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Summary

In dairy cattle, quantitative trait loci (QTL) are usually mapped using the grand-daughter design

(GDD), i.e. sets of progeny-tested paternal half-brothers. Linkage information is typically

extracted from the segregation of the sire chromosomes amongst their sons. We herein propose to

increase the power of a GDD by exploiting the frequently occurring relationship between sires and

grandsons which has so far been ignored in most methods of analysis. The proposed approach is a

multipoint interval mapping method based on the Wilcoxon sum-of-rank test. Three alternative

approaches to combine information from sons and grandsons are evaluated by simulation. In these

either (i) sons and grandsons are ranked separately, (ii) sons and grandsons are ranked separately

but the sign of the QTL effect is constrained to be the same in both generations, or (iii) sons and

grandsons are ranked jointly. The proposed methods have been applied on a real data-set in which

a GDD including 907 sons is analysed with a marker map comprising nine microsatellites spanning

46 cM on bovine chromosome 6.

1. Introduction

In 1990, Weller et al. proposed an experimental design

that takes advantage of the progeny-testing procedure

which is routinely applied to select elite dairy bulls, in

order to efficiently map quantitative trait loci (QTL)

influencing milk production. In this proposed ‘grand-

daughter design’ (GDD), the analysed pedigree

material consists of sets of half-brothers sharing a

common founder sire. The records analysed to map

QTL are the sons’ breeding values estimated from the

milking performances of their respective daughters

(the progeny test). The data would typically be

analysed by maximum likelihood, linear regression or

rank-based methods measuring the contribution

(nested within founder sires) of alternate paternal

alleles to the trait variance (e.g. Georges et al., 1995;

Knott et al., 1996; Coppieters et al., 1998b). Inferences

about which paternal allele is transmitted to a given

son at a defined chromosome position are usually

made by multipoint analysis, i.e. considering in-

formation from all linked markers jointly. Sons

* Corresponding author. Tel : ­32 (0)4 366.41.50. Fax: ­32 (0)
366.41.22. e-mail : michel.georges!ulg.ac.be.

typically have 50 or more daughters, yielding breeding

value estimates with reliabilities of the order of

85–95%. Squared reliabilities can be compared with

heritabilities of the order of 35% for the actual

phenotypes as expressed in the daughters. It can be

shown that the concomitant reduction in environ-

mental noise leads to a decrease in the required sample

size by a factor of the order of 3 to 4 (Weller et al.,

1990; Georges et al., 1995). Several studies have

demonstrated convincingly that this designmay indeed

allow for the mapping of QTL in elite dairy cattle

populations (e.g. Georges et al., 1995; Spelman et al.,

1996; Gomez-Raya et al., 1996; Ku$ hn et al., 1996;

Ron et al., 1998; Coppieters et al., 1998a ; Arranz et

al., 1998).

Despite the considerable gain in power that can be

achieved using this approach when compared with a

daughter design (DD), the size of most GDDs that

have been assembled to date has been limited by

sample availability and essentially provides inadequate

power to detect QTL with moderate effects when

performing whole genome scans and applying the

commonly used statistical procedures. Much attention

has therefore been devoted to devising strategies that
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would increase the amount of information that is

extracted from the available data set. One option is to

exploit additional familial relationships that exist

amongst members of the grand-daughter design and

which are presently being ignored. The ultimate goal

would be to account for all known pedigree rela-

tionships. While substantial progress has been made

towards so-called full pedigree analysis (e.g. Hoeschele

et al., 1997; Bink & van Arendonk, 1998), these

methods still face a number of computational issues

which make them difficult to apply yet on very large

data-sets, especially when one attempts multipoint

linkage analyses.

In this paper, we propose a simple strategy that

increases power of detection by taking advantage of a

frequently occurring relationship found in most

GDDs, i.e. the fact that many sons share a limited

number of common grandsires. The resulting scheme

is referred to as the ‘great-grand-daughter design’

(G#DD). We show in this paper how a previously

described non-parametric rank-based statistical

method can conveniently be extended to analyse a

G#DD.

2. Materials and methods

2.1. General principles of the great-grand-daughter

design

As illustrated in Fig. 1, the only relationships

providing linkage information in the GDD are the

connections between sires and their sons. Examination

of the pedigree records, however, shows that many

bulls have additional, potentially informative links. In

particular, sons often share common grandsires which

1

2

3

Sire

Sons

Q/q

Q/? q/?

Q/? q/?

Q/? q/?

Q/? ?/??/? q/?
Grand-sons

Great-grand-daughters

DS = DGS

Fig. 1. Schematic representation of the G#DD. Three sires are shown with sons. In the regular GDD (Weller et al.,
1990), sons are sorted according to the paternal allele inherited, yielding a phenotypic contrast ∆

S
between Q? and q?

sons. The G#DD exploits the fact that many sons of sires are also grandsons of sires as shown for four sons of sires 1 or
3 which are also grandsons of sire 2. These grandsons can be sorted according to the grandpaternal allele inherited: Q?,
q? or ??\Q? and q? grandsons differ by a phenotypical contrast ∆

GS
¯∆

S
.

can be part of the GDD themselves as sires of sons.

The objective of the G#DD is to exploit the rela-

tionships between a founder sire and its grandsons

present in the available pedigree material.

Assume that a sire is heterozygous Qq for a QTL at

a given chromosome position. Its sons will fall into

two QTL genotype classes – Q? and q? – with pheno-

typic difference, ∆, equal to the average effects of the

QU q allele substitution (Falconer & Mackay, 1996).

Grandsons of the corresponding sire will fall in three

QTLgenotypic classes – Q?, q? and ?? – with frequency

of 0±25, 0±25 and 0±50, respectively. Mean phenotypic

values of Q? versus q? grandsons differ by the same

amount, ∆, as in the sons.

In the GDD, the Q? versus q? QTL genotype

probabilities of the sons are inferred from flanking

marker genotypes and used to estimate ∆. In the

G#DD it is simply proposed to extend this to

grandsons, i.e. to infer the QTL genotype probabilities

(Q?, q? and ?? ) from flanking marker genotypes and

combine both sources of information (sons and

grandsons) to increase the power of QTL mapping

with the available marker genotype information. Note

that only half the grandsons inherit either of the

grandpaternal alleles and therefore contribute in-

formation in the proposed G#DD.

2.2. G2DD: QTL mapping procedure

(i) Determination of the most likely linkage phase of

the sires

The marker linkage phase is determined for each sire

from the marker genotypes of his sons. This is
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accomplished by calculating the likelihood of the

corresponding half-sib pedigree data under the 2x}2

possible phases (assuming x informative markers) as

follows (Georges et al., 1995) :

L
i
¯ 0

n

j="

93#
x

k="

[P(k r i)¬ 0
x

m="

AFM
m
]: ,

where

L
i

is the likelihood of the pedigree data for

linkage phase i ;

0
n

j="

is the product over all n half-sibs ;

3
#
x

k="

is the sum over all possible sire’s gametes k ;

P(k r i) is the probability of gamete k given

Mendelian laws, phase i and known

recombination rates between adjacent

markers, θ
"

to θ
x
;

0
x

m="

is the product over all m markers within the

synteny group;

AFM
m

is the population frequency of the obliged

maternal marker allele of marker m, given

the paternal gamete k.

Table 1. Illustration of the calculation of QTL

genotype probabilities (Q? or q?) of sons gi�en

flanking marker genotypes

h1

1

2

1

3

1

3

1

3

1

3

1

3

h2

Q

q

?

?

Q

?

Q

?

q

?

q

?

1

2

2

3

2

3

2

3

2

3

2

3

h3

1

2

1

2

1

2

2

1

1

2

2

1

0·5× (1–h1)(1–h2)h3

× ( f1,3  f2,2  f3,3)(a)

0·5× (1–h1)h2(1–h3)

× ( f1,3  f2,1  f3,3)

0·5×h1h2h3

× ( f1,3  f2,2  f3,3)

0·5×h1(1–h2)(1–h3)

× ( f1,3  f2,2  f3,3)

(a + b)/(a + b + c +d )

(c + d)/(a + b + c +d )

Sire

(a)

Marker/QTL
    genotype

Marker
    phenotype

Compatible
    genotypes

QTL
    genotype
    probabilities

Son

P[Q?(p)|gL, gR]

P[q?(p)|gL, gR]

(b)

(c)

(d)

(a) fx,y = population frequency of allele x of marker y.

h1 h2 h3

All marker phases are a priori considered to be

equally likely, i.e. linkage equilibrium is assumed to

have been reached between all markers. The marker

phase maximizing the likelihood of the pedigree data

is considered the true one and selected for further

analysis.

(ii) Calculation of QTL genotype probabilities (Q?)

or q?) of sons gi�en flanking marker genotypes

Assuming that the marker phase of the sire is known,

and that he is of genotype Qq for a hypothetical QTL

with fixed position (p) on the corresponding marker

map, the QTL genotype probabilities (Q? or q? ) of

each son can easily be computed given its genotype on

flanking markers (Coppieters et al., 1998b). Table 1

illustrates how such a calculation is performed. P
i

[Q?
(p)

r g
L
, g

R
] is defined as the probability that son i

has inherited QTL allele Q from the founder sire at

map position (p) given left (g
L
) and right (g

R
) flanking

marker genotypes.Onlymarkers forwhich the founder

sire is heterozygous are considered when computing P
i

[Q?
(p)

r g
L
, g

R
]. Moreover, while the nearest flanking

markers contain all the information needed to

compute P
i
[Q?

(p)
r g

L
, g

R
] in a given interval when

dealing with experimental crosses, information from

more distant markers is considered in the outbred

half-sib situation, when closer markers are not fully

informative. This occurs in the case of missing

genotype or when the offspring has the same marker

genotype as the sire and the dam is either not

genotyped or has the same heterozygous genotype as

well. In the former case, part of the information is

recovered by considering marker allele frequencies in

the population.

(iii) Calculation of QTL genotype probabilities (Q?,

q? or ??) of grandsons gi�en flanking marker

genotypes

QTL genotype probabilities for the grandsons are

determined along the same lines as for the sons. An

example of such calculations is given in Table 2. It is

assumed in this example that the marker linkage

phase of the grandsire and sire are known (Section 1),

and that the dams are not marker genotyped.

(iv) Information content mapping

Information content along the marker maps (Krug-

lyak & Lander, 1995a ; Coppieters et al., 1998b) was

measured as:

3
n

i="

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#

n®1

for the sons and grandsons.
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Table 2. Illustration of the calculation of QTL genotype probabilities (Q?, q? or ??) of grandsons gi�en flanking

marker genotypes

Sire Son

Phase-known
    genotype

Phase-unknown genotype

Grand-sire

Phase-known
    genotype

2*

2*

2

2

2*

2*

2

2

2*

2*

2

2

1*

1*

1

1

1*

1*

1

1

1*

1*

1

1

Q

Q

Q

Q

q

q

q

q

?

?

?

?

Q

Q

Q

Q

q

q

q

q

?

?

?

?

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

2*

2

1/4θ1 (1–θ1) θ2 (1–θ2) (c1)

1/4θ1 (1–θ1) θ2  f2,2 (c2)

1/4θ1 θ2 (1–θ2)  f1,2(c3)

1/4θ1 θ2  f1,2  f2,2 (c4)

1/4 (1–θ1)
2
  (1–θ2)

2 (d1)

1/4 (1–θ1)
2θ2   f2,2 (d2)

1/4θ1(1–θ2)
2
  f1,2 (d3)

1/4θ1 θ2  f1,2  f2,2 (d4)

1/4[(1–θ1) (1–θ2) + θ1θ2]θ1θ2 (e1)

1/4θ1 (1–θ1) f2,2 (e2)

1/4(1–θ1) θ2 f1,2 (e3)

1/2(1–θ1) (1–θ2) f1,2  f2,2(e4)

1/4(1–θ1)
2 θ2 (1–θ2) ( f1)

1/4(1–θ1)
2 θ2  f2,2 ( f2)

1/4θ1 (1–θ2)
 θ2  f1,1 ( f3)

1/4θ1 θ2  f1,1 f2,2 ( f4)

1/4θ1 (1–θ1)(1–θ2)
2 (g1)

1/4θ1 (1–θ1)θ2  f2,2
 (g2)

1/4θ1  (1–θ2)
2
  f1,1  (g3)

1/4θ1 θ2  f1,1 
 f2,2 (g4)

1/4[θ1(1–θ2) + (1–θ1) θ2] θ1 θ2(h1)

1/4θ1(1–θ2) 
 f2,2 (h2)

1/4(1–θ1) θ2 
 f1,1 (h3)

1/2(1–θ1) (1–θ2) f1,1  f2,2(h4)

1*

2*

Q

q

1*

2*

1

2

?

?

3

4

1/2(1–θ1) (1–θ2) (b)

Maternal allelePaternal allele

1 ? 4

2 ? 4

1

2

?

?

2

4

1/2[θ1 (1–θ2) + (1–θ1) θ2] (a)

From these gametic probabilities, the QTL genotype probabilies of the son are calculated as follows:
P[Q?p | gL, gR] = [aΣci + bΣ fi]/ΣTot        P[Q?p | gL gR] = [aΣci + bΣ fi ]/ΣTot        P[q?p | gL gR] = [aΣdi + bΣgi ]/ΣTot

where

ΣTot = a 0Σci + Σdi + Σei 1 +  b 0Σ f i + Σ gi +  Σ hi1   .

(v) QTL mapping

The QTL genotype probabilities at a given map

position (p), obtained as described in (ii) and (iii) for

sons and grandsons respectively, can be used in

conjunction with phenotype ranks to measure the

evidence in favour of a segregating QTL at the

corresponding map position using a variant of the

Wilcoxon rank-sum test (Kruglyak & Lander, 1995b ;

Coppieters et al, 1998b). In addition to exploring the

potential information provided by the analysis of the

grandsons (G#DD Option I), we explored three

different approaches to combine the information from

sons and grandsons (G#DD Options II–IV). The
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power of these approaches was compared with the

conventional GDD exploiting information from sons

only (GDD).

(a) GDD

The GDD was performed as described in Coppieters

et al. (1998b). Briefly, for each founder sire we

calculated the value of :

Z
S
(p)¯Y

S
(p)}o©Y

S
(p)#ª,

where

Y
S
(p)¯ 3

nS

i="

[n
S
­1®2±rank(i)]

¬[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)],

in which n
S
is the number of sons; rank(i) is the rank

by phenotype of son i ; P[Q?
p
r g

L
, g

R
] is the probability

that progeny i has genotype Q? at map position (p)

given genotypes at the left (g
L
) and right (g

R
) flanking

markers ; P[q?
p
r g

L
, g

R
] is the probability that progeny

i has genotype q? at map position (p) given genotypes

at the left (g
L
) and right (g

R
) flanking markers ; and

o©Y
S
(p)#ª

is the standard deviation of Y
S
(p) expected under the

null hypothesis of no QTL over all possible sets of

genotypes. ©Y
S
(p)#ª can be shown (Kruglyak &

Lander, 1995b) to equal

©Y
S
(p)#ª¯ 0n$®n

3 1© [P
i
(Q?

p
r g

L
, g

R
)

®P
i
(q?

p
r g

L
, g

R
)]#ª.

©[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#ª,

the expected value of

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#

over all possible genotypes was determined for each

sire by generating all possible sons (Y
S
) and calculating

the mean of

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#

weighted by the expected frequencies of the respective

offspring. Squared values of Z
S
(p) were summed over

the n
f

sires, yielding a χ# statistic with n
f

degrees of

freedom.

(b) G#DD – Option I

In the first option of the G#DD we explored the

amount of information that could be extracted from

the grandsons by generating the statistic Z
GS

(p) for

each sire, calculated as

Z
GS

(p)¯Y
GS

(p)}o©Y
GS

(p)#ª,

where

Y
GS

(p)¯ 3
nGS

i="

[n
GS

­1®2±rank(i)]

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)],

in which n
GS

is the number of grandsons; rank(i) is the

rank by phenotype of grandson i ; P[Q?
p
r g

L
, g

R
] is the

probability that grandson i has genotype Q? at map

position (p) given genotypes at the left (g
L
) and right

(g
R
) flanking markers ; P[q?

p
r g

L
, g

R
] is the probability

that grandson i has genotype q? at map position (p)

given genotypes at the left (g
L
) and right (g

R
) flanking

markers ; and

o©Y
GS

(p)#ª

is the standard deviation of Y
GS

(p), expected under the

null hypothesis of no QTL over all possible sets of

genotypes. As for the sons, ©Y
GS

(p)#ª can be shown

(Kruglyak & Lander, 1995) to equal

©Y
GS

(p)#ª¯

0n$®n

3 1©[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#ª.

©[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#ª,

or the expected value of

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#

over all possible genotypes was determined by

simulating 1000 grandsons (Y
GS

) and calculating the

mean of

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#.

Under the null hypothesis of no QTL, Z
GS

is a

standard normal variable that reduces to a Wilcoxon

rank-sum test at the marker positions. Squared values

of Z
GS

(p) were summed over the n
f
sires, yielding a χ#

statistic with n
f
df.

(c) G#DD – Option II

In the second option of the G#DD, the information

extracted from sons and grandsons was combined by

generating the Z
S
(p) and Z

GS
(p) statistics for each sire

as described above, and combining them as follows:

3
nf

f="

[Z #
S, f

­Z #
GS, f

]¯χ#

#nf

, (1)

which yields a χ# statistic with 2¬n
f
df.
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(d ) G#DD – Option III

Squaring Z
S, f

and Z
GS, f

prior to their summation, as

in (1), has the advantage that it yields a statistic with

a known χ# distribution. The disadvantage of this

approach, however, is that it does not constrain the

sign of the QTL effect to be the same in the sons and

grandsons of a given sire. We have therefore explored

an alternative approach in which the pairs of Z values

obtained by this procedure for the n
f
founder sires are

combined as follows:

3
nf

f="

[Z
S, f

­Z
GS, f

]#.

The resulting statistic is not distributed as a χ# any

longer. However, statistical significance of the data

can be estimated by phenotype permutation according

to Churchill & Doerge (1995; see hereafter). Note that

this approach does not constrain the magnitude of the

QTL effect to be identical in sons and grandsons.

(e) G#DD – Option IV

In the fourth approach, a single statistic was generated

for each founder sire :

Z
S+GS

(p)¯Y
S+GS

(p)}o©Y
S+GS

(p)#ª,

where

Y
G+GS

¯ 3
nS+nGS

i="

[n
S
­n

GS
­1®2±rank(i)]

[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)],

in which n
S
is the number of sons, and n

GS
the number

of grandsons; rank(i) is the rank by phenotype of son

or grandson i, within the pool of sons and grandsons

of founder sire f ; P[Q?)
p
r g

L
, g

R
] is the probability that

progeny i has genotype Q? (or q?) at map position (p)

given genotypes at the left (g
L
) and right (g

R
) flanking

markers ; and

o©Y
S+GS

(p)#ª

is the standard deviation of Y
S+GS

(p)#, expected under

the null hypothesis of no QTL over all possible sets of

genotypes. Y
S+GS

(p)# was calculated as

((n
S
­n

GS
)$®(n

S
­n

GS
))}3,

multiplied by the weighted average of

©[P
i
(Q?

p
r g

L
, g

R
)®P

i
(q?

p
r g

L
, g

R
)]#ª

of the sons and grandsons.

The resulting Z
S+GS

values were combined across

the n
f
founder sires as follows:

3
nf

f="

Z #
S+GS, f

¯χ#
nf

,

yielding a χ# statistic with n
f
df.

(vi) Significance thresholds

Chromosome-wide significance thresholds were de-

termined from the distribution of the test statistic over

10000 permutations (simulated data set) or 1000000

permutations (real data set) of the ranks in a manner

similar to that suggested by Churchill & Doerge

(1995). Permutations of the ranks (whether of sons,

grandsons or the pools of sons plus grandsons) were

performed within sires. For each permutation, the

highest value of the test statistic over the entire

chromosome was retained in order to yield ‘chro-

mosome-wide’ distributions of the test statistic under

the null hypothesis. For the real data set, a Bonferroni

correction was applied to the chromosome-wide

significance level, considering that chromosome 6

represents 1}29th of the bovine autosomes and that

we analysed the equivalent of three independent traits

(Spelman et al., 1996), in order to obtain ‘experiment-

wide’ significance thresholds.

2.3. Pedigree material

The pedigree material used in this study was a subset

(Dutch population) of a previously described Hols-

tein–Friesian grand-daughter design comprising 907

sons distributed over 22 paternal half-sib families

(Spelman et al., 1996; Coppieters et al., 1998a). The

number of sons per sire-family ranged from 11 to 148.

Analysis of the pedigree relationships showed that 904

of the sons were also grandsons of one of the founder

sires in our pedigree material. Six hundred and thirty-

one were maternal grandsons from 14 founder sires,

while 273 were paternal grandsons from three founder

sires. Two hundred and nineteen sons had both their

paternal and maternal grandsire in the available

pedigree material. The number of grandsons per

maternal grandsire ranged from 2 to 219, and from 22

to 225 per paternal grandsire.

2.4. Simulated data-set

To evaluate the relative efficacy of the four G#DD

options with respect to each other and the con-

ventional GDD, we simulated the segregation of a

biallelic QTL (Q, q) in the previously described

pedigree material. The QTL was assumed to be in

Hardy–Weinberg equilibrium in the general popu-

lation with allelic frequencies of 0±75 and 0±25 for Q

and q respectively. Founder-sires therefore had an a

priori probability 2pq¯ 0±375 to be heterozygous Qq

for the QTL. Following Falconer’s notation (Falconer

& MacKay, 1996), and assuming additively acting

alleles, the average phenotypic values of the QQ, Qq

and qq genotypic classes were set at ­a, d¯ 0 and
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®a, respectively. The residual variation σ#
R
, was

assumed to be non-genetic and normally distributed.

Values for a and σ
R

were chosen such that the average

effect of the Q to q allele substitution, α¯ a, equalled

0±5σ
P
. Therefore, the variance attributable to the

segregation of the QTL (σ#
QTL

¯ 2pqa#) corresponded

to 9±4% of the total phenotypic variance (σ#
P
¯

σ#
QTL

­σ#
R
). To test the effect of marker density

on detection power, we positioned the QTL within

both a sparse and a dense marker map. The sparse

map comprised three markers which were 15

recombination units apart, with the QTL positioned

in the middle of the second marker interval :

M
"
–(15%)–M

#
–(8%)–QTL–(8%)–M

$
. Two additi-

onal markers flanking the QTL were added in the

dense map: M
"
–(15%)–M

#
–(5±6%)–M

$
–(2±7%)–Q-

TL–(2±7%)–M
%
–(5±6%)–M

&
. Both maps therefore

totalled 35±3 cM (Haldane).

Markers were assumed to be polyallic markers with

frequencies randomly assigned from a uniform dis-

tribution and re-scaled to sum to unity, yielding a

heterozygosity of

h¯1®&"

!

…&"

!

&"

!

3
b

i="

p#
i

03b
i="

p
i12

±dp
"
±dp

#
…dp

b
,

where p
i
is the frequency of the ith allele randomly

chosen from the uniform distribution for the locus in

question. The number of marker alleles was set at four

yielding an expected heterozygosity of 67%, which is

very comparable to what is observed in reality with

microsatellite markers in cattle populations.

Three hundred different data-sets were simulated

with both the dense and sparse map. These simulated

data-sets were analysed using the conventional GDD

approach as well as using the four options of the

G#DD. For each data-set, marker allele frequencies to

be used in the QTL mapping procedure were estimated

from the data as previously described (Georges et al.,

1995). For each of the three hundred replicates we

performed 10000 phenotype permutations, which

were each analysed using the five models. For each

permutation, the highest values of the χ# statistics

along the chromosome map were stored for each

model. These values were combined in order to yield

a data-set- and model-specific distribution of the

chromosome-wide test statistic under the null hypo-

thesis of no QTL. The corresponding distributions

were then utilized to measure the p value of the

unpermutated data. The distribution of p values was

compared across models though within maps using

the Wilcoxon matched pair test (Hollander & Wolfe,

1973). The distribution of p values obtained with the

sparse versus dense maps was compared within models

using the Mann–Whitney U-test (Hollander & Wolfe

1973).

2.5. Real data-set

Performance of the G#DD was evaluated on a real

data-set, i.e. the previously described pedigree material

genotyped for nine microsatellite markers spanning 46

cM of bovine chromosome 6: URB016, BM1329,

BM143, TGLA37, ILSTS097, BM4528, BM4621,

RM028 and BM415. The corresponding micro-

satellites, marker order and recombination rates

between adjacent markers as deduced from the

corresponding data have been described previously

(Coppieters et al., 1998b).

The records that were used for linkage analysis were

the sons’ daughter yield deviations (DYD) for protein

per cent, corrected for half the DYD of their sire (Van

Raden & Wiggins, 1991), DYDs were directly ob-

tained from Holland Genetics (Arnhem, The Neth-

erlands), and Livestock Improvement Corporation

(Hamilton, New Zealand).

3. Results

(i) Simulated data

Table 3 summarizes the results obtained with the

simulated data. It can be seen that information from

grandsons can indeed by extracted using the proposed

approach as the simulated QTL could be detected

20–25% of the time using information from the

grandsons only (G#DD-I). This value has, however, to

be compared with a power of 46–58% when using the

conventional GDD.

Moreover, analysis of Table 3 shows that in-

formation from sons and grandsons can be advan-

tageously combined as average p value decreases and

conversely power increases when comparing the GDD

with the G#DD versions II–IV. This is particularly

true for the G#DD–IV where sons and grandsons are

ranked as a single group. Using the Wilcoxon matched

pair test to compare the distribution of p values

obtained with the G#DD–IV versus the other models

shows that it is very significantly superior to all other

approaches (P! 0±0001), using both the sparse

and the dense maps. There is some indication of

the superiority of the G#DD–II and G#DD–III

approaches above the conventional GDD as average P

values decrease and power increases, respectively. For

the trio GDD, G#DD–II and G#DD–III, however,

distributions of P values as compared with the

Wilcoxon matched pair test were essentially not

significantly different (0±10!P! 0±60).

The effect of marker density on power was assessed

by comparing the distribution of P values obtained

with the sparse versus the dense map for each of the

five analysis models. Power increased by 26%, 25%,

25%, 32%and 27% for the G#DD–I,GDD, G#DD–I,

G#DD–III and G#DD–IV respectively. Comparing

the corresponding distributions of P values using the
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Table 3. Summary of simulations: results on power and mapping precision

Map G#DD–I GDD G#DD–II G#DD–III G#DD–IV

Average P value Sparse 0±333 (!) 0±164 (¯) 0±146 (¯) 0±144 (!) 0±124
Dense 0±307 (!) 0±117 (¯) 0±103 (¯) 0±101 (!) 0±072

Power at α¯ 0±05 Sparse 0±20 0±46 0±48 0±49 0±55
Dense 0±25 0±58 0±60 0±65 0±70

Mapping precision Sparse 14±0 10±9 12±6 12±2 11±4
Dense 12±3 9±8 10±7 9±3 8±4

Comparison of the average P value, detection power (% of simulations yielding a statistic significant at the 5% level) and
mapping precision (standard deviation of the difference between real and estimated QTL position) obtained on 300 data-sets
simulated as described and analysed according to five distinct methods labelled GDD and G#DD–I to –IV and genetic maps
of two marker densities : sparse and dense. The (!) and (¯) signs indicate that the corresponding model is either significantly
inferior to (!) or not significantly different from (¯) the models in the next columns.
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Fig. 2. Information content obtained for sons (upper line, crosses) and grandsons (lower line, plus signs) along the
chromosome 6 microsatellite map.

Mann–Whitney U-test showed the high significance of

this effect for all models (P! 0±00001) except for the

G#DD–I (P¯ 0±13). We would have assumed a priori

that an increase in marker density would have

benefited particularly the four G#DD options as the

chromosomes are to be traced via the ungenotyped

dam generation in these schemes. This was, however,

not clearly apparent from these results.

Estimates of the precision in the estimation of QTL

positions were also compared. Table 3 shows the

standard deviation of the difference between real and

estimated position of the QTL for all simulations

yielding a signal exceeding the 5% chromosome-wide

significant threshold. Comparing the difference be-

tween real and estimated position using the Mann–

Whitney U-test, we found that the G#DD–I was

significantly less precise than all other schemes using

both the sparse and the dense map. None of the other

observed differences proved significant at the 5%

level. Nevertheless, we note the following tendencies :

(i) as expected, the mapping precision improves overall

when increasing the marker density, (ii) GDD#–II to

–IV seem to be slightly less precise than the GDD

when using the sparse map, and (iii) GDD#–II and

–III seems to be equally as precise as the GDD when

using the dense map, while GDD#–IV might even be

superior. As previously noted, for most QTL mapping

experiments (e.g. Coppieters et al., 1998b), the
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Fig. 3. Location scores, expressed as log(1}p), obtained along the chromosome 6 microsatellite map using the GDD
(crosses), G#DD–I (plus signs), G#DD–II (triangles), G#DD–III (squares) and G#DD–IV (circles). Using the G#DD–IV
option the location scores ‘saturate ’ between positions 13 and 29 cM, reflecting the fact that none of the million
permutations yielded chi-squared values as high as those obtained with the real data.

mapping precision is essentially poor under all

envisaged scenarios.

(ii) Real data set

Fig. 2 illustrates the information content of the

marker data when considering the sons and grandsons

respectively. The information content is calculated

(see Section 2) such that it cannot exceed 50% for the

grandsons, as half of these would inherit neither of the

grand-paternal chromosomes. It can, therefore, be

seen that more than 70% of the theoretical maximum

information can be extracted from the grandsons

using this map. This is not very different from the

information content obtained with the sons, showing

that the multipoint approach used to trace the

segregation through the ungenotyped dam generation

is quite effective.

Fig. 3 shows the location scores (log
"!

(1}p))

obtained along the marker map using the five

approaches. It can be seen that when analysing the

grandsons only, the analysed data-set provides very

limited evidence for the segregation of a QTL.

Analysing the sons only using the GDD provides very

significant evidence for the presence of a QTL on this

chromosome as previously reported (Spelman et al.,

1996; Coppieters et al., 1998b). Combining the

information from sons and grandsons seem to have a

modest but deleterious effect when using the G#DD–II

approach, though a favourable effect for the

G#DD–III and G#DD–IV approaches. Particularly

when using the G#DD–IV model the increase in

significance is quite substantial, going from P! 0±005

(GDD) to P! 0±0001.

4. Discussion

We herein develop an approach to extracting linkage

information from a frequently occurring relationship

that is usually ignored when using the grand-daughter

design (Weller et al., 1990) : the fact that many sons

share a common grandsire. We demonstrate how a

previously described sum-of-rank based method

(Coppieters et al., 1998b) can be extended to extract

linkage information from the relationship between a

sire and its grandsons either independently (GDD#–I)

or combined with the conventional information from

the relationship between the sire and its sons

(GDD#–II to –IV). Besides the fact that it is easy to

implement, this approach extends the scope of QTL

mapping to a variety of traits not normally distributed,

such as counts generated by a Poisson distribution,

truncated data, probabilities and qualitative data. It is

also perfectly applicable to normally distributed traits

with minimal loss of power. The proposed approach

is sufficiently fast to allow for the determination

of chromosome-wide significance thresholds using

phenotype permutation (Churchill & Doerge, 1995).

Disadvantages of the method are the fact that the

rank-based approach does not yield an estimate of the

QTL effect, and that it obviously does not exploit all

available linkage information as would ‘full pedigree
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analysis ’ (e.g. Hoeschele et al., 1997; Bink & van

Arendonk, 1998). We believe, however, that it targets

the most informative relationships in the context of

the GDD and therefore represents a useful compro-

mise between power increase and ease of implemen-

tation.

The method accounts for the missing genotypes of

the dams, i.e. chromosome segregation is traced from

grandsires to grandsons via their ungenotyped dams.

By doing so, the method requires estimation of the

probabilities that the dam has inherited either one or

the other paternal QTL allele. This could be used to

extract additional information from the dams’ pheno-

types. It would be fairly easy to implement this

added feature. However, so far we have elected not to

as the phenotypes of the dams are characterized by a

much lower reliability than that of progeny-tested

sires, and because bull-dams are known to represent a

very biased sample.

The G#DD–I, in which information is extracted

from grandsires only, has successfully been used as a

validation tool to confirm the genuine nature of QTL

detected using the GDD (Coppieters et al., 1998a ;

Arranz et al., 1998; Spelman & Bovenhuis, 1998).

QTL are first mapped using the GDD in an across-

family approach. Likely heterozygous ‘Qq ’ sires can

then be identified on the basis of within-family

statistics. The confirmation of a significant phenotypic

contrast between the sire’s homologues in their

grandsons validates the putative QTL. Note that the

number of grandsons needs to be sufficiently large to

reach an acceptable validation power. However, as

one can focus on a single trait and a limited

chromosome segment in such validations, the penalty

paid for multiple testing is much lower than in the

initial whole-genome scan.

Alternatively, information from sons and grandsons

can readily be combined (G#DD–II to –IV) to extract

more information from the available data. QTL that

did not reveal a significant signal when performing a

conventional GDD analysis could be detected using

the G#DD–IV model (W. Coppieters, unpublished).

As expected, the G#DD–IV option, in which sons and

grandsons of a given sire are treated and ranked as a

single pool of observations, proved to be the most

powerful approach when applied to the simulated

data. To be as effective with real data, however, the

expected average rank of sons and grandsons should

be identical, allowing them to be pooled. A number of

reasons could be invoked that could lead to a violation

of this assumption when dealing with real data.

Selection might cause an upward shift of the pheno-

types when comparing grandsons and sons. Also,

while the phenotypes used in this analysis were DYDs

corrected for half of the paternal DYDs to account

for sire effects, the quarter of the grandpaternal effect

not being accounted for in the grandsons could lead to

a shift between sons and grandsons. Evidence for a

son versus grandson effect on the utilized phenotype

was tested for in our material and shown not to depart

from random expectation (data not shown). Not

surprisingly, therefore, the G#DD–IV proved also to

be the most effective approach when applying it on the

real data. If there were evidence for significant shifts

between sons and grandsons, however, the G#DD–III

approach would be preferred despite the a priori

potential loss of power.
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