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1. Introduction. Motivated by a problem in mathematical economics [4] Gretsky
and Ostroy have shown [5] that every positive operator T:Ll[0, 1]—»c0 is a Dunford-
Pettis operator (i.e. T maps weakly convergent sequences to norm convergent ones), and
hence that the same is true for every regular operator from L'[0, 1] to c0. In a recent
paper [6] we showed the converse also holds, thereby characterizing the D-P operators
by this condition. In each case the proof depends (as do so many concerning D-P
operators on L^O, 1]) on the following well-known result (see, e.g., [2]): If ju is a finite
measure, an operator T:Ll(n)—>E is a D-P operator <=>T. i:L (p)-*-*L'(/u)-^*E is
compact, where i: L°°(^)—»L (fi) is the canonical injection of LT{n) into L'(M)- If M is n o t

a finite measure this characterization of D-P operators is no longer available, and hence
results based on its use (e.g. [5], [6]) do not always have straightforward extensions to the
case of operators on more general Ll(fi) spaces.

The purpose of this paper is two-fold. First, we show in §2 how arguments
concerning D-P operators on a space L1^) for n a a-finite measure can be reduced in a
natural way to analogous arguments concerning operators on associated spaces Ll((in),
where each /in is a finite measure and hence where the above mentioned result may be
applied to good effect. In particular, the results of Gretsky-Ostroy [5] and of the author
[6] proved for //[O, 1] are shown to be valid in this more general setting. Second, we
explore in more detail the important distinction between the cases of a finite and of a
CT-finite measure by introducing in §3 the concept of a strongly-Dunford-Pettis operator
from a space Ll(n) to some Banach space E. The strongly D-P operators turn out to be
precisely the D-P operators when fi is a finite measure, but are a strictly smaller set
otherwise. The interest in these strongly D-P operators lies in the fact that certain
well-known results concerning D—P operators on the space Ll(n) for n finite, which are
either meaningless or false when n is infinite, find their natural statement and meaning in
the context of strongly-D-P operators. Thus the strongly-D-P operators seem to play a
unifying role in the study of operators on LJ(^).

2. Throughout this paper (X, E, ju) will denote a positive measure space, E will
denote some Banach space, and T:Ll((i)-* E a bounded linear operator. In the case

where n is a a-finite measure we will write X = U Xn, where XncXn+1 and n(Xn) < +<»
n = \

for all n. In this case we denote by Ll{Xn) the subspace of L\n) defined by
L\Xn) = {f e Ll((J.)\ support fcXn}. Clearly L\Xn) is isometrically isomorphic to
Ll{nn), where fin is the measure induced on Xn by restricting n to the measurable sets in
E r\Xn, under the mapping Qn:L

1^)^L\Xn) defined by Qn = / for / ( f ) the function
in X which equals g(t) when teXn and is zero otherwise.
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The principal tool for extending results concerning D-P operators on the space L*(n)
for n a finite measure to the case where ju is a-finite is the following:

THEOREM 2.1. Suppose n is a a-finite measure. The operator T:L}(n)^> E is a D-P
operator <=> for every n = 1, 2, . . . the operator Tn: L\nn)^>E defined by Tn(f) = T(Qnf)
is a D-P operator (where Qnf is the extension of f from Xn to X defined above).

Proof. (4>): If r is a D-P operator and {);}"= i is a sequence in Lx(fin) which
converges weakly to 0 then clearly {Qnfi}T=i converges weakly to zero in Ll((i).
Therefore {T(Qnfi)}7=\ converges weakly to zero in E, so by definition {Tn/}"=1

converges to zero in E and Tn is a D-P operator.
(<=): Suppose Tn is a D-P operator for every n and {fi)7=i is a sequence in Lx(n)

which is weakly convergent to zero. Define the operator

U:L\ii)^f by £/(/) = {[ f(t

Clearly U is continuous, hence weakly continuous, and so maps weakly compact sets in
/^(ju) to weakly compact, hence compact [3, p. 296], sets in I1. Since the set {/}r=i is
weakly compact in Lx(/x) the set {|/|}r=i has the same property [3, p. 293] so by the
above the set {U |/j|}r=i is compact in Z1. Therefore given e > 0 there is an N > 1 so that

f 1/(01^(0= S f 1/
JX-XN n=NJXn+,-Xn

\\n=N

for all i [3, p. 260].
If for each n we define a projection Pn on Ll((i) by Pnf = / . Xxn, then Pn projects

L\(i) onto L}(Xn) and for each i we have / = Pnft + (/ - Pnf/). Hence when n = N and
/ = 1, 2, 3 , . . . we have

where

Since {PNfi}ti converges weakly to 0 (and is in L1(Ar
n)){TPN/}r=i = {TNgi}?=l, where g,

is); restricted to XN for all i, and hence where {&}"=! converges weakly to zero in O(fiN).
By assumption TN is a D-P operator so if i > i0 then

It follows that {/}r=i converges to 0 in E, hence that T is a D-P operator, and the proof
is complete.
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It is now a simple matter to combine this result with others concerning D-P
operators on a space L'(ju) for [i finite to get analogous results in the case where fi is
a-finite. In particular we derive the following extensions of the results of Gretsky-Ostroy
[5] and of the author [6] proved for the space Ll[0, 1].

COROLLARY 2.2. Let E be a Banach space with an order compatible basis, n a o-finite
measure, and T: Ll{fi)—* E a positive operator. Then T is a D-P operator.

Proof. If T: Z/(JU)-» E is a positive operator then it is clear from the definition of the
isometry Qn: L\nn)^> L\Xn) that Tn = TQn: L\^n)-^E is also positive for all n, hence a
D-P operator [5], and it follows from Theorem 2.1 that T is also a D-P operator.

COROLLARY 2.3. If (i is any o-finite measure and T:Ll{fi)^*c0 is a bounded linear
operator, then the following are equivalent:

1) T is regular
2) Tisa D-P operator
3) {|r*e,-|}r=i is w*-convergent to 0 in L^ju).

Proof. (1)=>(2): If T is regular (i.e. a difference of positive operators) it follows
from Corollary 2.2 that T is a D-P operator, since the unit vector basis {e,}°°=1 for c0 is
certainly order compatible.

(2)=>(3): If T:Ll(ii)-*c0 is a D-P operator then according to Theorem 2.1 we
know that each operator Tn: Lx(nn)-> c0 is a D-P operator. We also know that T has the

representation T= E r*e,®e,, where {T*e,} is w"-convergent to 0 in L°°(ju) (see, e.g.,
1 = 1 QO

[6]). Let r*e, = /i, for all i, so T= E A,-®e;. Given any n = 1, 2, . . . we see that
1 = 1 no

Tn:L
l((in)—*c0 then has the representation Tn = E hi®e: where ht is the restriction of ht

i=i

to Xn, a function in LT{fin) for all /. Since Tn is a D-P operator and nn is a finite measure
we know from our earlier work [6] that {|/i,|}r=i is w*-convergent to 0 in Z,°°(jun) for all n.
Given any / e Ll(n) and any e > 0 choose n so that

L
and write f = Pnf + (f- Pnf) where Pnf =fxxn (as in the proof of Theorem 2.1). Then

where
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We noted above that {|/i,|}r=i is w*-convergent to 0 in LT{fin), so there is an integer i0

such that if i S: i0 then

|%)|g(f)4u(0

and hence so that |( |fc, | , /)<£ if i^i0- Since /eLx(ju) is arbitrary it follows that
{|r*e,|}r=1 is w*-convergent to 0 in L°°(/z).

(3) => (1): //{r*e,|}r=i is iv "-convergent to 0 in L\n) then the operator \T\: L^/x)-* c0

with representation \T\ = f, \T*et\ <8>e, is well-defined. Hence, since \T\ + T and

\T\-T are both positive and T = %(\T\ + T)- | ( | r | - T), it follows that T is regular.

3. We have just shown that if fi is a a-finite measure and T is an operator from
L\fi) to c0) then T is a D-P operator <=>{|r*e,|}°°=1 is w*-convergent to 0 in L°°(/z). In
the case where n is actually a finite measure the statement that {|T*e,|}f=1 is
w*-convergent to 0 in L°(n) is easily seen to be equivalent to the condition that {T*e,}°°=i
converges to zero in L (n) or that {r*e,}r=i converges to 0 in measure on X, since
{r*e,}°Li is bounded in L°°(n). However in the case where n(X) = +<x> this latter
condition is a strictly stronger one than that of the Dunford-Pettis property. In fact, we
have:

PROPOSITION 3.1. Let n be a a-finite, non-finite, measure on X and T:L}(n)^*c0 a
bounded linear operator. If the sequence {T*e,}°°=i in LT(ii) converges in measure to 0 on
X then T is a D-P operator. However there exists a D-P operator T for which {T*e,}°Li
does not converge in measure to 0.

Proof. Suppose {r*e,}°°=1 = {/i,}r=i, a bounded sequence in U°{n) which converges
oo

in measure to 0. If, as in §2, X= U Xn for Xn cXn+1 and pi(Xn)< +<» for all n then
n = l

certainly for any fixed n the sequence {hi}T=i = {hi | xn}?=i is a sequence in LT(fin) (where
we recall (in is the restriction of /x to Xn) which converges in fin-measure to zero on Xn.

Hence, as noted above, the operator Tn:L\nn)^*c0 defined by Tn = E £, ®e, is a D-P
x=i

operator, and it follows from Theorem 2.1 that T is a D-P operator.
On the other hand, since n is not a finite measure there exist disjoint measurable sets

{£n}:=1inXwith

0< inf/*(£„)< sup ju(En) <+°o.
n n

Let hn=%En for n = 1, 2,. . . , so {/in}^=i is a bounded sequence of non-negative
functions which is w*-convergent to 0 in L°°(^) but which does not converge to 0 in

measure. Setting T= S hn <E> en we get a positive operator from LJ(/x) to c0 for which
«=i

{T*en}^i = {hn}Z=\ does not converge in measure to zero. Since by Corollary 2.2 T is a
D-P operator, we have produced the desired example.
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Thus we see that for an arbitrary a-finite measure ju the set of operators
T:Ll(fi)—*c0 for which {r*e,}r=i converges in measure to 0 is a subset of the D-P
operators, with equality holding if and only if (i is finite. In fact, rather than being
peculiar to the study of operators from Lx(|u) to c0, these operators are a special case of
what we call strongly-D-P operators on an Z^-space.

DEFINITION. An operator TiL^u)—*E is called a strongly-Dunford-Pettis operator if
it maps bounded, uniformly integrable subsets of hl(\i) into compact subsets of E.

(Recall that a subset A <r Z/(/z) is uniformly integrable if for every e > 0 there is a
<5>0sothat \$Ef(t)dn(t)\<e whenever/ eA and JU(£)<<5; see e.g., [7,p. 134]).

It is well known that for any measure /x every weakly compact subset of L'(/x) is both
bounded and uniformly integrable and that the converse is true if fi is finite [3, p. 294].
Thus we see from the definition that every strongly-D-P operator is a D-P operator and
that the two sets of operators coincide when \i is finite. In the case where n(X) = +oo it is
the strongly-D-P operators, rather than the D-P operators themselves, which have an
analogous characterization to that of [2].

THEOREM 3.2. An operator T.L1^)—* E is a strongly-D-P operator O the operator
T. i:L™(n) fl Ll{n)-^ L1^) ^* E is compact (where the norm on the space L°°([i) fl Lx(n)
is defined by \\f\\ = max

Proof. (4>): Suppose T is a strongly D-P operator. If u denotes the unit ball of
LT(n) n Ll(n) then i(U) c L^ju) and is clearly a bounded, uniformly integrable subset of
Lx(n) (since by definition U is in the unit ball of L°°(^)). Hence T(i(U)) is a compact set
in E, implying T. i is compact.

(<£:): Suppose T.i is compact and that A is any bounded, uniformly integrable
subset of Lx(fx). Clearly the set \A\ = {|/| \f eA} has the same properties. Therefore,
given any e > 0 choose 6 > 0 so that if ju(£) < 6 then

V
for all / € A. Since A is bounded in L\(i) there is an M so that if / e A then |/(f)| < M for
all l e X - Ef where E{ is a measurable subset of X for which n(Ef) < 6. It follows that if
/ e A we have f = g + r, where g =fXx-Ef is in the M-ball of L°°(ju) D L\n) and where

r=fXEf, with \\r\U = j\r(t)\dti(t)-

Hence if {/„} is any sequence then /„ =gn + rn as above for all n, and for all m and

n \\Tfn - Tfm\\ ̂  \\Tgn - Tgm\\ + \\Trn - Trm\\ < \\Tgn - Tgn\\ + | (since ||7r,|| < e/4 for all

i). But by assumption {Tgn}^=l is compact in E so there is a subsequence {7gn}~=1 and an
e

'2'
integer N so that if /, j s N then ||7gB. - rGn/|| <-. Hence, by the above, if i, j>:N then
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WTfn, ~ Tfni\\ < e, so the subsequence {Tfn}?=1 of {Tfn}^i converges in E. Thus the set
T{A) is compact in E, and T is a strongly-D-P operator.

Now let us return to the study of operators T:Ll(fi)-*c0. We have seen that for any
a-finite measure ju, T is a D-P operator O T is regular O {|r*e,|}°°=1 is w*-convergent to
0 in L°°(ii), and the condition that {r*e,}°°=1 converges in measure to 0 is sufficient for T
to be a D-P operator, but not necessary unless n(X) < +°°. As promised earlier, we now
show that the operators for which {T*et} converges in measure to 0 are precisely the
strongly-D-P operators, thereby emphasizing the distinction which we find in general
between the D-P and the strongly-D-P operators in the case where fi{X) = +<».

THEOREM 3.3. Let n be a a-finite measure and T:L\[i)—*c0 a bounded linear
operator. Then T is a strongly-D-P operator o{T*e,}°°=i converges in measure to 0 in

Proof. (=^): Let T:L\p)-+c0 be a strongly-D-P operator having the repre-

sentation T= £ /i,<8><?,, where {/i,}r=i = {T*ei}?=1 is w*-convergent to 0 in L°°(u). If

{/j,}r=i does not converge in measure to 0 then there exist e > 0 , 8>0, and a
subsequence {hin}~=1 of {/i,}r=i for which n{t e X \ \hin(t)\ s= e} > 8, n = l,2, Since,
for each n, either /x{f | hin(t) > e} or (i{t \ hin{t) =£ - e } must be greater than 6/2 we may
assume without loss of generality that fi{t \ hin(i) > e} > 8 for all n = 1, 2, 3, . . . , and
hence for each n there is a set EncX so that

- < inf n{En) < sup fi(En) < +oo
Z n n

and hin(t) S: e for all t e En. lffk = %ek for k = 1, 2, 3, . . . , then the set {/*}*=i is clearly a
uniformly integrable subset of Ll(fi) (being a bounded subset of L°°(^)). Moreover,

Tfk = 2(hhfk)eh
so for any k and any -=i

> sup If htSf)dp(t)
n>N\)Ek

If we choose k = in (for any n ^ N) we then get this last is

If ^ 8

~ l 4 e M ~€'2'
by definition of {hin}"=l and Ein. Therefore

oo
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where this series converges, but not uniformly, over the set {/*}£=!. It follows that the set
{Tfk}t=l is not compact in c0 [3, p. 260] and hence that T is not strongly-D-P, a
contradiction. Consequently it must be that {r*e,}r=1 converges in ^-measure to zero.

(<£:): On the other hand, assume {r*e,}r=i converges to 0 in /^-measure and write

Let A be any bounded, uniformly integrable subset of Ll{ii) and let e > 0 be given. By
assumption, if E, = {t \ \h,{t)\ > e} then /x(£,)^0. Therefore if / eA and i = 1, 2, . . . we
have

\(h,

Since A is uniformly integrable there is a <5 > 0 so that if fi(E) < 6 then / £ | / (0 | dfi(t) < e
for all f eA, so since ;u(£,)-»0 there is a N for which n(E,)< 6 whenever i>N and
hence for which J£. |/(0l dfi(t) < e for all f eA. Therefore for any / e A

II °° II

=supK/i,,/)|<supP,|U. 6 + sup||/ | | ,. e (by the above),
lc0 i^N i feA

00

so Tf = E (r*e, , / )e, converges in c0 uniformly over/ eA, implying that the set T(A) is

compact in c0 and hence that T is a strongly-D-P-operator.
More generally, we have the following characterization of strongly-D-P operators

from Ll(ii) to any separable Banach space:

THEOREM 3.4. Let \i be a o-finite measure and E a separable Banach space. An
operator T:L1^)—» E is a strongly-D-P operator O whenever {w*}™=1 is a sequence in
E* which is w*-convergent to 0, then the sequence {T*w*}™=l in L^di) converges in
measure to 0.

Proof. (^>): Suppose T:L\fi)-*E is a strongly-D-P operator. If {w*}^=1 is

w*-convergent to 0 in E* then V = E w* ® en is a well-defined, bounded linear operator
n = l

from E to c0 and hence V. T:O{n)^E^cQ is also a strongly-D-P operator. According
to Theorem 3.3 above the sequence {(V. T)*en}™=l in L°°(ju) converges to 0 in measure.
But (V. T)*en = T*w* for all n, so {T*w*}^=1 converges to 0 in measure.

(<:): Conversely, suppose whenever {>v*}"=1 is w*-convergent to 0 in E* then
{T*w*}^=i converges in measure to 0 in Lco(ju). Since E is separable there is an isometric
isomorphism Q of E into C[0, 1] [1, Chap. XI, Theorem 10], where C[0, 1] has a
Schauder basis {3>,}^=i with coefficient functionals {<5,*}r=i in C[0, 1]* (see e.g. [8, p.
11]). If A is a bounded, uniformly integrable set in L\ii) for which T{A) is not compact

in E, then Q. T(A) is not compact in C[0, 1], so £ (Of, Qr( / ) )O, is not uniformly
i

https://doi.org/10.1017/S0017089500007539 Published online by Cambridge University Press

https://doi.org/10.1017/S0017089500007539


56 JAMES R. HOLUB

convergent in C[0,1] over/ e A. Therefore there is an e >0, a sequence {fn)Z=\ <^A, and
an increasing sequence of integers {pm}n=i for which

for n = l , 2 , 3 , . . . .

Correspondingly, for each n there is a functional an e C[0, 1]* with ||arn|| = 1 for which

and hence for which

If we set

rn-t-1

2 <*;,

<ln= 2

>€,

>€.

O^f for n = l, 2,

then {^n}"=1 is a bounded sequence in C[0, 1]*, and hence clearly converges to 0 in the
w*-topology on C[0, 1]* (since {«!>„ *,*}"=] is a basis for C[0, 1]). But then {wn}~=i =
{Q*{qn)}Z=i is w*-convergent to 0 in E*, so by assumption {T*(Q*qn)}™=l converges in
measure to 0 in £°°(^).

As the second part of the proof of Theorem 3.3 shows, it follows that
{(T*Q*qn, /)}"=i converges to 0 uniformly over/in any bounded, uniformly integrable
subset of L}{y.), in particular over the subset {/„}"=! cA. Thus there is an N so that if
n>Nthen \(T*Q*qn,fn)\<e. That is,

\(qn,QTfn) = \( 2 <*i,<*n)*i,QTFf,,)\<e for n*N.

But this is just

2 <*;.

which is >e for all «, a contradiction. Hence it must be that T maps bounded, uniformly
integrable subsets of L!(ju) to compact subsets of E, and it follows that f is a
strongly-D-P operator.

Finally, we note that in the case where n(X) < +oo Theorem 3.4 yields the following
characterization of D-P operators.

COROLLARY 3.5. If [i is a finite measure and E a separable Banach space, then an
operator T:l}{n)^>E is a D-P operator &T* maps w*-convergent sequences in E* to
L1 (^-convergent sequences in L°°(ju).
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