\epsilon}{2 \sup \|h_i\|_{\infty}}$$

and write $f = P_n f + (f - P_n f)$ where $P_n f = f \chi_{X_n}$ (as in the proof of Theorem 2.1). Then

$$\begin{aligned} \langle |h_i|, f \rangle | &\leq |\langle |h_i|, P_n f \rangle| + |\langle |h_i|, f - P_n f \rangle| \\ &\leq \left| \int_X |h_i(t)| P_n f(t) d\mu(t) + \sup_i ||h_i|| \cdot \frac{\epsilon}{2 \sup ||h_i||_{\infty}} \right| \\ &= \int_{X_n} |\bar{h}_i(t)| g(t) d\mu(t) + \frac{\epsilon}{2}, \end{aligned}$$

where

$$g=f\mid_{X_n}\in L^1(\mu_n).$$

We noted above that $\{|\bar{h}_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu_n)$, so there is an integer i_0 such that if $i \ge i_0$ then

 $\left| \int_{X_m} |\bar{h}_i(t)| \, g(t) \, d\mu(t) \right| < \frac{\epsilon}{2},$

and hence so that $|\langle |h_i|, f \rangle < \varepsilon$ if $i \ge i_0$. Since $f \in L^1(\mu)$ is arbitrary it follows that $\{|T^*e_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$.

(3) \Rightarrow (1): If $\{T^*e_i\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^1(\mu)$ then the operator $|T|:L^1(\mu)\to c_0$ with representation $|T|=\sum_{i=1}^{\infty}|T^*e_i|\otimes e_i$ is well-defined. Hence, since |T|+T and |T|-T are both positive and $T=\frac{1}{2}(|T|+T)-\frac{1}{2}(|T|-T)$, it follows that T is regular.

3. We have just shown that if μ is a σ -finite measure and T is an operator from $L^1(\mu)$ to c_0 , then T is a D-P operator $\Leftrightarrow \{|T^*e_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$. In the case where μ is actually a finite measure the statement that $\{|T^*e_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$ is easily seen to be equivalent to the condition that $\{T^*e_i\}_{i=1}^{\infty}$ converges to zero in $L^1(\mu)$ or that $\{T^*e_i\}_{i=1}^{\infty}$ converges to 0 in measure on X, since $\{T^*e_i\}_{i=1}^{\infty}$ is bounded in $L^{\infty}(\mu)$. However in the case where $\mu(X) = +\infty$ this latter condition is a strictly stronger one than that of the Dunford-Pettis property. In fact, we have:

PROPOSITION 3.1. Let μ be a σ -finite, non-finite, measure on X and $T:L^1(\mu)\to c_0$ a bounded linear operator. If the sequence $\{T^*e_i\}_{i=1}^{\infty}$ in $L^{\infty}(\mu)$ converges in measure to 0 on X then T is a D-P operator. However there exists a D-P operator T for which $\{T^*e_i\}_{i=1}^{\infty}$ does not converge in measure to 0.

Proof. Suppose $\{T^*e_i\}_{i=1}^{\infty}=\{h_i\}_{i=1}^{\infty}$, a bounded sequence in $L^{\infty}(\mu)$ which converges in measure to 0. If, as in §2, $X=\bigcup_{n=1}^{\infty}X_n$ for $X_n\subset X_{n+1}$ and $\mu(X_n)<+\infty$ for all n then certainly for any fixed n the sequence $\{\bar{h}_i\}_{i=1}^{\infty}=\{h_i\mid_{X_n}\}_{i=1}^{\infty}$ is a sequence in $L^{\infty}(\mu_n)$ (where we recall μ_n is the restriction of μ to X_n) which converges in μ_n -measure to zero on X_n . Hence, as noted above, the operator $T_n:L^1(\mu_n)\to c_0$ defined by $T_n=\sum_{i=1}^{\infty}\bar{h}_i\otimes e_i$ is a D-P operator, and it follows from Theorem 2.1 that T is a D-P operator.

On the other hand, since μ is not a finite measure there exist disjoint measurable sets $\{E_n\}_{n=1}^{\infty}$ in X with

$$0 < \inf_{n} \mu(E_n) \le \sup_{n} \mu(E_n) < +\infty.$$

Let $h_n = \chi_{E_n}$ for $n = 1, 2, \ldots$, so $\{h_n\}_{n=1}^{\infty}$ is a bounded sequence of non-negative functions which is w^* -convergent to 0 in $L^{\infty}(\mu)$ but which does not converge to 0 in measure. Setting $T = \sum_{n=1}^{\infty} h_n \otimes e_n$ we get a positive operator from $L^1(\mu)$ to c_0 for which $\{T^*e_n\}_{n=1}^{\infty} = \{h_n\}_{n=1}^{\infty}$ does not converge in measure to zero. Since by Corollary 2.2 T is a D-P operator, we have produced the desired example.

Thus we see that for an arbitrary σ -finite measure μ the set of operators $T:L^1(\mu)\to c_0$ for which $\{T^*e_i\}_{i=1}^\infty$ converges in measure to 0 is a subset of the D-P operators, with equality holding if and only if μ is finite. In fact, rather than being peculiar to the study of operators from $L^1(\mu)$ to c_0 , these operators are a special case of what we call *strongly*-D-P *operators* on an L^1 -space.

DEFINITION. An operator $T:L^1(\mu) \to E$ is called a strongly-Dunford-Pettis operator if it maps bounded, uniformly integrable subsets of $L^1(\mu)$ into compact subsets of E.

(Recall that a subset $A \subset L^1(\mu)$ is uniformly integrable if for every $\epsilon > 0$ there is a $\delta > 0$ so that $|\int_E f(t) d\mu(t)| < \epsilon$ whenever $f \in A$ and $\mu(E) < \delta$; see e.g., [7, p. 134]).

It is well known that for any measure μ every weakly compact subset of $L^1(\mu)$ is both bounded and uniformly integrable and that the converse is true if μ is finite [3, p. 294]. Thus we see from the definition that every strongly-D-P operator is a D-P operator and that the two sets of operators coincide when μ is finite. In the case where $\mu(X) = +\infty$ it is the strongly-D-P operators, rather than the D-P operators themselves, which have an analogous characterization to that of [2].

THEOREM 3.2. An operator $T: L^1(\mu) \to E$ is a strongly-D-P operator \Leftrightarrow the operator $T: i: L^{\infty}(\mu) \cap L^1(\mu) \xrightarrow{i} L^1(\mu) \xrightarrow{T} E$ is compact (where the norm on the space $L^{\infty}(\mu) \cap L^1(\mu)$ is defined by $||f|| = \max\{||f||_{\infty}, ||f||_1\}$).

Proof. (\Rightarrow): Suppose T is a strongly D-P operator. If u denotes the unit ball of $L^{\infty}(\mu) \cap L^{1}(\mu)$ then $i(U) \subset L^{1}(\mu)$ and is clearly a bounded, uniformly integrable subset of $L^{1}(\mu)$ (since by definition U is in the unit ball of $L^{\infty}(\mu)$). Hence T(i(U)) is a compact set in E, implying T.i is compact.

 (\Leftarrow) : Suppose T.i is compact and that A is any bounded, uniformly integrable subset of $L^1(\mu)$. Clearly the set $|A| = \{|f| | f \in A\}$ has the same properties. Therefore, given any $\epsilon > 0$ choose $\delta > 0$ so that if $\mu(E) < \delta$ then

$$\int_{E} |f(t)| d\mu(t) < \frac{\epsilon}{4 \|T\|}$$

for all $f \in A$. Since A is bounded in $L^1(\mu)$ there is an M so that if $f \in A$ then $|f(t)| \le M$ for all $t \in X - E_f$ where E_f is a measurable subset of X for which $\mu(E_f) < \delta$. It follows that if $f \in A$ we have f = g + r, where $g = f\chi_{X - E_f}$ is in the M-ball of $L^{\infty}(\mu) \cap L^1(\mu)$ and where

$$r = f\chi_{E_f}$$
, with $||r||_1 = \int |r(t)| d\mu(t) < \frac{\epsilon}{4||T||}$.

Hence if $\{f_n\}$ is any sequence then $f_n = g_n + r_n$ as above for all n, and for all m and $n \|Tf_n - Tf_m\| \le \|Tg_n - Tg_m\| + \|Tr_n - Tr_m\| < \|Tg_n - Tg_n\| + \frac{\epsilon}{2}$ (since $\|Tr_i\| < \epsilon/4$ for all i). But by assumption $\{Tg_n\}_{n=1}^\infty$ is compact in E so there is a subsequence $\{Tg_{n_i}\}_{i=1}^\infty$ and an integer N so that if $i, j \ge N$ then $\|Tg_{n_i} - TG_{n_j}\| < \frac{\epsilon}{2}$. Hence, by the above, if $i, j \ge N$ then

 $||Tf_{n_i} - Tf_{n_j}|| < \epsilon$, so the subsequence $\{Tf_{n_i}\}_{i=1}^{\infty}$ of $\{Tf_n\}_{n=1}^{\infty}$ converges in E. Thus the set T(A) is compact in E, and T is a strongly-D-P operator.

Now let us return to the study of operators $T:L^1(\mu)\to c_0$. We have seen that for any σ -finite measure μ , T is a D-P operator $\Leftrightarrow T$ is regular $\Leftrightarrow \{|T^*e_i|\}_{i=1}^{\infty}$ is w^* -convergent to 0 in $L^{\infty}(\mu)$, and the condition that $\{T^*e_i\}_{i=1}^{\infty}$ converges in measure to 0 is sufficient for T to be a D-P operator, but not necessary unless $\mu(X) < +\infty$. As promised earlier, we now show that the operators for which $\{T^*e_i\}$ converges in measure to 0 are precisely the strongly-D-P operators, thereby emphasizing the distinction which we find in general between the D-P and the strongly-D-P operators in the case where $\mu(X) = +\infty$.

THEOREM 3.3. Let μ be a σ -finite measure and $T:L^1(\mu)\to c_0$ a bounded linear operator. Then T is a strongly-D-P operator $\Leftrightarrow \{T^*e_i\}_{i=1}^{\infty}$ converges in measure to 0 in $L^{\infty}(\mu)$.

Proof. (\Rightarrow): Let $T:L^1(\mu)\to c_0$ be a strongly-D-P operator having the representation $T=\sum\limits_{i=1}^\infty h_i\otimes e_i$, where $\{h_i\}_{i=1}^\infty=\{T^*e_i\}_{i=1}^\infty$ is w^* -convergent to 0 in $L^\infty(\mu)$. If $\{h_i\}_{i=1}^\infty$ does not converge in measure to 0 then there exist $\epsilon>0$, $\delta>0$, and a subsequence $\{h_{i_n}\}_{n=1}^\infty$ of $\{h_i\}_{i=1}^\infty$ for which $\mu\{t\in X\mid |h_{i_n}(t)|\geq \epsilon\}>\delta$, $n=1,2,\ldots$ Since, for each n, either $\mu\{t\mid h_{i_n}(t)\geq \epsilon\}$ or $\mu\{t\mid h_{i_n}(t)\leq -\epsilon\}$ must be greater than $\delta/2$ we may assume without loss of generality that $\mu\{t\mid h_{i_n}(t)\geq \epsilon\}>\delta$ for all $n=1,2,3,\ldots$, and hence for each n there is a set $E_n\subset X$ so that

$$\frac{\delta}{2} \leq \inf_{n} \mu(E_n) \leq \sup_{n} \mu(E_n) < +\infty$$

and $h_{i_n}(t) \ge \epsilon$ for all $t \in E_n$. If $f_k = \chi_{e_k}$ for $k = 1, 2, 3, \ldots$, then the set $\{f_k\}_{k=1}^{\infty}$ is clearly a uniformly integrable subset of $L^1(\mu)$ (being a bounded subset of $L^{\infty}(\mu)$). Moreover,

 $Tf_k = \sum_{i=1}^{\infty} \langle h_i, f_k \rangle e_i,$

so for any k and any

$$N\left\|\sum_{i=N}^{\infty} \langle h_i, f_k \rangle e_i \right\| = \sup_{i \ge N} |\langle h_i, f_k \rangle| = \sup_{i \ge N} \left| \int_{E_k} h_i(t) \, d\mu(t) \right|$$
$$\ge \sup_{n \ge N} \left| \int_{E_k} h_{i_n}(t) \, d\mu(t) \right|.$$

If we choose $k = i_n$ (for any $n \ge N$) we then get this last is

$$\geq \left| \int_{E_{i_n}} \epsilon \, d\mu(t) \right| \geq \epsilon \cdot \frac{\delta}{2},$$

by definition of $\{h_{i_n}\}_{n=1}^{\infty}$ and E_{i_n} . Therefore

$$Tf_k = \sum_{i=1}^{\infty} \langle h_i, f_k \rangle e_i,$$

where this series converges, but not uniformly, over the set $\{f_k\}_{k=1}^{\infty}$. It follows that the set $\{Tf_k\}_{k=1}^{\infty}$ is not compact in c_0 [3, p. 260] and hence that T is not strongly-D-P, a contradiction. Consequently it must be that $\{T^*e_i\}_{i=1}^{\infty}$ converges in μ -measure to zero.

 (\Leftarrow) : On the other hand, assume $\{T^*e_i\}_{i=1}^{\infty}$ converges to 0 in μ -measure and write

$$T = \sum_{i=1}^{\infty} T^* e_i \otimes e_i = \sum_{i=1}^{\infty} h_i \otimes e_i.$$

Let A be any bounded, uniformly integrable subset of $L^1(\mu)$ and let $\epsilon > 0$ be given. By assumption, if $E_i = \{t \mid |h_i(t)| \ge \epsilon\}$ then $\mu(E_i) \to 0$. Therefore if $f \in A$ and $i = 1, 2, \ldots$ we have

$$|\langle h_i, f \rangle| = \left| \int_{X - E_i} |h_i(t)| \, |f(t)| \, d\mu(t)| \le \sup_i ||h_i||_{\infty} \int_{E_i} |f(t)| \, d\mu(t) + \epsilon \cdot \int_X |f(t)| \, d\mu(t).$$

Since A is uniformly integrable there is a $\delta > 0$ so that if $\mu(E) < \delta$ then $\int_E |f(t)| d\mu(t) < \epsilon$ for all $f \in A$, so since $\mu(E_i) \to 0$ there is a N for which $\mu(E_i) < \delta$ whenever $i \ge N$ and hence for which $\int_{E_i} |f(t)| d\mu(t) < \epsilon$ for all $f \in A$. Therefore for any $f \in A$

$$\left\| \sum_{i=N}^{\infty} \langle h_i, f \rangle e_i \right\|_{c_0} = \sup_{i \ge N} |\langle h_i, f \rangle| < \sup_i \|h_i\|_{\infty} \cdot \epsilon + \sup_{f \in A} \|f\|_1 \cdot \epsilon \quad \text{(by the above)},$$

so $Tf = \sum_{i=1}^{\infty} \langle T^*e_i, f \rangle e_i$ converges in c_0 uniformly over $f \in A$, implying that the set T(A) is compact in c_0 and hence that T is a strongly-D-P-operator.

More generally, we have the following characterization of strongly-D-P operators from $L^1(\mu)$ to any separable Banach space:

THEOREM 3.4. Let μ be a σ -finite measure and E a separable Banach space. An operator $T:L^1(\mu)\to E$ is a strongly-D-P operator \Leftrightarrow whenever $\{w_n^*\}_{n=1}^{\infty}$ is a sequence in E^* which is w^* -convergent to 0, then the sequence $\{T^*w_n^*\}_{n=1}^{\infty}$ in $L^{\infty}(\mu)$ converges in measure to 0.

Proof. (\Rightarrow): Suppose $T:L^1(\mu)\to E$ is a strongly-D-P operator. If $\{w_n^*\}_{n=1}^\infty$ is w^* -convergent to 0 in E^* then $V=\sum\limits_{n=1}^\infty w_n^*\otimes e_n$ is a well-defined, bounded linear operator from E to c_0 and hence $V:T:L^1(\mu)\xrightarrow{T}E\xrightarrow{V}c_0$ is also a strongly-D-P operator. According to Theorem 3.3 above the sequence $\{(V:T)^*e_n\}_{n=1}^\infty$ in $L^\infty(\mu)$ converges to 0 in measure. But $(V:T)^*e_n=T^*w_n^*$ for all n, so $\{T^*w_n^*\}_{n=1}^\infty$ converges to 0 in measure.

(\Leftarrow): Conversely, suppose whenever $\{w_n^*\}_{n=1}^{\infty}$ is w^* -convergent to 0 in E^* then $\{T^*w_n^*\}_{n=1}^{\infty}$ converges in measure to 0 in $L^{\infty}(\mu)$. Since E is separable there is an isometric isomorphism Q of E into C[0, 1] [1, Chap. XI, Theorem 10], where C[0, 1] has a Schauder basis $\{\Phi_i\}_{n=1}^{\infty}$ with coefficient functionals $\{\Phi_i^*\}_{i=1}^{\infty}$ in $C[0, 1]^*$ (see e.g. [8, p. 11]). If A is a bounded, uniformly integrable set in $L^1(\mu)$ for which T(A) is not compact

in E, then $Q \cdot T(A)$ is not compact in C[0, 1], so $\sum_{i=1}^{\infty} \langle \Phi_i^*, QT(f) \rangle \Phi_i$ is not uniformly

convergent in C[0, 1] over $f \in A$. Therefore there is an $\varepsilon > 0$, a sequence $\{f_n\}_{n=1}^{\infty} \subset A$, and an increasing sequence of integers $\{p_m\}_{n=1}^{\infty}$ for which

$$\left\| \sum_{i=p_n+1}^{p_{n+1}} \langle \Phi_i^*, QT(f_n) \rangle \Phi_i \right\|_{\infty} > \epsilon \quad \text{for} \quad n = 1, 2, 3, \dots$$

Correspondingly, for each n there is a functional $\alpha_n \in C[0, 1]^*$ with $||\alpha_n|| = 1$ for which

$$\left|\sum_{i=p_n+1}^{p_{n+1}} \langle \Phi_i^*, QT(f_n) \rangle \langle \Phi_i, \alpha_n \rangle \right| > \epsilon,$$

and hence for which

$$\left|\sum_{i=p_n+1}^{p_{n+1}} \langle \Phi_i, \alpha_n \rangle \langle \Phi_i^*, QT(f_n) \rangle \right| > \epsilon.$$

If we set

$$q_n = \sum_{i=p_n+1}^{p_{n+1}} \langle \Phi_i, \alpha_n \rangle \Phi_i^* \quad \text{for} \quad n = 1, 2, \dots,$$

then $\{q_n\}_{n=1}^{\infty}$ is a bounded sequence in $C[0, 1]^*$, and hence clearly converges to 0 in the w^* -topology on $C[0, 1]^*$ (since $\{\Phi_i, \Phi_i^*\}_{i=1}^{\infty}$ is a basis for C[0, 1]). But then $\{w_n\}_{n=1}^{\infty} = \{Q^*(q_n)\}_{n=1}^{\infty}$ is w^* -convergent to 0 in E^* , so by assumption $\{T^*(Q^*q_n)\}_{n=1}^{\infty}$ converges in measure to 0 in $L^{\infty}(\mu)$.

As the second part of the proof of Theorem 3.3 shows, it follows that $\{\langle T^*Q^*q_n, f \rangle\}_{n=1}^{\infty}$ converges to 0 uniformly over f in any bounded, uniformly integrable subset of $L^1(\mu)$, in particular over the subset $\{f_n\}_{n=1}^{\infty} \subset A$. Thus there is an N so that if $n \ge N$ then $|\langle T^*Q^*q_n, f_n \rangle| < \epsilon$. That is,

$$|\langle q_n, QTf_n \rangle = \left| \left\langle \sum_{i=p_n+1}^{p_{n+1}} \langle \Phi_i, \alpha_n \rangle \Phi_i^*, QTFf_n \right\rangle \right| < \epsilon \quad \text{for} \quad n \ge N.$$

But this is just

$$\left|\left\langle \sum_{i=p_n+1}^{p_{n+1}} \left\langle \Phi_i^*, QTf_n \right\rangle \middle\langle \Phi_i, \alpha_n \right\rangle \right|,$$

which is $>\epsilon$ for all n, a contradiction. Hence it must be that T maps bounded, uniformly integrable subsets of $L^1(\mu)$ to compact subsets of E, and it follows that T is a strongly-D-P operator.

Finally, we note that in the case where $\mu(X) < +\infty$ Theorem 3.4 yields the following characterization of D-P operators.

COROLLARY 3.5. If μ is a finite measure and E a separable Banach space, then an operator $T:L^1(\mu)\to E$ is a D-P operator $\Leftrightarrow T^*$ maps w^* -convergent sequences in E^* to $L^1(\mu)$ -convergent sequences in $L^{\infty}(\mu)$.

REFERENCES

- 1. S. Banach, Theorie des Operationes Lineares, (Warsaw, 1933). 2. J. Bourgain, Dunford-Pettis operators on L^1 and the Radon-Nikodym property, Israel J. Math. 37 (1980), 34-47.
 - 3. N. Dunford and J. Schwartz, Linear Operators I, (Interscience Publishers, 1963).
- 4. N. Gretsky and J. Ostroy, Thick and thin market non-atomic exchange economies, Advances in Equilibrium Theory, Lecture notes in Economics and Mathematical Systems, 244 (1985), 107-130.
- 5. N. Gretsky and J. Ostroy, The compact range property and c_0 , Glasgow Math. J. 28 (1986), 113-114.
 - 6. J. Holub, A note on Dunford-Pettis operators, Glasgow Math. J. 29 (1987), 271-273.
 - 7. W. Rudin, Real and Complex Analysis (3rd Ed.), (McGraw-Hill Book Co., 1987).
 - 8. I. Singer, Bases in Banach Spaces I, (Springer-Verlag, 1970).

VIRGINIA POLYTECHNIC INSTITUTE AND STATE UNIVERSITY BLACKSBURG, VIRGINIA 24061, USA.