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A plethora of sensors and information technologies with applications to the precision nutrition of herbivores have been developed
and continue to be developed. The nutritional processes start outside of the animal body with the available feed (quantity and
quality) and continue inside it once the feed is consumed, degraded in the gastrointestinal tract and metabolised by organs and
tissues. Finally, some nutrients are wasted via urination, defecation and gaseous emissions through breathing and belching
whereas remaining nutrients ensure maintenance and production. Nowadays, several processes can be monitored in real-time
using new technologies, but although these provide valuable data ‘as is’, further gains could be obtained using this information as
inputs to nutrition simulation models to predict unmeasurable variables in real-time and to forecast outcomes of interest. Data
provided by sensors can create synergies with simulation models and this approach has the potential to expand current
applications. In addition, data provided by sensors could be used with advanced analytical techniques such as data fusion,
optimisation techniques and machine learning to improve their value for applications in precision animal nutrition. The present
paper reviews technologies that can monitor different nutritional processes relevant to animal production, profitability,
environmental management and welfare. We discussed the model-data fusion approach in which data provided by sensor
technologies can be used as input of nutrition simulation models in near-real time to produce more accurate, certain and timely
predictions. We also discuss some examples that have taken this model-data fusion approach to complement the capabilities of
both models and sensor data, and provided examples such as predicting feed intake and methane emissions. Challenges with
automatising the nutritional management of individual animals include monitoring and predicting of the flow of nutrients including
nutrient intake, quantity and composition of body growth and milk production, gestation, maintenance and physical activities at
the individual animal level. We concluded that the livestock industries are already seeing benefits from the development of sensor
and information technologies, and this benefit is expected to grow exponentially soon with the integration of nutrition simulation
models and techniques for big data analysis. However, this approach may need re-evaluating or performing new empirical research
in both fields of animal nutrition and simulation modelling to accommodate a new type of data provided by the sensor
technologies.
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Implications

A large number of sensor technologies have emerged in the
past few years to measure multiple parameters that can
inform about the nutritional status and processes in livestock
including energy balance, feed degradation and digestion
and energy expenditure. These technologies are considered
in terms of nutrients intake and their use by ruminants in the
present review. Data arising from them can be combined in
different ways to achieve the objectives such as optimising

feed and nutrient intake, feed efficiency, energy expenditure,
nutrients retained or excreted. Some approaches to utilise
these data include model-data fusion, data fusion and
machine learning techniques to extract the best value from
them, thus enhancing their utility.

Introduction

The fast advancement of new technologies, particularly
sensors and information and communication technologies,
promises a revolution in animal nutrition and production, as† E-mail: luciano.gonzalez@sydney.edu.au
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it has happened in many other fields such as livestock health
and welfare (National Academies of Sciences, Engineering,
and Medicine, 2016). The number of scientific publications
and journals in this field has increased dramatically in the
last 15 years. For example, a Scopus search for ‘sensor’ and
‘livestock’ resulted in less than 10 documents per year up to
2003, but it has yielded 79 documents in 2017. Research is
performed across many aspects of new technologies to
improve animal nutrition including, for example, the
development of sensors to measure variables of interest,
methodologies to analyse the large amounts of data col-
lected, development of automated systems to monitor and
control animal nutrition such as electronic feeders and
auto-drafters and the discovery of new applications of the
information gathered. Previous reviews of new technolo-
gies in ruminants focussed on aspects such as detection of
animal health or physiological state, including oestrus
(Rutten et al., 2013; Mottram 2016) or on the broader topic
of precision livestock farming (e.g. Wathes et al., 2008).
However, no reviews seem to have focused on how such
new technologies can be used to improve animal nutrition
and the potential of integrating multiple data streams into
nutrition simulation models. Technologies and processes
exist today and continue to be developed to allow mon-
itoring and managing animal nutrition in near real-time,
following the precision livestock farming concept. Precision
animal nutrition, or precision feeding, is an integrated
information-based system to optimise the supply and
demand of nutrients to animals for a target performance,
profitability, product characteristics and environmental
outcomes. Thus, precision animal nutrition is the applica-
tion of principles, techniques and technologies that auto-
matically integrate biological and physical processes
related to animal nutrition using remote monitoring, mod-
elling and control tools that allow making precise, accurate
and timely decisions. The aim is to improve the precision of
nutrition-related decisions to better manage the variability
of the nutritional status of animals over time and between
animals to achieve their optimal nutrition; this indirectly
may also enhance their health and welfare (Kyriazakis and
Tolkamp, 2018).
Feed resource requirements depend on the animal,

including its production potential, stage of development,
physiological state, energy expenditure, the environment and
characteristics of the available feed. Resource requirements
can also be affected and manipulated by management. Many
of the variables that influence requirements can be measured
in near real-time using sensor and information technologies,
and be utilised for precision nutritional management, such as
diet formulation or controlling feed delivery or access to
particular feeds and amounts. However, precision nutrition
of animals may also involve managing particular processes in
the flow of nutrients such as designing grazing systems to
optimise energy expenditure, grazing management and
pasture utilisation rate (González et al., 2014a; Manning
et al., 2017); or facilitate the breeding of animals that are
more efficient for certain nutritional scenarios such as

prolonged dry seasons; or optimise slaughter strategies
according to cost and value of weight gain.
The scope of this paper is to summarise the latest devel-

opments in techniques and technologies applicable to pre-
cise herbivore nutrition, with a strong focus on the nutrition
of beef cattle. The boundary has been set to those technol-
ogies that can inform the type and amount of feed consumed
by animals, and the biological processes of digestion and
nutrient metabolism and excretion. We initially present a
framework to visualise where and how the different tech-
nologies that can measure nutritional processes and con-
tribute to precision animal nutrition, then discusses the most
promising technologies highlighting advantages and limita-
tions. Later, we discuss potential approaches to combine
technologies and use their data together with mathematical
models and data analytics. Finally, we address the challenges
and potential gains that could be realised for research and
commercial applications.

A framework to visualise where technologies may fit in
livestock nutrition

An enormous number of technologies have been investi-
gated and developed to improve the precision of herbivore
nutrition. Technologies with similar design can collect very
different data, which could determine their potential appli-
cations. One of the challenges is to visualise where each of
the many technologies may fit in measuring key biological
processes related to animal nutrition. These technologies
must be evaluated for their accuracy and precision, and the
necessary information should be added to the data collected,
to maximise potential gains. Unfortunately, this process is
often slower than developing the technology per se and may
often limit adoption. Furthermore, different technologies
may generate data streams that are incompatible with each
other, which has been identified as a major bottleneck in
developing an encompassing system (Wathes et al., 2008).
Livestock nutrition is often visualised using charts repre-

senting the flow of nutrients and energy within the body of
animals. These charts are often used to describe the nutri-
tional processes of mechanistic prediction models (CSIRO,
2007; National Academies of Sciences, Engineering, and
Medicine, 2016; Tedeschi and Fox, 2018). Figure 1 shows a
simplified and idealised flow of nutrients (or energy) in the
body of an animal, and it maps where technologies could fit
in to measure key processes as nutrients are transformed.
These nutritional processes could be managed and optimised
with timely and accurate information provided by sensor
technologies. Nutrient supply and demand, or inputs and
outputs are the main targets to manage. The nutrition pro-
cess, and thus the application of technologies, starts with the
amount and quality of available feed at the top of Figure 1,
followed by the selection and ingestion of feed and the
breakdown of the feed consumed in the rumen to produce
waste (e.g. methane) and useful by-products, such as volatile
fatty acids and microbial proteins. Nutrients are then
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absorbed in the gastrointestinal tract to be used for basal
metabolism and physical activities, and stored in body tis-
sues, hair and excreted into milk (bottom of Figure 1). A
fraction of the consumed nutrients is also excreted via urine
and faeces.
At the top of Figure 1, the amount and quality of feed

available to the animals determines the feed intake and
hereby nutrient intake. Feed biomass and quality can be
measured using a range of technologies and sensors that
measure the reflectance of light, height, volume and density
(Ali et al., 2016; Schaefer and Lamb, 2016). Measuring feed
and nutrient intake of individual animals in a group in an
accurate, precise and practical manner has been one of the
most limiting factors in animal nutrition, especially under
grazing conditions (Greenwood et al., 2014). Because of this
limitation, feed and nutrient intake has been estimated using
alternative approaches in grazing animals such as faecal

NIRS (fNIRS; Dixon and Coates, 2009), feeding behaviour
(Greenwood et al., 2017) and combining simulation models
with measurements of growth rate, live weight (LW) and diet
quality using fNIRS (González et al., 2014b). Measuring feed
intake has recently become less challenging for intensively-
produced animals, thanks to the development of electronic
identification of individual animals and electronic feeders
which weigh the amount of concentrates, forages or mixed
rations throughout the day (Tolkamp et al., 2000; Nkrumah
et al., 2006).
The next nutritional process of interest (row 3 of Figure 1)

is the amount of digested nutrients, and thus available for
the animal, and the amount that is eliminated via gaseous
emissions, faeces and urine. Technologies are being devel-
oped to measure N excretion from N concentration, via urine
volume and location of urination (Shepherd et al., 2017).
Nutrients in faeces including total N, NH3, K and P can also

Figure 1 A simplified hypothetical flow of nutrients through an animal (red boxes) with potential technologies to measure key nutritional processes (gray
boxes). RGB= red, green and blue; LiDAR= light detection and ranging; DEXA= dual energy X-ray absorptiometry; RFID= radio frequency identification;
CT= computer tomography; MIR=mid IR.
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be measured using fNIRS (Dixon and Coates, 2009), and gas
emissions from manure using gas analysers (Mathot et al.,
2012). At row 4 of Figure 1, the rumen degradable fraction of
the feed produces waste which is belched in the form of CH4,
CO2 and NH3 and can be measured with breath analysers and
gas sensors (Hegarty, 2013). In addition, ruminal degrada-
tion of feed produces by-products, which directly changes the
physicochemical conditions inside the rumen (row 5 of
Figure 1) including the well-known reduction in rumen pH
which in turn affects fibre degradation (National Academies
of Sciences, Engineering, and Medicine, 2016).
Intra-ruminal devices have been developed to measure the

pH and other characteristics of the rumen fluid (Mottram
et al., 2008; Bishop-Hurley et al., 2016), whereas measuring
rumination (row 2 of Figure 1) using accelerometers or
pressure sensors (Zehner et al., 2017) can help estimating
saliva production, that is buffering capacity. Nutrients are
then absorbed into the rumen or intestines and thus avail-
able for the metabolism of animals (row 7 and 8 in Figure 1)
although some of these nutrients are eliminated via the urine
(row 6 of Figure 1). Currently, there are no technologies for
direct measurement of the amount of metabolisable energy
or available nutrients. However, indirect measures could be
derived from a combination of technologies such as feed
composition and fNIRS for diet digestibility, metabolisable
energy concentration of diet and energy expenditure and
retained energy (Brosh, 2007). Cow-side sensors that mea-
sure the concentration of metabolites or minerals in blood
have been tested successfully in livestock such as glucose, β-
hydroxybutyrate and Ca (Iwersen et al., 2009; Neves et al.,
2018). However, wearable devices that continuously and
wirelessly measure the concentration of chemical com-
pounds have not yet been trialled in farm animals to the
authors’ best knowledge. However, successful examples
exist in human medicine including tattoo-based wireless
nanosensors on tooth for bacteria monitoring in the mouth
or patches for the monitoring of sweat or interstitial fluid
(Matzeu et al., 2015).
The amount of metabolisable nutrients and energy avail-

able for the animal are used for maintenance and production
(rows 9 to 14 in Figure 1). Maintenance metabolism includes
heat losses by radiation, conduction and convection with the
former being the most important for standing animals (right-
hand in rows 10 and 11 of Figure 1). This can, nowadays, be
estimated using IR thermography cameras coupled with
biophysical modelling (McCafferty et al., 2011). Skin body
temperature measured with IR cameras has also been linked
to heat production, digestion, methane production and feed
efficiency in cattle (Montanholi et al., 2010; Leão et al.,
2018). Energy is also used to maintain body temperature
with well-known models commonly used to estimate energy
required under different ambient conditions (CSIRO, 2007;
National Academies of Sciences, Engineering, and Medicine,
2016). Weather stations on farms, or research sites, could
help estimating these conditions in real-time (right-hand in
row 11 of Figure 1). On the right-hand side of row 12 of
Figure 1, energy expenditure required for basal or fasting

metabolism can be estimated measuring O2 consumption
and heart rate in animals with technologies such as masks
containing gas analysers and heart rate monitors (Brosh,
2007). The energy required for maintenance includes the part
used for physical activities such as walking and grazing with
several technologies available to measure behaviour such as
Global Navigation Satellite Systems (GNSS) and accel-
erometers (Brosh et al., 2006; González et al., 2015). Thus,
energy expenditure and requirements can be precisely mea-
sured using a combination of gas analysers, heart rate
monitors and behavioural monitoring of individual animals
(right-hand in row 14 of Figure 1).
Energy and nutrients above maintenance are used for

production, and therefore the total amount of energy and
nutrients secreted or retained can be measured in milk or in
empty BW and chemical composition, it is so wool produc-
tion, and gestation (left-hand side of rows 9 to 14 of
Figure 1). Technologies exist nowadays to measure these
energy flows, such as online or handheld milk metres and
sensors (Brandt et al., 2010) and automatic in-paddock
weighing systems (González et al., 2014a). Several other
technologies to measure BW and its composition are pre-
sently being adopted by the livestock industries such as
carcass scanning using X-ray technology (Scholz et al., 2015).
In summary, a range of available sensor and information

technologies can measure many nutritional processes con-
currently, offering a huge potential to improve the precision
of nutritional management of animals. However, it is unlikely
that monitoring systems of every nutritional process will be
implemented. It is likely that systems will focus on the key
technologies that monitor the most limiting or critical factors
to achieve particular objectives and facilitate timely decision
making. For example, pasture utilisation rate, diet quality
and energy expenditure in physical activities are often factors
that play an important role in profitable grazing animal
production. Thus, such production system would require
technologies tailored to monitor those factors, which may
not be of value for intensive animal production. However,
some technologies could be of value for a broad range of
production systems and be also suitable for other applica-
tions such as disease detection such as accelerometers to
measure animal behaviour (Rutten et al., 2013).
It is important to highlight that some of these technologies

are currently being used in commercial farming such as
automatic weighing of animals, milk metres, collars, ear tags
and leg attachments containing accelerometers, multi-
spectral sensors implemented in satellites and drones to
monitor pastures and electronic feeders. Other technologies
are in the process of being deployed and adopted in com-
mercial conditions such as X-ray scanning of animal bodies
for muscle, fat and bone content. Lastly, other technologies
remain at the research domain to date including breath
analysers for gaseous emissions, heart rate monitors and IR
thermography. It is important to note that some technologies
collect the intended data autonomously needing no human
intervention such as feed distribution and measuring feed
intake in intensively housed animals, milk composition and
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volume, ruminal parameters and LW and growth rate. Others
are in the process of being automatised such as body com-
position and condition using scanning technologies, and
forage quantity and quality in grazing conditions using
reflectance sensors. However, other data require animal
handling or hand collection of samples for later analysis at
present such as body fatness using ultrasound or diet com-
position and quality using NIRS on faeces or feed. Never-
theless, there are ongoing efforts around the world to
develop techniques to automatise many of these processes
using autonomous robotic systems or smart techniques such
as the collection of 3D imagery at weighing stations to pre-
dict body composition, which could also be implemented
under grazing conditions.

Description of promising technologies to assess the
nutritional status of animals

Feed intake
Measuring feed intake allows the estimation of the amount
of nutrients supplied to animals and feed utilisation effi-
ciency, if animal production is also measured such as body
growth and milk production. In addition, feed intake and
feed efficiency are associated with dry matter (DM) digest-
ibility, heat production and methane emissions in ruminants
(Nkrumah et al., 2006). The most common technologies to
measure individual feed intake include fNIRS, electronic
feeders, monitoring of feeding behaviour and frequent
weighing of animals.

Electronic feeders. Electronic feed intake recording system is
the most commonly used technology to measure the feed
intake of individual animals for both research and commer-
cial applications such as the allocation of feed types and
amounts to individual animals based, for example, on pro-
duction potential or target production level (Hills et al.,
2015). There are a variety of these systems in the market with
slightly different characteristics that allow different applica-
tions (Tolkamp et al., 2000; Nkrumah et al., 2006). Most of
these systems consist of feeders mounted on load cells that
continuously measure the weight of feed at high frequency
(e.g. 1 Hz) and an animal radiofrequency identification sys-
tem (RFID) to assign the feed disappeared from the feeder to
individuals. The RFID tags are widely used as the official
animal identification system in many countries and, there-
fore, are the backbone of many technologies such as those to
measure LW, milk production and methane emissions. Elec-
tronic feeders also allow detailed measurements of feeding
behaviour including daily feeding time, feeding rate, number
of meals and the distribution of intake throughout the day
(Tolkamp et al., 2000; Kyriazakis and Tolkamp, 2018). Some
electronic feeders also have pneumatic gates to control the
amount and type of feed consumed by each animal fed in a
group situation (Tolkamp et al., 2000) and automatic feed
dispensers (e.g. hoppers) which release a predefined amount
of feed once the RFID of an animal has been read. Electronic

feeders have seen widespread adoption to measure the
residual feed intake (a measure of feed efficiency), because
of the bearing on profitability and environmental footprint
(Nkrumah et al., 2006).
Similar solar-powered feeders are also available to

measure supplement intake at pasture (Cockwill et al.,
2000; Reuter et al., 2017). In dairy cattle, electronic feeders
are widely adopted, although it is unclear whether individual
feeding of supplements at pasture increases production, fat
or protein content of milk (Hills et al., 2015). Individualised
supplementation of dairy cattle (type and amount of feed
supplemented to each cow) could be driven by information
provided by on-line milk metres, automatic weighing, parity
and stages of lactation and pregnancy. However, Hills et al.
(2015) concluded that the difficulty of measuring pasture
intake and thus substitution rate of pasture by supplements
being a limitation. Individualised feed supplementation or
nutritional management should consider the flow-on effects
expected on the processes depicted in Figure 1. For example,
increasing the supplementation of pasture-fed cattle can
reduce pasture intake, reduce grazing time and energy
expenditure, reduce ruminal pH and fibre digestion and
affect LW and milk production and its composition. Inversely,
concentrate feeding can maintain longer pasture sequence
when grass is limiting and allocation of supplements using
electronically controlled feeders based on available forage
and nutrient requirements of individual animals have
potential for commercial applications.

Feeding behaviour. Feed intake is the product of the number
of bites per day and the size of each bite (g of DM per bite),
but the former can also be predicted from bite rate (bites/
min) and grazing time in min/day (Galli et al., 2011). Theo-
retically, these four variables could be used to predict daily
feed intake of herbivores and substantial effort has been put
in their measurement. Feed intake can also be determined as
the product of meal frequency and meal size, particularly in
housed animals using electronic feeders (Tolkamp et al.,
2000). Remote monitoring of feeding behaviour has become
common in animals using a range of sensors such as accel-
erometers providing position and movement of the head
(Greenwood et al., 2014), GNSS devices proving geolocation
in the paddock (González et al., 2015), accoustic recording to
measure chewing and biting (Galli et al., 2011), noseband
sensors to measure jaw activity (Zehner et al., 2017), passive
RFID tags activated by an antennae at the feeder
(Schwartzkopf-Genswein et al., 1999), radio-localisation to
measure time near or at the feeder (e.g. ultra-wideband
active RFID technology; Theurer et al., 2013) or video-
recording with automatic image analysis to measure animal
presence at the feeder (Matthews et al., 2017). Some of
these technologies may be more practical for commercial
applications than others such as accelerometers in ear tags
or collars compared with noseband sensors; however, this
will depend of the objective and benefit of one technology
over another.
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New technologies need to be evaluated for their ability to
measure the parameters of interest. Accuracy, often
measured through root mean square error, intercept and
regression coefficient, and precision often measured through
R2 can be used concurrently to assess the predictability of
mathematical nutrition models (Tedeschi et al., 2006).
Precision is important in most contexts, however accuracy
may only be important for observed v. predicted values of the
same variable but not when the observed and predicted
variables are different, for example measures of accuracy
may not be relevant in a regression of daily feed intake
against grazing time. Most of these technologies have shown
acceptable accuracy and precision (often at or above 90%) to
measure eating or ruminating activities, or both. However,
the user needs to define its level of acceptability given the
available instruments, the intrinsic random variability of the
variable of interest and the objective or intended used of the
data. Accelerometers combined with GNSS are most
commonly used in cattle collars under grazing conditions
because distance walked is also an important metric for the
classification of sensor data (González et al., 2015).
However, accelerometers embedded in ear tags (Pereira
et al., 2018) or neck collars (Oudshoorn et al., 2013) have
also demonstrated high accuracy to measure eating time.
Technologies that measure time spent at or near the feeder
such as passive (Schwartzkopf-Genswein et al., 1999) or
active RFID ear tags (Theurer et al., 2013) cannot ascertain
whether an animal is consuming feed or just standing at the
feed bunk. Importantly, multiple sensors capable of measur-
ing different aspects of animal behaviour are being
integrated into ear tags (Greenwood et al., 2014), collars
(González et al., 2015) or halters (Zehner et al., 2017), which
could improve predictions of feed intake.
Noseband pressure sensors allow estimating time spent

eating and ruminating, and number and rate of chews and
bites under both extensive and intensive production (Zehner
et al., 2017). Pressure sensors could allow measuring bite
size and rate, while eating from the amplitude and frequency
of ‘peaks and troughs’ in the data; however, there are no
studies demonstrating that this is possible. Leiber et al.
(2016) unsuccessfully used noseband sensors to estimate
feed intake by dairy cows fed high-forage total mixed ration
from daily eating time and rumination due to the large
difference in feeding behaviour between animals. Green-
wood et al. (2017) reported a R2= 0.59 to predict DM intake
from grazing time (accelerometers in collars) of steers,
whereas Umemura et al. (2009) reported a R2= 0.71 using a
bite counter (accelerometer in collar) in grazing dairy cows
compared with grass disappearance using a rising plate
metre. Galli et al. (2011) predicted DM intake during short
sessions in sheep with an R2= 0.92 from chewing energy per
bite and the total amount of energy in chewing using
acoustic monitoring.
The limiting measure to predict feed intake of grazing

animals seems to be bite size at present. Predicting feed
intake from feeding time and number of chews per day may
require consideration of all factors likely to affect these such

as motivation to eat or hunger, competition for feed, fibre
content, particle size of forage, sward structure (height and
density) or even health status of the animals. For instance,
previous research demonstrated that daily feeding time could
be reduced by two-fold in animals experiencing lameness or
at high competition for feed amongst group mates (González
et al., 2012). In summary, feeding behaviour could eventually
serve as a predictor of feed intake in very specific conditions,
but unless bite size can be measured, seems unlikely to
predict pasture intake in a wide range of conditions.

Near infrared spectroscopy. Analysis of faecal samples with
NIRS instruments has been widely researched to determine
daily pasture intake, chemical composition (quality) and
digestibility of the diet selected and consumed by herbivores
including elk, cattle, sheep, goats and deer (Dixon and
Coates, 2009; Kneebone and Dryden, 2015). The fNIRS
technique has the potential to be widely adopted by the
livestock industries with the eruption of small handheld
sensors into the market connected to or integrated into a
smartphone (e.g. SCiO; Consumer Physics Inc., Tel Aviv,
Israel, https://www.consumerphysics.com/). However, one of
the main challenges is to develop accurate and generalised
prediction equations, under the conditions on which these
equations will be used (Dixon and Coates, 2009). Thus, large
and diverse sample sets will be required to calibrate hand-
held NIRS sensors.
Kneebone and Dryden (2015) reported that fNIRS could

predict DM, organic matter, CP, digestible DM and digestible
organic matter intakes in sheep fed a range of forages with
different supplements with a R2 of 0.85 to 0.88 and a
standard error of predictions between 4.0 to 6.4 g/kg of
metabolic BW/day. However, previous studies using fNIRS
have reported variable R 2 values when predicting DM and
organic matter intake of forage diets ranging from 0.46 to
0.92 for DM and organic matter intakes by goats (Dixon and
Coates, 2009). Crude protein intake (g/kg BW0.75 per day)
predicted from fNIRS has shown R2 of 0.64 to 0.98 across a
number of studies and species reviewed by Kneebone and
Dryden (2015). In general, fNIRS methods can predict intake
by analysing faecal chemistry representing what was
consumed by the animals through ‘undigested’ fractions or
by-products reaching the faeces. Thus, feed ingredients or
fractions that disappear completely in the gastrointestinal
tract might not be picked up by fNIRS (e.g. molasses and
urea; Kneebone and Dryden, 2015). The accuracy and
precision of predictions of feed intake and growth rate have
been less satisfactory compared with diet DM digestibility
and CP (Dixon and Coates, 2009).

Live weight. Feed intake over short periods of time and under
housed conditions (bunk or feeder) was recently measured
with high accuracy in sheep using automatic weighing of
individual animals before and after eating their meals
(Gonzalez-Garcia et al., 2017). This technique could be
valuable when defecation, urination and water intake do not
occur between measurements of LW, or where these can be
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measured. Minson and McDonald (1987) used a different
approach where LW and growth rate were used to develop
empirical equations that predicted daily forage intake with
high accuracy in grazing cattle (RMSE= ± 0.4 kg DM/day;
CV= ± 8.7%). Despite being accurate to predict forage
intake, the equation is unlikely to be generalisable to other
types of diets such as those containing concentrates and it
does not account for potentially differing feed efficiency
between animals.

Feed availability and quality
Timely and accurate information about the quantity and
quality, or nutritional value, of the feed consumed is of cri-
tical importance for the nutrition of herbivores. A range of
sensors are being investigated for this application including
light detection and ranging (LiDAR) and light reflectance or
absorption from the ground using spectrophotometers, red-
green-blue (RGB) imagery, 3D image reconstruction, multi-
or hyper-spectral sensors which can be handheld or mounted
on vehicles, static poles, unmanned vehicles (e.g. drones) or
satellites (Handcock et al., 2016; Schaefer and Lamb, 2016).
Under intensive housing conditions, feed availability has
been measured succesfully using volume as a proxy of feed
weight or amount using both LiDAR (McCarthy et al., 2018)
and video imagery (Shelley et al., 2016), which could open
oportunities for new ways of measuring feed intake in her-
bivores. Under grazing conditions, a range of vegetation
indices can be calculated from the reflectance of light from
the ground across the visible and near-IF spectrums, each
with advantages and disadvantages (Schellberg et al., 2008).
These include measuring pasture biomass, quality para-
meters such as nitrogen concentration, pasture growth rate,
vegetation structure and composition, toxin and metabolite
concentrations, mapping vegetation types, the presence of
weeds and to assess the relationship with stocking rates
(Schellberg et al., 2008; Ali et al., 2016). Unmanned aerial
vehicles offer the advantage of being able to collect imagery
regardless of cloud cover, not be subject to satellite overpass
schedule and have higher spatial resolution often at 1 to
2 cm/pixel. Meanwhile, satellite imagery can assess forage
biomass and quality of very large areas often with less fre-
quency and lower spatial resolution. Ausseil et al. (2011), for
instance, reported a high correlation between vegetation
indices and metabolisable energy (r= 0.85), organic matter
digestibility (r= 0.85) and CP (r= 0.83) contents. In line with
other technologies based on light reflectance or absorbance,
one of the most important limitations of using imagery to
measure forage biomass and quality is the development of
calibration equations with the required accuracy to predict
the parameters of interest under diverse conditions, that is
environments, pasture type and seasons.

Rumen parameters
Multiple factors are associated with suboptimal ruminal fluid
pH including diet formulation, feeding management, feeding
behaviour and the design of facilities, such as feeding space
(González et al., 2012). Ruminal degradation or total tract

digestibility of fibre can be reduced at low pH. Many simu-
lation models predict rumen fluid pH and then fibre degra-
dation based on the composition of the diet consumed
(National Academies of Sciences, Engineering, and Medicine,
2016). Ruminal sensors can provide objective data about
rumen fluid pH (Mottram et al., 2008), whereas accel-
erometers and noseband sensors can measure rumination
activity when saliva, and thus buffering capacity, is pro-
duced. On the one hand, this information could be used to
improve diet formulation to reduce the risk of ruminal
acidosis. On the other hand, this information can also be
used by simulation models in near real-time to predict diet
digestion and milk production and composition (e.g.
National Academies of Sciences, Engineering, and Medicine,
2016; Tedeschi and Fox, 2018). Intra-ruminal devices to
measure rumen gas pressure could also find applications to
monitor and reduce the impact of bloat in cattle grazing
high-risk legume pastures or grain-based diets (Mottram
et al. 2008).
Rumen pH, temperature and gas pressure can nowadays

be measured using intra-ruminal sensors (Mottram et al.
2008). However, there are still limitations for this technology
to be widely adopted due to drift of the pH measurements
over time and the impossibility to easily recover the devices.
The increasing capabilities of ruminal sensors to monitor
internal conditions was recently demonstrated by Bishop-
Hurley et al. (2016) who used an intra-ruminal device to
measure ruminal fluid temperature, pressure, CH4, CO2 and
H2 for 1 to 4 days. However, the technology is still in its early
stages of development and more work is required to extend
the life of the device under the conditions of the rumen and
to determine the ability of this approach to predict daily
emissions as the rumen liquor can become saturated with
dissolved gases.

Live weight
Weighing systems coupled with RFID can nowadays record
LW accurately in dairy cattle, beef cattle and sheep as the
animals walk through weighing platforms installed at loca-
tions that animals frequently attend such as water points,
supplement stations and milking sheds (Thorup et al., 2013;
González et al., 2014a; Gonzalez-Garcia et al., 2017). The LW
and average daily gain (ADG) data have been shown to
provide important information to capture detailed changes
related to environmental factors, physiological status and
nutritional and grazing management (Thorup et al., 2013;
González et al., 2014a).
Automatic drafting gates to segregate individual animals

whose RFID have been read by the walk-over-weighing
technology can also be implemented. This allows to draft
animals into separate yards according to LW and growth
rate, marketing program, genetics or physiological status for
more precise nutritional management. For example, LW data
collected from beef cows and calves in Figure 2 (González,
unpublished data) show a large variability in LW and ADG
between animals and over time. The variability in perfor-
mance between individual animals in a grazing group is
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currently poorly understood and thus management solutions
are difficult to develop. Auto-drafting of under-performing
animals to provide supplementary feeding could be a plau-
sible solution to reduce such variability in grazing animals
and to better understand the individual’s responses to
nutritional treatments. The temporal variation in LW and
growth rate observed in Figure 2 was due to the physiolo-
gical status of the animals (calving and lactation), and pas-
ture availability and quality like that shown by González
et al. (2014a). Animals in this experiment were changed to a
different paddock, as routinely done on the farm using visual
assessment of both the paddocks and animals. However, this
grazing management appeared to be too late because ani-
mals were losing weight before they were moved to another
paddock. This can be seen in Figure 2 with successive waves
of LW declining and recovering but an ideal management
would limit theses waves. Furthermore, it is unlikely that
these cows would have been losing or gaining more than
5 kg/day of body tissue so fast. This highlights the need for
further research to determine the relative contribution of
rumen fill, compensatory growth and mobilisation of body
reserves on the estimation of growth rate from LW data
collected at high frequency. Interestingly, the calves in

Figure 2 were mostly gaining weight during periods even
when the cows were losing it (mobilising reserves). These
periods could also be targeted for more precise nutritional
management such as start and finish times of feed supple-
mentation, amounts to be offered and type of supplement
(energy, protein or minerals). Figure 2 also shows the chan-
ges in LW of cows that calved and not. Nutrients demands of
cows increase after calving due to milk production and
therefore remote monitoring of calving dates and the
amount of LW loss could allow more precise nutritional
management of females in grazing beef herds.

Body composition
The effects of nutrition on animals are often evaluated
regarding BW and composition (and its changes) such as the
amount of muscle, fat and bone mineral contents. These
measures indicate the amount of nutrients retained or
mobilised (energy, protein and minerals such as Ca and P)
and are thus linked to reproduction, health and welfare, and
the value of meat in carcasses. New technologies providing
timely and accurate information on body composition will
allow monitoring one of the final processes in the flow of
nutrients in the body of animals, and the effects of

Figure 2 Live weight and growth rate of a Charolaise beef cattle herd with cows and calves at foot, calves after weaning (weaners) and bulls
automatically measured using an in-paddock weighing system (González et al., unpublished data). Winter: June, July and August; Spring: September,
October and November, Summer: December, January and February. Gray vertical lines indicate paddock change.
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physiological status, stage of development (age), nutrient
utilisation efficiency and the biological processes involved
during under- and over-nutrition. This information can
improve nutritional management to optimise performance,
reproduction, survival (reduce mortality), breeding, market-
ing strategies and profitability. For example, most of the
current work in feed efficiency, such as for residual feed
intake, is based on the efficiency to convert feed into LW or
carcass weight. This often ignores the composition of weight
gain which is difficult to measure at present although
attempts are sometimes made to account for these using
proxies such as subcutaneous fat thickness or intramuscular
fat. A review of some of the new technologies to measure
body composition in farm animals has been published by
Scholz et al. (2015). Some of these non-invasive technologies
are being considered by the livestock industries in some
countries for routine evaluation of carcass yield and quality in
abattoirs (fat and muscle content, and eating quality). These
data can then be used to optimise the nutritional manage-
ment of individual animals and groups according to their
starting body condition and genetic makeup (e.g. frame and
maturity) to target specific carcass endpoints that maximise
profitability. This is critical because greater body fatness can
result in improved meat quality but also reduce feed con-
version efficiency and profitability. This approach would be
applicable to optimise feeding of animals fatted in the future;
however, some of these technologies such as X-ray have
been trialled successfully in live animals. A description of the
most promising technologies is provided below.

Imaging as means of estimating body volume and composi-
tion. Both 2D and 3D imaging from still pictures and video
recordings have been researched to calculate indirect mea-
sures of the composition of both live animals and carcasses.
These systems estimate body dimensions, shape and volume
as an indicator of its composition. However, the correct
identification and measurement of biometrics remains the
bottleneck of such technologies. For example, Bewley et al.
(2008) and Halachmi et al. (2013) have used 2D RGB and
thermal imagery to measure body condition score (BCS) in
dairy cattle with high precision. Similarly, Hopkins et al.
(2004) used a commercial system in beef and sheep car-
casses to predict marbling, rib fat depth, ribeye area, fat
coverage of the carcass and carcass lean meat yield, amongst
other measures. However, predictions of retail cuts yield and
lean meat yield were not precise or accurate (R 2< 0.52;
Hopkins et al., 2004). More recently, McPhee et al. (2017)
used a consumer 3D sensor (Kinect; Microsoft Corporation,
Redmond, WA, USA) to predict muscle score and P8 fat of
live animals with 80% correct classification rate. Further
developments were done in pigs using the same sensors to
predict LW and body dimensions with high accuracy and
precision (Pezzuolo et al., 2018) and in dairy cows to predict
BCS (Song et al., 2018). More advanced 3D imagery sensors
have also been tested to measure BCS in dairy cattle with
high accuracy and reproducibility (Fischer et al., 2015).

Ultrasound to estimate body composition. Ultrasound has
been widely used in both live animals and carcasses to esti-
mate fat depth at the rib and rump sites, intramuscular fat
and kidney fat depth as a proxy for internal fat accumulation
(Ribeiro and Tedeschi, 2012). The goal was to develop sys-
tems to predict carcass and internal fat deposition overtime
as animals were growing, but the process would slow down
animal processing in the chute of commercial systems.
Although ultrasound is widely used, the depth of penetration
and accuracy of the information pose limitations to its
application.

X-ray absorptiometry to estimate body composition. Dual
energy X-ray absorptiometry (DEXA) has been the technique
most widely used to measure composition of meat animals of
live animals, whole carcasses and cuts (Pearce et al., 2009).
Dual energy X-ray absorptiometry can measure total soft
tissue, fat, muscle and bone content of carcasses (as a per-
centage of carcass weight and total kg), lean meat yield and
mineral content and density of bones as well (Scholz et al.,
2015). Besides the determination of energy and protein
retention in animals, DEXA could also be used to monitor
calcium and phosphorus metabolism. This technique is based
on the differential attenuation of X-rays by bone, fat and
non-fat tissues penetrating into the body to accurately esti-
mate body composition. Algorithms developed for humans
were successfully adjusted with measurements on live sheep
to yield high accuracy and precision in predicting carcass
composition (R 2> 0.90; Pearce et al., 2009). However, some
limitations of DEXA include the need for extensive calibration
with the animal species of interest, the loss of precision with
tissue depth and the need of adjustments to predict chemical
composition (Pomar et al., 2017).

Computer tomography. Nowadays, DEXA seems to offer the
largest potential to contribute to the precision nutrition of
farm animals in the short term because it can provide instant
whole-body composition (Scholz et al., 2015). At present,
computer tomography is not used on live animals because of
health and ethical concerns, lack of image processing
methods to analyse images from moving bodies required for
commercial applications, the time required for the computer
tomography scans and high cost. However, with technolo-
gical advances in software and hardware, X-ray computer
tomography could become advantageous due to its higher
accuracy, high anatomical resolution and delivery of 3D
information with the potential to measure the volume and
density of internal organs, tissues or body parts. This could
include, for example, the volume and composition of the
gastrointestinal tract and the liver, as well as muscle, bone
and fat depots and distribution. These could have huge
potential applications in animal nutrition if, for example, this
technology is implemented in abattoirs and the data
obtained on individual animals feeds back to livestock pro-
ducers or managers.
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Methane, ammonia and volatile compounds
A large body of research has been done in the last 25 years to
quantify and mitigate methane emissions from ruminants
particularly using nutritional strategies. In addition, methane
emissions have been linked to residual feed intake, and more
importantly, it is a heritable trait allowing genetic selection
(Hegarty et al., 2007).
Novel methods to measure methane emissions from

ruminants have been researched including open circuit
Fourier-Transformed IR technology and micrometeorological
techniques for groups of animals (McGinn et al., 2013),
breath analysers (sniffers) mounted in an enclosure at the
water point or feeders (Hegarty, 2013) or handheld lasers
pointed at 1m from the mouth and nostrils in housed con-
ditions (Ricci et al., 2014; Sorg et al., 2017). Ricci et al. (2014)
used a handheld device to measure CH4 concentration of
exhaled breath from ewes and steers. The study was able to
detect higher concentration of CH4 in steers fed a high-forage
diet compared with those fed a high-concentrate diet, and
differences between cattle genotypes, time after feeding and
feeding level. Some challenges have yet to be overcome to
quantify daily methane production from these sensors, which
include developing methods to measure the volume of gas
exhaled from animals per unit of time, and methods to esti-
mate the mixing ratio of exhaled breath with ambient air
(which depends on wind speed) because tracer gas markers
are not used. These laser methane detectors are becoming
smaller in size and are connected to mobile phones (Sorg
et al., 2017) and could, therefore, become of benefit to the
livestock industries.
The ‘sniffer’ technique implemented at a feed or water

point attended by cattle can be used to obtain samples of
exhaled air for short periods of time during the day for many
animals in both grazing and intensive feeding on farms
(Hegarty, 2013). The GreenFeed instrument (C-Lock Inc.,
Rapid City, SD, USA) has the ability to measure CH4, CO2, H2,
O2 and H2S simultaneously, which has multiple applications
in animal nutrition ranging from nutritional responses to diet
formulation and feed additives to improve feed efficiency and
reduce CH4, or aid genetic selection of animals with lower
emissions, O2 consumption to estimate energy expenditure
and manage sulphur-induced polioencephalomalacia in
cattle. Another advantage of the GreenFeed system is the
ability to control the amount of feed supplement each animal
consumes. However, the main limitation is the need for
multiple short-term measures within a day to obtain reliable
estimations of daily emissions (Hegarty, 2013). This ‘sniffer’
technique can be adapted to the concept of ‘electronic noses’
used in other industries, such as health and implemented
with sensors to measure a range of volatile organic com-
pounds from breath (Spinhirne et al., 2004) which could be
used as biomarkers of nutritional processes.

Heart rate and energy expenditure
Heart rate can be used to determine metabolic rate, heat
production and energy expenditure of physical activities in
animals (Brosh, 2007). Heart rate is closely associated with

O2 consumption and therefore with energy expenditure or
heat production because each heartbeat transfers O2 to the
tissues. However, a large variability among individual ani-
mals exists for such relationship (O2 consumption per
heartbeat) which requires measuring O2 consumption for
individuals often for a period of at least 10 to 15min (Brosh
et al., 2006). In ruminants, heart rate and energy expenditure
(heat production) were found to be closely correlated with
metabolic energy intake (Brosh, 2007). Thus, metabolisable
energy intake could be estimated from energy expenditure
measured using the heart rate method and measuring energy
retained in body tissues and milk. The opposite calculation
could also be made. It was also suggested that this tech-
nology could become a tool to monitor changes in the energy
balance and status of animals. Heart rate depends on phy-
sical activity and thus the energy cost of each activity can be
measured using technologies to measure animal behaviour
such as GNSS and accelerometers (Brosh et al., 2006). These
authors reported that heart rate, grazing time, distance tra-
velled and metabolisable energy intake were greatest in
lactating cows during the spring (Brosh, 2007).
With the advancement of sensor technologies, measuring

heart rate in many animals at low cost will be possible. For
example, technologies have been developed to measure both
heart rate and respiration rate in humans from image ana-
lysis in smartphones (Nam et al., 2016) and using sub-
cutaneously implantable heart rate monitors or face masks in
cattle (Brosh, 2007).

Simulation modelling: the role of ruminant nutrition
models

For about 80 years, decision support systems have been
evolving alongside advances in computer processing and,
concomitantly, simulation models have developed as scien-
tific research progresses and data acquisition increases. This
combination of technologies requires increased processing
capacity and numerical integrations as well as changes in
paradigms, so new concepts and ideas are formed. Despite
the tremendous potential of using decision support systems
in agriculture, Tedeschi and Fox (2018) suggest that simu-
lation modelling is underutilised, likely due to the lack of
awareness by the users, their familiarity with the technology,
lack of reliability, the divorce batten research and practice in
decision support systems development or their combinations.
However, most of these limitations are likely to disappear if
the use of decision support systems can be automatised with
the use of data from sensor technologies.
Although producers have struggled with the adoption of

simulation models, the science of data acquisition and
computer modelling have advanced in many aspects. In the
cattle feedlot industry, for instance, growth models have
been used to predict feed intake and days on feed, that is the
number of days that take an animal to reach the desired
carcass endpoint regarding weight, meat yield and quality
(Tedeschi et al., 2004). With the advancements in the
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identification of single nucleotide polymorphism panels,
specific molecular breeding values have been computed for
relevant traits for the beef cattle industry. The integration of
nutrition models and genomics has been conceptualised and
reported to improve the predictability of deposition of car-
cass fat and protein in growing cattle (Tedeschi, 2015). In
addition, new sensor technologies show great potential to
inform both animal nutrition models and genetic predictions,
as these can facilitate the collection of phenotypic data
(Greenwood et al., 2016), and increase their accuracy such as
in the case of X-ray body scanners for automated measure-
ments of carcass composition and yield (Scholz et al., 2015).
Thus, data from sensor technologies could be integrated with
both animal nutrition models and genetic information for
optimised animal feeding and improve the management of
genetic× environment (feeding management) interactions.
However, there is a chronic lack of integration, and many

models are viewed as poorly coupled and difficult to incor-
porate (Janssen et al., 2017). Nonetheless, a holistic
approach to integrating animal-pasture-soil-climate mathe-
matical models has been proposed (Snow et al., 2014)
alongside the advancements in data collection using NIRS,
GNSS, accelerometers, 3D cameras, LiDAR, satellite and
unmanned vehicles (i.e. drones) to name a few. An additional
challenge to crop and pasture growth models arises from the
inclusion of ruminant animals because they represent an
additional trophic level, adding a considerable complexity of
nutrients flow across the compartments (Snow et al., 2014).
However, simulation models may become increasingly
important in forecasting the production of alternative sce-
narios and to support the ‘smart farming technology’ of the
future.

Data fusion and model-data fusion

Data fusion is an approach where data coming from multiple
sources (e.g. multiple sensors) are ‘fused’ or integrated to
produce new data which improve the usefulness and accu-
racy of the information above that from the individual sour-
ces. This approach usually uses ‘data-driven statistical’
methods such as machine learning techniques for predictive
modelling, which do not necessarily consider biological
mechanisms as it is the case with mechanistic models. An
example of data fusion applied to livestock production was
recently presented by Deng et al. (2017), who assessed fac-
tors affecting the interaction between net primary pro-
ductivity of grasslands from satellite imagery and livestock
production with predictors being livestock density, weather
and the effect of nature reserves. The authors reported that
grassland net primary productivity and livestock production
have a positive effect on each other and quantified the effect
of weather and nature reserves on both. A simple example of
data fusion would be using feed intake, LW and growth rate
data to calculate feed efficiency.
Model-data fusion is an approach to combine multiple

data streams with mathematical prediction models to

constrain model predictions (outcomes), model parameters
(e.g. rate constants) and sensitivity of the drivers of processes
in the models (Wang et al., 2009). The model-data approach
has been used to estimate ecosystem-level carbon fluxes
constraining parameters and projections of mechanistic
models to match observed data (Wang et al., 2009; Keenan
et al., 2012). In the context of precision nutrition of herbi-
vores, sensor technologies can provide data in real-time to
nutrition simulation models describing particular nutritional
mechanisms. Mechanistic nutrition models are suitable for
this approach because numerous nutritional mechanisms or
biological processes where sensor data can fit in can be
described. However, empirical models can also be of value as
these can estimate the optimal animal response with chan-
ging nutrition levels.
The advantage of simulation models running with input

data provided by sensor technologies is the potential to
improve the accuracy and precision of predictions with
reduced uncertainty based on past and present information
which should also improve predictions into the future. Real-
time predictions of outcomes that are not measured and
forecasting future outcomes are of interest because these
allow timely and accurate decisions to improve animal
nutrition. Both real-time predictions (now-casting) and fore-
casting could be of value for precision nutrition of herbivores
and livestock production in this context.
Another advantage of model-data fusion is that predictions

can be based on measured current conditions of individual
animals, feed, paddocks and climate using real-time data
provided by sensors. Therefore, model predictions or model
parameters can be constantly adjusted with objective data
(Wang et al., 2009). Nevertheless, little research exists to
support the view that this approach may improve accuracy
and precision of predictions. A challenge of this approach is
that most of the research used to develop existing nutrition
simulation models collected data using different means and,
thus, are often at lower temporal and spatial scales. Thus,
these models may not be accurate using sensor-derived data
as input and must eventually go through re-evaluation and re-
engineering. For instance, LW and ADG data collected at high
frequency using in-paddock weighing systems show high
variability within and between days due to several factors
including fill of the gastrointestinal tract due to feed and water
intake, defecation and urination (González et al., 2014a).
However, most nutrition simulation models were developed
with LW and growth rate data from animals being weighed
less frequent and do not account for those factors affecting LW
and ADG at finer temporal scales. Therefore, the model-data
fusion approach may require new mathematical prediction
models to be developed from (new) empirical research data
collected in the conditions to which they will be applied.

Examples of model-data fusion
González et al. (2014b) used LW and ADG data collected at
high frequency from individual animals using in-paddock
weighing systems and DM digestibility through fNIRS to
inform mathematical models that predicted feed intake and
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methane emissions on a daily basis (Figure 3). This approach
could take advantage of the synergy between remotely-
collected data and prediction models, and has the potential
to improve the accuracy of model predictions. None of the
measured variables followed a linear trend over time and
therefore predicted DM intake and methane emissions using
daily LW information are likely to be more accurate com-
pared with using less frequent information. In addition, the
ability to capture the growth path of individual animals over
time could yield more accurate predictions of feed intake and
methane emissions (González et al., 2014b). Automatic
weighing of animals has also been used along mathematical
models to estimate energy balance and body composition of
dairy cows using real-time data as input of prediction models
(Thorup et al., 2013).
Another good example of the potential of model-data

fusion can be built on the approach presented by Brosh (2007)
who quantified the components of the energy balance equa-
tion (metabolisable energy intake= energy expenditure +
retained energy) using GNSS and accelerometers, heart rate
monitors and breath analysers. The authors proposed calcu-
lating fasting energy expenditure, heat increment due to
physical activity and retained energy, energy efficiency and
metabolisable energy for maintenance (Brosh, 2007). The
authors also suggested that feed efficiency could be calculated
from energy expenditure measured using the heart rate
method and energy retained body tissues and excreted in milk
without measuring intake. However, this approach may not
properly account for differences in feed digestibility and
methane emissions that characterise efficient animals
(Hegarty, 2013), diet selection or sorting and the composition
of weight gain which affect feed conversion efficiency
although these can be modelled and measured nowadays.

Precision animal nutrition: potential gains with
automatic control of animal nutrition

The greatest gains from the application of precision animal
nutrition are likely to come from management actions

targeted to reduce variability over time and between animals
in a group, and optimising these for individuals and groups
for specific objectives. In addition to improving animal
nutrition, technologies can optimise the management of
animals such as the timely sale of animals at their optimum
nutritional status (product yield and quality) or before the
negative consequences of undernutrition occur, due for
example to decline in forage availability. In the example in
Figure 3, adapted from González et al. (2014b), selling the
animals at the start of the dry season in July, as soon as they
lost weight for their first time, would have resulted in similar
kg of LW sales, reduced feed intake by 122% and reduced
methane emissions by 105% compared with selling them in
January of the following year. However, forecasting the
results would require the incorporation of weather forecasts
or different climate scenarios with their respective prob-
abilities to predict pasture growth because this will affect the
future nutritional status of animals.
An example of the application of precision nutrition to

manage temporal variability in nutrient intake with timely
and accurate nutritional interventions in grazing animals is
shown in Figure 4, using data from González et al. (2014b).
Temporal variability in the nutritional status appears when
the dry season sets in July (climate variability), leading to
reduced nutrient intake and eventually weight loss. The
amount of hay required (70% DM digestibility and 20% CP)
to avoid LW loss was estimated using the simulation nutri-
tion model published by CSIRO (2007). Live weight and ADG
were used as input of the model to predict energy balance
using the model-data fusion approach. The amount of sup-
plementary feed required to maintain LW changes from day
to day depending on the amount of weight loss reflecting the
quality and quantity of grass available in the paddock
(Figure 4). This real-time information can be used to better
define the start and finish times of feed supplementation of
grazing animals in a timely fashion and to deliver with more
precision the amount of feed required for a target production
level on a daily basis according to observed trends in LW.
This could reduce the cost of feeding and environmental
footprint, and improve animal health and welfare.

Figure 3 Model-predicted feed intake and methane emissions from measured live weight and growth rate data collected by in-paddock automatic
weighing systems, and diet quality (dry matter digestibility and CP) measured using faecal NIRS in beef cattle. Adapted from González et al. (2014b).
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Precision animal nutrition in the last few years has focus-
sed on managing the nutrition of individual animals within a
group and reducing the variability of nutrient intake between
animals for a target production level. The trajectory of LW
and growth rate of individual animals in a group shown in
Figure 2 indicate that individual animals respond in different
ways over time to prevailing nutritional scenarios. Not only
some animals grew faster than others, but there were peri-
ods when some animals were gaining whereas others were
losing weight whilst on the same nutritional regime. An
auto-drafter coupled with the weighing station may allow
drafting animals just after weighing into different groups
which could be fed different types and amounts of feeds
according to their nutritional status (growth rate and body
condition), physiological status (stage of lactation and
gestation), target production level and production potential.
Auto-drafters could improve the nutritional management of
subgroups of animals within a group controlling the access of
individual animals to different feed types. However, further
gains could be realised with automatic control of nutrient
intake of individual animals using electronic feeders that
control the amount fed to each animal.
However, research on individualised feeding in dairy cattle

has yielded inconclusive results (Hills et al., 2015) and little
research exists on the topic for other ruminant production
systems, including beef cattle and sheep. Several reasons
could explain the discrepancy between previous studies with
individualised feeding which renders the practice uncertain.
Key to its success is to consider the key nutritional processes
and flow of nutrients in individual animals (Figure 1) in
addition to their production potential. For example, nutrient
requirements of individual animals and responses to indivi-
dualised feeding in dairy cattle should not only consider
current nutrient intake, production potential and stage of
lactation, but also LW and growth rate, and previous feeding
and growth. A response in milk production with increased
feed supplementation may not be observed if the nutrients

are re-directed to recover body condition and reproductive
function. Furthermore, individualised feeding may also need
to consider the composition of body growth (fat and muscle
percentage of gain), because this will affect nutrient
requirements and responses. Luckily, several of these key
factors can be measured or predicted for individual animals
in real-time using mechanistic models (Tedeschi et al., 2004)
and new technologies such as milk metres, auto-weighing
systems and emerging body scanners for body composition
are being or have been developed. Individualised feeding
should also consider the genetic potential of animals for
production incorporating simple to more complex quantita-
tive or molecular genetic information. Simple genetic infor-
mation to consider include, for example, breed type and
percentage of each breed in crossbreeds, as well as breeding
values for weight at maturity and weaning weight, milk
production and mothering ability, amongst others. These
factors influence the production potential and composition of
the products such as fat content of milk or body growth and,
inevitable, affect nutrient requirements and retained. This
has often been the missing link in previous research with
individualised feeding.
Other complex genetic traits could be considered for pre-

cise nutrition of individuals such residual feed intake and
genetics × environment (e.g. robustness) interactions which
could affect individual’s responses to the same nutritional
intervention. These could be a result of large differences
between animals in intake, absorption, metabolisability,
utilisation and retention of nutrients. Some of these pro-
cesses may be difficult to monitor and predict with nutrition
models. Therefore, accounting for these and other factors in
which lead to varying nutritional status between animals in a
group may not be possible. Different approaches may be
required in these circumstances, and those which do not rely
on the biological mechanisms involved in the response may
be of value. These include data fusion, machine learning and
optimisation techniques that are purely data-driven focuss-
ing on the pattern of input data and responses within an
animal under different conditions, although it could also
consider the rest of the animals under the same conditions.
For example, the growth response of an animal to a parti-
cular type and amount of feed provided during a period of
undernutrition (as shown in Figure 2) could differ markedly
from others. Statistical techniques could learn from the data
collected by auto-weighing systems (response) and electro-
nic feeders (input) to tailor the nutritional management to
that animal at different stages of production, physiological
status and seasons. Furthermore, this approach could also
consider changing prices of inputs and value of products, or
even other responses such as greenhouse emissions to find
optimal solutions.

Conclusions

The wide range of sensor technologies and analytical tech-
niques presently available and currently being developed

Figure 4 Model-predicted amount of hay (70% digestibility; 20% CP)
required per day to maintain live weight of grazing steers (González
et al., 2014a,b, unpublished data). Live weight and growth rate were
measured with an in-paddock remote weighing system and used by a
mathematical prediction model to estimate energy balance on a
daily basis.
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allow the gathering of the large amount and valuable infor-
mation to improve the precision of the nutritional manage-
ment of herbivores. Multiple nutritional aspects and
processes involved in the flow of nutrients in the animal body
can be monitored in near real-time using sensor technologies
including factors affecting nutrient intake, requirements,
availability, utilisation, retention and excretion. These tech-
nologies can remotely measure available feed, animal
behaviour, feed digestion processes, milk yield and compo-
sition, LW and growth rate, body composition, nutrient
excretion and physiological state. Thus, a comprehensive
understanding can be obtained on the current nutritional
status and trends of individual animals in real-time and into
the future.
However, only a handful of technologies are most often

integrated to measure specific products or processes to
answer specific questions or for particular applications.
Simulation models can complement and enhance the data
collected by sensors and vice versa. Such models could be
particularly important to predict hard-to-measure nutritional
factors and processes such as feed intake of grazing animals,
and to fill in gaps of data collected by sensors. There is a
need to better exploit the synergies between sensor tech-
nologies and nutrition simulation models. This will also
require evaluating the accuracy of the data provided by
sensor technologies and of mathematical nutrition models
intended for this application. Furthermore, such integration
of sensor data and models will require more research to
determine the most accurate and efficient integration
approach, and perhaps a re-evaluation of traditional simu-
lation models and empirical data of nutritional processes to
suit the model-data fusion approach. This approach has the
potential to improve the precision of nutritional management
of herbivores to improve productivity, profitability, the effi-
ciency of resource utilisation, animal health and welfare and
reduce the environmental footprint and uncertainty of deci-
sion making.
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