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Two common definitions of the spatially local rate of kinetic energy cascade at some
scale � in turbulent flows are (i) the cubic velocity difference term appearing in the
‘scale-integrated local Kolmogorov–Hill’ equation (structure-function approach), and (ii)
the subfilter-scale energy flux term in the transport equation for subgrid-scale kinetic
energy (filtering approach). We perform a comparative study of both quantities based on
direct numerical simulation data of isotropic turbulence at Taylor-scale Reynolds number
1250. While in the past observations of negative subfilter-scale energy flux (backscatter)
have led to debates regarding interpretation and relevance of such observations, we argue
that the interpretation of the local structure-function-based cascade rate definition is
unambiguous since it arises from a divergence term in scale space. Conditional averaging
is used to explore the relationship between the local cascade rate and the local filtered
viscous dissipation rate as well as filtered velocity gradient tensor properties such as
its invariants. We find statistically robust evidence of inverse cascade when both the
large-scale rotation rate is strong and the large-scale strain rate is weak. Even stronger net
inverse cascading is observed in the ‘vortex compression’ R > 0, Q > 0 quadrant, where
R and Q are velocity gradient invariants. Qualitatively similar but quantitatively much
weaker trends are observed for the conditionally averaged subfilter-scale energy flux. Flow
visualizations show consistent trends, namely that spatially, the inverse cascade events
appear to be located within large-scale vortices, specifically in subregions when R is large.
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1. Introduction

The classic description of the energy cascade in turbulence postulates that kinetic
energy originates from forcing large-scale eddies, is transferred subsequently to
smaller-scale eddies (forward cascade), and is dissipated eventually due to viscous
effects (Richardson 1922; Kolmogorov 1941). In a statistical sense, the sign and
magnitude of third-order moments of velocity increments confirm this general direction
of the energy cascade, as described by the 4/5 law governing the global average
of the third-order longitudinal velocity increment (Kolmogorov 1941; Frisch 1995),
〈δuL(�)3〉 ≡ 〈([u(x + �) − u(x)] · �/�)3〉 = −4

5�〈ε〉, where 〈·〉 denotes global averaging,
δuL(�) is the longitudinal velocity increment, and ε is the viscous dissipation rate, while
the displacement � = |�| is assumed to be well inside the inertial range of turbulence. In
this sense, the quantity −5

4 〈δuL(�)3〉/� is often interpreted as a measure of the energy
flux going from scales larger than � to all smaller scales. Because turbulence is known
to be highly intermittent in space and time (Kolmogorov 1962; Meneveau & Sreenivasan
1991; Frisch 1995), there has also been much interest in characterizing the local properties
of the energy cascade, i.e. the fluctuations of the energy flux before averaging. However,
without statistical averaging, the 4/5 law is less meaningful, e.g. the quantity −5

4δu3
L/�

cannot simply be interpreted as an energy flux locally in space and time. To enable such
interpretation, it is necessary to consider explicit angular averaging over all possible
directions of the vector �. Such formulations have been developed in prior works by
Duchon & Robert (2000), Eyink (2002) and Hill (2001, 2002). Duchon & Robert (2000)
and Eyink (2002) use such equations to study the energy cascade and energy dissipation in
the limit of zero viscosity. A review about extensions to the classic Kolmogorov equation
is presented by Dubrulle (2019), focusing specifically on the Duchon & Robert (2000)
local formulation.

Hill (2001, 2002) developed a local version of the Kolmogorov equation in which the
reference position x is located symmetrically halfway between the two points x + r/2 and
x − r/2 separated by r over which the velocity increment is computed. This equation,
which we will denote as the Kolmogorov–Hill (KH) equation – sometimes also called
the Kármán–Howarth–Monin–Hill (Danaila et al. 2012; Yasuda & Vassilicos 2018) or
generalized Kolmogorov (Marati, Casciola & Piva 2004) equation) – describes the
evolution of the second-order (squared) velocity difference, a measure of energy content
of all scales smaller than |r| at a specific physical position x. As will be reviewed in § 2,
scale-space integration over r of the KH equation up to some scale � in the inertial range
and without additional statistical averaging provides a localized description of the energy
cascade process (Hill 2002; Yasuda & Vassilicos 2018). The KH equation also includes
effects of viscous dissipation, viscous diffusion, advection and pressure. A number of
prior works have studied various versions of the KH equation. For isotropic turbulence,
Yasuda & Vassilicos (2018) quantified the variability of the energy flux that arises in
this equation, while Carbone & Bragg (2020) considered a definition of mean energy
flux approximated based on solenoidal filtered velocity increments, and examined its
connections to average vortex and strain stretching rates. Besides applications to isotropic
homogeneous flow, numerous studies have investigated the application of the statistically
averaged KH equation to spatially non-homogeneous flows. For instance, in wall-bounded
flows, researchers have explored the energy cascade using a Reynolds decomposition
to isolate effects of mean shear and non-homogeneity (Antonia et al. 2000; Danaila
et al. 2001, 2012; Danaila, Anselmet & Zhou 2004; Marati et al. 2004; Cimarelli, De
Angelis & Casciola 2013). Investigations have also studied the energy cascade rates in
boundary layer bypass transition (Yao, Mollicone & Papadakis 2022) and flow separation
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Energy cascade in turbulence

(Mollicone et al. 2018). Furthermore, specific attention has been given to the study of
inverse cascade in wake flows (Gomes-Fernandes, Ganapathisubramani & Vassilicos 2015;
Portela, Papadakis & Vassilicos 2017) and at turbulent/non-turbulent interfaces (Zhou &
Vassilicos 2020; Cimarelli et al. 2021; Yao & Papadakis 2023).

The notion of transfer, or flux, of kinetic energy across length scales is of particular
practical interest also in the context of large eddy simulations (LES). There, the rate of
energy cascade is referred to commonly as the subgrid-scale (SGS) or subfilter-scale (SFS)
rate of dissipation. It is defined as the contraction between the subgrid stress tensor and the
filtered strain-rate tensor, and arises as a source term in the transport equation for SGS/SFS
kinetic energy (Piomelli et al. 1991; Meneveau & Katz 2000). This quantity characterizes
the energy transfers between the resolved scale and the residual scale within the inertial
range, which is also a local property (Eyink & Aluie 2009). The SGS dissipation is highly
intermittent (Cerutti & Meneveau 1998), and can be both positive and negative locally, but
on average, energy is known to be transferred from large scales to the residual scales
(forward cascade). There is a considerable literature on the subject, starting from the
seminal papers by Lilly (1967), Leonard (1975) and Piomelli et al. (1991). Some reviews
include Meneveau & Katz (2000), Meneveau (2010) and Moser, Haering & Yalla (2021).

Without averaging, it has been a common observation that the SGS/SFS dissipation can
be negative, which has often been interpreted as indicative of local inverse cascading of
kinetic energy, i.e. energy transfer from small to large scales of motion (‘backscatter’;
Piomelli et al. 1991). Borue & Orszag (1998) noted that the forward cascade occurs
predominantly in regions characterized by strong straining, where the magnitude of
negative skewness of the strain tensor and vortex stretching are large. Conversely,
backscatter was observed in regions with strong rotation. The relationship between SGS
dissipation and stress topology and stress–strain alignment geometry was discussed and
measured based on three-dimensional (3-D) particle image velocimetry measurements
by Tao, Katz & Meneveau (2002). In a more recent study, Ballouz & Ouellette (2018)
investigated the SGS tensor by considering the relative alignment of the filtered shear
stress and strain tensors. They found that the energy cascade efficiency is quite low,
a trend that they attributed to energy being transferred largely between positions in
physical space. Quantitatively, in expressing the subgrid stress tensor as a superposition
of all smaller-scale Gaussian-filtered velocity gradients, Johnson (2020, 2021) was able to
isolate the relative contributions of small-scale strain self-stretching and vortex stretching,
finding both to be important.

It has been questioned whether it is the local quantity −τijS̃ij (where τij and S̃ij are the
SGS stress and resolved strain-rate tensors, respectively) or the work done by the SGS/SFS
force, ũi ∂jτij (where ũi is the resolved velocity) that should be the genuine definition of
local energy cascade rate. For instance, Kerr, Domaradzki & Barbier (1996) used the latter
in their study of correlations of cascade rate and vorticity, and more recently Vela-Martín
& Jiménez (2021) used both quantities in their analysis. Moreover, the SGS force plays
a central role for optimal LES modelling (Langford & Moser 1999). The SGS force is
invariant to divergence-free tensor fields, which therefore do not affect the large-scale
dynamics, but certainly addition of such a tensor field to τij can affect the usual definition
of SGS dissipation −τijS̃ij. By re-expressing the SGS stress and dissipation terms using an
optimization procedure, Vela-Martín (2022) provided arguments that the often observed
backscatter does not actually contribute to the energy cascade between scales but rather to
the energy flux in the physical space, also suggesting that backscatter does not need to be
modelled explicitly in LES.
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As can be seen from this partial summary of the literature on backscatter and inverse
cascade in the LES filtering approach, no consensus has been reached regarding the
possible importance and physical interpretation of local backscatter using the definition
based on the inner product of the subgrid stress and filtered strain-rate tensors. Also, the
question of inverse cascade has not received much attention from the point of view of the
local versions of the Kolmogorov equation in the structure-function approach. Therefore,
in this paper we first revisit the generalized local structure-function formulation (§ 2.1).
We argue that in this formulation, the term responsible for the energy cascade can be
interpreted unambiguously as a flux of kinetic energy between scales since it appears
inside a divergence in scale space. In this sense, it differs from the filtering formulation
used in LES (reviewed in § 2.2) in which typically a fixed filter scale is used and no change
in scales is considered, thus making the concept of a ‘flux in scale space’ less clearly
defined and open to various interpretations.

With the definition of local cascade rate or energy flux clarified for the structure-function
approach, we perform a comparative study of both the structure-function and filtering
approaches’ energy flux terms in a relatively high Reynolds number direct numerical
simulation (DNS) database of forced isotropic turbulence at a Taylor-scale Reynolds
number 1250. The data analysis is greatly facilitated by the availability of these data in
a new version of the Johns Hopkins Turbulence Database (JHTDB) system, in which
Python notebooks access the data directly (see Appendix A). The comparisons involve
various statistical properties of the energy flux. First, in § 3 we provide comparisons
of both quantities by means of simple statistical measures such as their mean values,
joint probability density distributions and correlation coefficients, comparing both the
two definitions of kinetic energy and kinetic energy cascade rate or flux. We then
examine comparatively conditional averages based on the local molecular dissipation
rate averaged over a ball of size �, specifically re-examining the Kolmogorov refined
similarity hypothesis (KRSH) in § 4. Then in § 5 we present comparative conditional
averages of kinetic energy flux based on properties of the large-scale velocity gradient field
such as the strain- and rotation-rate magnitudes, and the Q and R invariants. Particular
attention is paid to events of local negative energy flux and whether or not such events
can be considered to be of statistical significance. Overall conclusions are presented
in § 6.

2. Local energy flux in the structure-function and filtering approaches

In this section, both the structure-function-based (KH equation) and filtering (LES) energy
equations are reviewed. We focus on the term representing energy cascade (energy flux)
in each equation, and describe some of the prior efforts in the literature relating the
structure-function and filtering approaches.

2.1. Energy cascade rate/flux in the scale-integrated local KH equation
The KH equation is a generalized Kármán–Howarth equation that is derived directly from
the incompressible Navier–Stokes equations without any modelling. Before averaging, the
instantaneous KH equation with no mean flow and neglecting the forcing term reads (Hill
2001, 2002)

∂δu2
i

∂t
+ u∗

j
∂δu2

i
∂xj

= −∂δuj δu2
i

∂rj
− 8

ρ

∂p∗ δui

∂ri
+ ν

1
2

∂2δu2
i

∂xj ∂xj
+ 2ν

∂2δu2
i

∂rj ∂rj
− 4ε∗, (2.1)
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Figure 1. (a) Sketch showing local domain of integration over a ball of diameter � used in the symmetric Hill
(2002) structure-function approach in which pairs of points separated by distances r = 2rs up to � are used.
(b) Integration up to a ball of radius � in which pairs of points separated by distances r up to � are used as
in the approach of Duchon & Robert (2000). For volume averaging, in (a) 3-D integration over the vector rs
is performed at fixed x, while in (b) 3-D integration over the vector r is performed at fixed x. For surface
integrations, in (a) integration is done over the spherical surface of radius �/2, while in (b) it is done over a
spherical surface of radius �.

where δui = δui(x, r) = u+
i − u−

i is the velocity increment vector in the ith Cartesian
direction over displacement vector r. The superscripts + and − represent two points,
x + r/2 and x − r/2, in the physical domain that have a separation vector ri = x+

i −
x−

i and middle point xi = (x+
i + x−

i )/2 (see figure 1a). The superscript ∗ denotes the
average value between two points, e.g. the two-point average dissipation is defined as
ε∗(x, r) = (ε+ + ε−)/2, and ε± here is the ‘pseudo-dissipation’ defined at every point
as ε = ν(∂ui/∂xj)

2. (In Hill (2002), an alternate expression involving the real dissipation
was introduced – his (2.13) – at the cost of including an additional pressure term.) Note that
throughout this paper, when referring to ‘dissipation’ we will mean the pseudo-dissipation.
Also, we will use rs = r/2 to denote the radial coordinate vector from the local ‘origin’ x.

As remarked by Hill (2001, 2002), it is then instructive to apply integration over a sphere
in rs-space up to a radius �/2, i.e. over a sphere of diameter �. The resulting equation is
divided by the sphere volume V� = 4

3π(�/2)3 and a factor 4, and Gauss’ theorem is used
for the r-divergence terms (recalling that ∂r = 2 ∂rs), yielding

1
2V�

∫∫∫
V�

(
∂δu2

i /2
∂t

+ u∗
j

∂δu2
i /2

∂xj

)
d3rs

= − 3
4�

1
S�

∮
S�

δu2
i δuj n̂j dS − 6

ρ�

1
S�

∮
S�

p∗ δuj n̂j dS

+ ν

4
1

V�

∫∫∫
V�

(
1
2

∂2δu2
i

∂xj ∂xj
+ 2

∂2δu2
i

∂rj ∂rj

)
d3rs − 1

V�

∫∫∫
V�

ε∗ d3rs, (2.2)

where S� represents the bounding sphere’s surface of area S� = 4π(�/2)2, and n̂j is
the radial unit vector normal to the sphere surface. Equation (2.2) suggests defining a
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structure-function-based kinetic energy at scale � according to

ksf ,�(x, t) = 1
2V�

∫∫∫
V�

1
2

δu2
i (x, r) d3rs, (2.3)

so that the first term in (2.2) corresponds to ∂ksf ,�/∂t. The 1/2 factor in front of the integral
is justified since the volume integration over the entire sphere will double count the energy
contained in δu2

i = (u+
i − u−

i )2. Equation (2.2) thus describes the transport of two-point,
structure-function energy ksf ,�, which represents energy within eddies with length scales
up to � (Davidson 2015) in both the length scale � and physical position x spaces. The last
term in (2.2) represents the r-averaged rate of dissipation, with the radius vector rs = r/2
being integrated up to magnitude �/2:

ε�(x, t) ≡ 1
V�

∫∫∫
V�

ε∗(x, r) d3rs. (2.4)

As remarked by Hill (2001, 2002), this quantity corresponds directly to the spherical
average of local dissipation at scale �, and plays a central role in the celebrated KRSH
(Kolmogorov 1962).

The local energy cascade rate in the inertial range at position x and time t is defined as

Φ�(x, t) ≡ − 3
4�

1
S�

∮
S�

δu2
i δuj n̂j dS = − 3

4�
[δu2

i δuj n̂j]S�
, (2.5)

where [·]S�
indicates area averaging over the sphere of diameter �. We note that in this

definition, Φ�(x, t) represents the surface average of a flux that is defined positive if energy
is flowing into the sphere in the r-scale space. The position is fixed at x, thus the quantity
Φ�(x, t) does not contain possible confounding spatial transport effects.

In terms of the overall average of (2.2), under the assumptions of homogeneous isotropic
flow and statistical steady-state conditions, and for � in the inertial range of turbulence, the
unsteady transport and viscous terms vanish. The pressure term is also zero due to isotropy
and incompressibility. Therefore, (2.2) can be simplified and yields, as expected,

〈Φ�〉 = 〈ε�〉 = 〈ε〉, (2.6)

or equivalently, [δu2
i δuj n̂j]S�

= −(4/3)�〈ε〉, the 4/3 law (Frisch 1995).
In this paper, the focus will be mainly on the flux term Φ�, with some attention also

on the dissipation term ε�. Analysis of the time derivative, spatial advection terms and
pressure terms is left for other ongoing studies. The viscous flux terms (in both spatial and
scale spaces) are also not considered, since our present interest concerns the inertial range.

2.2. Energy cascade rate/flux in the filtering approach
In this subsection, we review the transport equation of the SGS kinetic energy (Germano
1992) for ksgs,� ≡ 1

2τii, where τij = ũiuj − ũiũj is the SGS stress tensor, with the tilde
symbol (∼) denoting spatial filtering of variables. The transport equation for ksgs,� reads
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(Germano 1992)

∂ksgs,�

∂t
+ ũj

∂ksgs,�

∂xj
= −1

2
∂

∂xj

(
ũiuiuj − 2ũi ũiuj − ũj ũiui − ũiũiũj

)− ∂

∂xj

(
p̃uj − p̃ũj

)
+ ∂

∂xj

(
ν

∂ksgs,�

∂xj

)
+ ν

∂ ũi

∂xj

∂ ũi

∂xj
− ν

˜∂ui

∂xj

∂ui

∂xj
− τijS̃ij. (2.7)

The last term is called the SGS rate of dissipation at position (x), and is often denoted as

Π�(x, t) ≡ −τijS̃ij. (2.8)

For filtering, in the present work, we consider a spherical-shaped sharp top-hat filter in
physical space with diameter �. Therefore, for any field variable A(x), we define the filtered
variable as Ã(x) = V�

−1 ∫∫∫
V�

A(x + rs) d3rs. Note that each term in (2.2) and (2.7) is thus
evaluated at the same length scale. Terms in (2.7) can be compared directly to terms in
(2.2); in particular, the local dissipation terms are exactly the same, i.e.

−ν
˜∂ui

∂xj

∂ui

∂xj
= − 1

V�

∫∫∫
V�

ν
∂ui

∂xj

∂ui

∂xj
d3rs = ε�(x, t). (2.9)

Again, for homogeneous steady-state turbulence in the inertial range (neglecting viscous
diffusion and resolved dissipation terms), upon averaging, (2.7) simplifies to

〈Π�〉 = 〈ε�〉 = 〈ε〉, (2.10)

which is similar to (2.6); thus on average, certainly the two definitions of energy cascade
rate/flux agree with each other, i.e. 〈Π�〉 = 〈Φ�〉.

It is also of interest to compare the average value of the two definitions of kinetic energy
used in both definitions of energy cascade rate/flux. In the inertial range of high Reynolds
number turbulence, both 〈ksf ,�〉 and 〈ksgs,�〉 can be evaluated based on the Kolmogorov r2/3

law and k−5/3 spectrum, respectively. The result is (see Appendix B for details) 〈ksf ,�〉 ≈
1.6 〈ε〉2/3�2/3 and 〈ksgs,�〉 ≈ 1.2 〈ε〉2/3�2/3. In other words, they are of similar order of
magnitude but the SGS kinetic energy is slightly smaller.

2.3. Other relationships between the structure-function and filtering approaches
In the present paper, we will perform the data analysis and comparisons using the
two approaches mentioned above (scale-integrated local KH and filtering formulations).
However, it is useful at this stage to include some remarks regarding other
structure-function and energy definitions used in earlier works by Vreman, Geurts &
Kuerten (1994), Constantin, Weinan E & Titi (1994), Duchon & Robert (2000), Eyink
(2002) and Dubrulle (2019). Those approaches focus typically on the structure function
written at one of the endpoints instead of the midpoint. Duchon & Robert (2000) and
Dubrulle (2019) focus on the two-point correlation quantity C(x, r) = ui(x) ui(x + r) (see
figure 1b). Local averaging over all values of r from r = 0 up to scale |r| = � at any
given x then corresponds to the ‘mixed’ energy quantity uiũi/2 (denoted as E� in Dubrulle
2019), where the filtering is over a sphere of diameter 2� so as to combine two points
with separation distances up to �. The quantity C(x, r) combines filtered and unfiltered
velocities, hence it is more difficult to interpret for comparisons of structure-function and
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LES filtering approaches. In their transport equation, Duchon & Robert (2000) show that
a term similar to the third-order structure-function term of (2.5) arises. However, in order
for the structure function to correspond to scale �, one has to choose to integrate over
a sphere of diameter 2� (the locally integrated dissipation rate would then be ε2�). In a
spherical integration over r of powers of the velocity difference [ui(x + r) − ui(x)], only
the first term is affected by filtering or averaging over the spherical shell, while the centre
velocity ui(x) remains fully local. Note that in the scale-integrated local KH equation, the
averaging affects both endpoint velocities in the same way, and both become averaged at
scale � in a formally symmetric way.

An early connection between structure-function and filtering approaches was developed
by Vreman et al. (1994). In the Vreman analysis, the structure function is defined based
on the difference of velocity ui(x + r) and the locally filtered velocity ũi centred at
x. Spherical integration of (ui(x + r) − ũi)

2 over a sphere of radius �/2 then yields
equivalence with the SGS kinetic energy at scale �. But (ui(x + r) − ũi)

2 does not equal
the usual structure-function definition, now due to a mixture of filtered and unfiltered
quantities at two points even before local filtering.

Another interesting approach was presented in Constantin et al. (1994) and connected
to the LES filtering approach by Eyink (1995, 2006) (equations (2.12)–(2.14) in the latter).
In fact, as recounted in the review by Eyink & Sreenivasan (2006), early unpublished
work by Onsager anticipated such expressions half a century prior. Written in terms of
the sharp spherical filter that we use here, the expression for the trace of the SGS stress
reads

τii(x) = 1
V�

∫∫∫
V�

[ui(x + r) − ui(x)]2 d3r −
(

1
V�

∫∫∫
V�

[ui(x + r) − ui(x)] d3r
)2

.

(2.11)

This equation represents an exact relationship between two-point structure functions and
the SGS kinetic energy. But for the right-hand side to correspond to structure functions
up to scale �, the integration must be done over a sphere of radius � and thus a filtering
scale of 2� for the stress tensor in the filtering formulation. The suggested relationship
then appears to be between SGS stress kinetic energy at scale 2� and structure functions
up to two-point separations � but averaged over a local domain of size 2�, similarly to
the Duchon & Robert (2000) approach. Note that while each of the terms in (2.11) is also
a mixture of filtered and unfiltered velocities, the subtraction cancels the local term and
restores the fully filtered property inherent in the definition of τii.

While not expecting qualitatively different results (except perhaps using the diameter
instead of the radius as a name for ‘scale’), we here continue our focus on the more
‘symmetric’ formulation by Hill, with fixed position x specified at the midpoint between
two points separated by vector r whose magnitude then spans up to scale � (or integration
radius rs up to radius �/2).

3. Comparisons between kinetic energies and cascade rates/fluxes

In this section, we provide comparisons of local kinetic energies in the structure-function
formalism, ksf ,�, with that in the filtering formalism, ksgs,�. We also compare the local
energy cascade rates Φ� and Π�. We consider data from DNS of forced isotropic
turbulence at Rλ = 1250 (the Taylor-scale Reynolds number) that used 81923 grid
points (Yeung, Donzis & Sreenivasan 2012) in a computational domain of size (2π)3.
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Energy cascade in turbulence

The integral scale of the flow is L = 1.24, the velocity root mean square is u′ = 1.58, and
the mean dissipation is 〈ε〉 = 1.36. More details about the data and simulation
parameters are available as supplementary material at https://doi.org/10.1017/jfm.2023.
1066. The analysis is performed at four length scales in the inertial range � =
{30, 45, 60, 75}η, where η = (ν3/〈ε〉)1/4 is the Kolmogorov length scale, the value
of which is 4.98 × 10−4. Comparing to the transverse Taylor microscale (Pope 2000)
λg = u′(15ν/2〈ε〉)1/2 ≈ 0.024, the four length scales are � = {0.62, 0.93, 1.24, 1.55}λg,
respectively.

To compute volume spherically filtered quantities such as ksgs,� and τij (and filtered
velocity gradient tensor, to be discussed in § 5), we fix the middle point coordinate x in
the physical domain. Subsequently, we download data in a cubic domain using the JHTDB
cutout service in a cube of size �3. The data are then multiplied by a spherical mask (filter)
to evaluate local filtered quantities. Other quantities are obtained by utilizing pre-computed
Getfunctions from the JHTDB, including spatial interpolation and differentiation, as
explained in more detail in Appendix A. For surface averages such as Φ�, we discretize
the outer surface of diameter � into 500 points (for the largest �/η = 75 case, 2000 points
are used) that are distributed approximately uniformly on the sphere. The accuracy of this
method of integration has been tested for the �/η = 45 case by comparing the results
from using 500 points to those using 2000 points, for a smaller testing subsample of 500
randomly chosen spheres. We verified that the difference between the mean values of Φ�,
as well as the average of the absolute value of differences, was less than 1 %. For volume
averages such as ε� and ksf ,�, we use 5 shells for �/η = 30, 45, 60. The outermost shell
comprises 500 uniformly distributed points, with a reduction in number of points towards
the inner shells, approximately maintaining the density. We tested 500 randomly chosen
spheres to calculate ε� at �/η = 45 using 5 shells and 10 shells. The difference between
the mean values of ε�, as well as the average of the absolute value of differences, was
less than 2 %. For the larger length scale �/η = 75, the number of shells was increased
to 6; the accuracy is tested using the same method as employed for �/η = 45. For all the
calculations, data on the specified points are obtained from the database using eighth-order
Lagrange spatial interpolation. We tested different spatial interpolation methods even
without interpolation (using the closest grid point values), verifying that essentially, the
averaged values of interest were unchanged.

Overall mean values are obtained at the four scales and are plotted in figure 2(a).
The results for kinetic energy for the structure-function approach are consistent with the
analytical evaluation (see Appendix B). For the SGS kinetic energy, the numerical results
fall below the theoretical inertial range prediction, due to the transfer function of top-hat
filtering having a very different spectral signature compared to the structure function,
and when integrating, it emphasizes the viscous range more than the structure-function
operation, reducing the amount of SGS kinetic energy even at scales much larger than the
Kolmogorov scale (see discussion in Appendix B).

Figure 3(a) shows the joint probability density function (p.d.f.) of ksf ,� and ksgs,� at scale
� = 45η. The correlation coefficient between the quantities is ρkk = 0.97 (figure 2b). The
correlation coefficient is defined as ρxy = 〈(x − 〈x〉)( y − 〈y〉)〉/(σxσy), where σ represents
the variable’s root mean square value. Similarly, figure 3(b) shows the joint p.d.f. of Π�

and Φ�, also at scale � = 45η for the same dataset. The correlation coefficient between
the quantities is measured to be ρΦΠ = 0.58 (figure 2b), significantly lower than for
the energies but still appreciable. It can be seen that negative values occur for both Π�

and Φ�, although it appears that Φ� has more variability and larger negative excursions
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Figure 2. (a) Normalized mean kinetic energies and mean cascade rates as functions of four filter scales for
the Rλ = 1250 DNS isotropic turbulence dataset. Specifically, closed squares show 〈ksf ,�〉/(〈ε〉�)2/3 while
closed circles show 〈ksgs,�〉/(〈ε〉�)2/3. Open squares show 〈Φ�〉/〈ε〉, while open circles show 〈Π�〉/〈ε〉. The
horizontal lines show the expected asymptotic values in the inertial range for mean kinetic energies in the
structure-function formulation (1.6) and in the filtering formulation (1.2), while the expected energy cascade
rates equal unity. (b) The correlation coefficients between kinetic energies (ρkk, downward triangles) and
cascade rates (ρΦΠ , upward triangles).
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Figure 3. Joint p.d.f.s of (a) ksgs,� and ksf ,� with contour line values 0.01, 0.03, 0.1, 0.3, 1, 3, and (b) Π� and
Φ� with contour line values 0.001, 0.003, 0.01, 0.3, 0.1, 0.3, at scale � = 45η measured in DNS of isotropic
turbulence at Rλ = 1250. The red dashed line represents a 45-degree slope line. The data and the editable
notebook can be found at https://www.cambridge.org/S0022112023010662/JFM-Notebooks/files/figure3.

than Π�. As summarized in § 1, the relevance of locally negative values of Π� to the
flow physics remains unclear, especially given the fact that upon averaging, the quantity
becomes positive. Conversely, the quantity Φ� has a clearer local interpretation, in the
sense that clearly, locally negative values can be interpreted as kinetic energy (local
δu2

i /2)) showing a net flux out of a sphere of diameter � in scale space, i.e. becoming
associated with energy at larger �, while its overall average is positive. An interesting
question is whether negative values of Π� or Φ� survive under some type of statistical
averaging. In the following sections, we use conditional averaging to quantify the
importance of negative values (inverse local cascade, or backscatter).

4. Conditional averaging based on local dissipation

Motivated by the KRSH and the fact that local viscous dissipation (small-scale) appears
in both the scale-integrated local KH equation and the SGS kinetic energy equation (i.e.
(2.4) is identical to (2.9)), in this section, we compare conditionally averaged cascade
rates/fluxes for both the structure-function and filtering formulations, conditioned on ε�,
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Figure 4. (a) Conditional averages of Z = Φ� (black symbols and lines) and Z = Π� (open symbols and
lines) based on local dissipation ε�. The red dashed line indicates the value of ε�. Different symbols denote
different scales: �/η = 30 (squares), 45 (triangles), 60 (circles) and 75 (diamonds). All values are normalized
with the globally averaged rate of dissipation 〈ε〉. (b) Log-log plot of conditional averages of Z = ksf ,� (black
triangles) and Z = ksgs,� (open triangles) based on local dissipation ε� for the case � = 45η. Black stars show
the conditional average of the longitudinal velocity increments Z = δu2

L, where δuL = δuj n̂j. The magenta
dashed line has slope 2/3 according to Kolmogorov theory.

i.e. 〈Φ�|ε�〉 and 〈Π�|ε�〉. According to the KRSH (Kolmogorov 1962), the statistical
properties of velocity increments depend on the local average dissipation within a sphere
of scale �, rather than being determined by the globally averaged dissipation. Written in
terms of the quantities of present interest, the KRSH would read 〈Φ�|ε�〉 = ε� since Φ� is
determined fully by the velocity increments envisioned in the KRSH. Loosely extending
the KRSH arguments to the filtering formalism would suggest 〈Π�|ε�〉 = ε�.

In order to assess this hypothesis, we evaluate the conditional averages based on the
same dataset as described before. Results for 〈Φ�|ε�〉 and 〈Π�|ε�〉 are shown in figure 4(a).
Results for the four scales considered are included. As can be seen, the plot shows close
agreement for both 〈Φ�|ε�〉 and 〈Π�|ε�〉 with ε�. It is important to note that Φ� and Π� are
conditioned on exactly the same values of ε�. The similarities and differences observed in
figure 4 indicate that Φ� and Π� share many properties (same conditional averages) but
they are not identical. For instance, it is clear from figure 3(b) that the variance of Φ�

exceeds that of Π�, even though their mean values are the same.
In general, the behaviours of both 〈Φ�|ε�〉 and 〈Π�|ε�〉 confirm the validity of the KRSH

in the present context. More detailed analysis of the KRSH for Φ� and connections to
(2.2) are reported in Yao et al. (2023). We also tested the KRSH using the full viscous
dissipation ν(∂ui/∂xj)(∂ui/∂xj + ∂uj/∂xi) instead of the pseudo-dissipation ν(∂ui/∂xj)

2

when computing ε�. The largest difference for 〈Φ�|ε�〉 is less than 1 %. Additionally, the
correlation coefficient between the two types of dissipation is 0.996.

Similarly, we evaluate the kinetic energies ksf and ksgs conditionally averaged on ε�.
Results for ksf and ksgs are essentially indistinguishable, except for a constant offset
consistent with the ratio of their mean values. In terms of their dependence on dissipation,
we observe power-law scaling ∼ε

β
� with β ∼ 0.79, slightly larger than the value 2/3

implied by standard Kolmogorov scaling. To verify the present data and analysis methods,
we also evaluate the traditional longitudinal second-order structure function conditioned
on ε�, 〈δu2

L|ε�〉 (where δuL = δuj n̂j), for which the Kolmogorov scaling ∼ε
2/3
� according

to the KRSH is well established (Stolovitzky, Kailasnath & Sreenivasan 1992). The result
(shown as stars in figure 4b) indeed confirms the 2/3 scaling for this quantity. A more
in-depth analysis and possible reasons for non-Kolmogorov scaling of ksf with ε� are
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left for future studies. At this stage, we simply note the similarity in scaling and overall
behaviour of ksf and ksgs.

5. Conditional averaging based on large-scale velocity gradients

In this section, motivated by large-scale properties of the flow that would be available in
LES, we explore correlations between properties of the velocity gradient tensor filtered
at scale � and the two definitions of energy cascade rate/flux. It is useful to cast the
present comparative study of Φ and Π using analyses of the type that have been performed
before in the context of LES. The velocity gradient tensor encapsulates information about
fluid deformation and rotation, and connections to the energy cascade have been studied
extensively. Already, Bardina, Ferziger & Rogallo (1985) examined the impact of rotation
on homogeneous isotropic turbulence and observed that rotation decreases the dissipation
(cascade) rate while increasing the length scales, suggestive of inverse energy cascade
effects. Goto (2008) investigated physical mechanisms underlying forward energy cascade
and argued that forward cascade can be triggered in regions characterized by strong strain
between two large-scale tubular vortices. The role of the filtered gradient tensor for energy
cascade was first explored numerically in Borue & Orszag (1998) and experimentally in
van der Bos et al. (2002), building on the ‘Clark model’ that approximates features of
the SGS tensor using Taylor-series expansion. Recent studies by Johnson (2020, 2021)
and Carbone & Bragg (2020) have expanded significantly on such analyses, and examined
the roles of strain-rate self amplification and vortex stretching driving the forward energy
cascade process. For inverse cascade, a vortex thinning mechanism may be at play
(Johnson 2021).

A first level of characterization of the properties of the velocity gradient tensor is its
invariants. To characterize rates of deformation and rotation, we evaluate the strain and
rotation invariants from data, defined according to

S2
�(x, t) = S̃ijS̃ij, Ω2

� (x, t) = Ω̃ijΩ̃ij, (5.1a,b)

where Sij and Ωij are the symmetric and antisymmetric parts of the velocity gradient tensor
Aij = ∂ui/∂xj, and the tilde denotes, as before, spherical top-hat filtering over a ball of
diameter �. For consistency with prior literature, these values will be normalized by the
overall average 〈Qw〉 = 1

2 〈Ω2
� 〉 (equal to 1

2 〈S2
�〉 in homogeneous turbulence).

A more detailed characterization of the statistics of velocity gradients involves the
invariants Q and R (Vieillefosse 1982). It is well known that the joint p.d.f. of Q and R
exhibits a characteristic teardrop shape (Chong, Perry & Cantwell 1990; Meneveau 2011),
from which flow topology information such as vortex stretching and compression can be
inferred (Chong et al. 1990; Borue & Orszag 1998; Lüthi, Holzner & Tsinober 2009;
Danish & Meneveau 2018). These two invariants (at scale �) are defined as usual according
to

Q�(x, t) = −1
2 ÃijÃji, R�(x, t) = −1

3 ÃijÃjkÃki. (5.2a,b)

Under the assumption of restricted Euler dynamics (Meneveau 2011), the transport
equation for the velocity gradient tensor leads to dQ�/dt = −3R� and dR�/dt = −2

3 Q2
�

(Cantwell 1992). The quantity R� can thus be considered as the (negative) rate of change
of Q�, and contains both vortex stretching and strain self-stretching mechanisms (Johnson
2021). In our comparative investigation of energy cascade rates, conditional averaging
based on the four invariant quantities S2

� , Ω2
� , Q� and R� will be undertaken.

We begin with qualitative visualizations of the fields in small subsets of the domains
analysed. Figures 5(a,b) depict sample instantaneous fields of Φ� and Π�, respectively,
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Figure 5. (a–d) Instantaneous Φ�, Π�, S2
� and Ω2

� fields, respectively, with � = 45η in a 750η × 750η domain
(500 × 500 points of the DNS grid). The black solid circles in (a,b) are located in the strong local forward
cascade region, which is correlated to the strong local strain rates marked in the black circles in (c). The red
dashed circles in (a,b) are located in local inverse cascade regions (negative energy fluxes), which appear
correlated qualitatively to relatively strong local rotation rates marked in the red dashed circles in (d).

highlighting regions of strong local forward cascade (indicated by solid black circles) and
strong inverse cascade (indicated by dashed red circles). The correlation between these
two variables is evident; the computed correlation coefficient between the snapshots is
0.64. In both figures 5(a,b), the fluxes are normalized by the global averaged dissipation
〈ε〉. As already noted based on the joint p.d.f.s, there are differences between Φ� and Π�.
The maximum magnitude of the positive cascade rate in Φ� is approximately twice that
of Π�, while the magnitude of the negative cascade rate in Φ� is approximately 3–4 times
larger. Since 〈Φ�〉 ∼ 〈Π�〉 ∼ 〈ε�〉 ∼ 〈ε〉, the significant different maximum values indicate
that Φ� is more variable and intermittent than Π�. Also, Φ� exhibits somewhat finer-scale
spatial features.

5.1. Conditional statistics based on strain rate (S2
�) and rotation rate (Ω2

� )

Figures 5(a,b) show distinct regions including both local forward (red area) and inverse
(blue area) cascade rates. It is apparent visually that the presence of a strong local forward
energy cascade is associated with increased local strain rate, as indicated by the solid
black circles in both figures 5(a,b) and the corresponding black solid circles in figure 5(c).
Similarly, a strong local inverse energy cascade is observed alongside a significant local
rotation rate, depicted by the dashed red circles in figures 5(a,b) and the corresponding red
dashed circles in figure 5(d). The strong correlation between forward cascade and local
straining is consistent with multiple earlier observations and prior works in the literature
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Figure 6. Plots of (a–d) 〈Φ�|S2
�, Ω

2
� 〉 and (e–h) 〈Π�|S2

�, Ω
2
� 〉 at � = {30, 45, 60, 75}η. The black dashed lines

in (d) represent isolines of Q� ≡ − 1
2 (S2

� − Ω2
� ); Φ� and Π� is normalized by 〈ε〉; and S2

� and Ω2
� is normalized

by 〈Qw〉 = 1
2 〈Ω2

� 〉.

(e.g. Borue & Orszag 1998, and recently Johnson 2021; Carbone & Bragg 2020). We
focus attention on the regions with negative energy cascade rates. Conditional averaging
can elucidate the statistical significance of these regions. Specifically, we inquire whether
there are large-scale flow local features as characterized by the filtered velocity gradient
invariants that are systematically accompanied by inverse cascade, i.e. negative Φ�. Thus
we perform conditional averaging of Φ� based on the invariants S2

� and Ω2
� , and repeat the

analysis for the SGS energy flux quantity Π�.
Figure 6 shows the joint conditionally averaged Φ� and Π� based on S2

� and Ω2
� , denoted

as 〈Φ�|S2
�, Ω

2
� 〉 and 〈Π�|S2

�, Ω
2
� 〉, respectively. The analysis is performed by computing

averages over two million randomly distributed points x. In the presented results, Φ� is
normalized by 〈ε〉, while S2

� and Ω2
� are normalized by 〈Qw〉 = 1

2 〈Ω2
� 〉. Figures 6(a–d)

present the joint conditionally averaged 〈Φ�|S2
�, Ω

2
� 〉 at four different length scales, namely

� = {30, 45, 60, 75}η, highlighting the dominance of the forward cascade by the extensive
red region. This magnitude is many times larger than the maximum magnitude observed
in the blue region, representing the inverse cascade. The red region covers a wide range
of S2

� and Ω2
� values, consistent with the expectation that the global average would favour

a forward cascade (〈Φ� > 0〉). The highest positive values of 〈Φ�|S2
�, Ω

2
� 〉 correspond to

high strain rates and low rotation rates, and they decrease as the strain rate decreases.
Interestingly, the inverse cascade appears explicitly in the lower-right corners of the plots,
where the rotation rate is strong but the strain rate is weak. It is worth noting that the
conditionally averaged values shown in figure 6 reflect the combined outcome of the
forward and inverse cascades. Consequently, in specific regions characterized by distinct
strain and rotation rates, events with forward and inverse cascades can cancel each other
out. Only in the lower right corner is there an indication of net inverse cascade when the
cascade rate is defined using the structure-function approach.

In figure 6(d), we superimpose dashed lines representing the isolines of Q�, with the
Q� = 0 line indicating the condition of equal strain and rotation rates. The parallel dashed
lines correspond to Q� = −10, −5, 0, 5, 10 and 15, respectively. The Q� = 15 line appears
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�〉 (black triangles and lines) and 〈Π�|S2
�〉 (blue open triangles and lines). (b) Plots

of 〈Φ�|Ω2
� 〉 (black triangles and lines) and 〈Π�|Ω2

� 〉 (blue open triangles and lines). The red dashed lines
represent lines with slope 3/2 in the log-log plot.

near the boundary separating the red and blue regions. However, the boundary of the blue
region does not appear to align well with the Q� isoline. This observation suggests that Q�

might be not enough to provide an adequate threshold for distinguishing the net forward
and inverse cascade regions.

Figures 6(d–g) present results for the joint conditionally averaged Π� based on S2
� and

Ω2
� , corresponding to the same filter scales as in figures 6(a–d). It is evident that trends

for the positive cascade rate (red region) for Π� resemble closely those of Φ�, with the
peak of the forward cascade occurring at a high strain rate and low rotation rate. The
magnitude of the maximum forward cascade rate for Π� is slightly weaker compared to
that of Φ�. The most significant difference is that only a few instances of blue squares are
observed in regions characterized by strong rotation and weak strain, indicating that the
overall predominance of the forward cascade persists regardless of the local values of S2

�

and Ω2
� . These results highlight some important statistical differences between Φ� and Π�.

We further evaluate the conditional averages of the energy fluxes Φ� and Π�, conditioned
on either S2

� and Ω2
� individually. This analysis is motivated by the work of Buaria &

Pumir (2022), which highlighted different scalings of conditional averages with respect to
strain rate compared to rotation rates even though one would expect similar results based
on dimensional arguments. In figure 7(a), we demonstrate that both Φ� and Π� exhibit a
power-law relationship when conditioned on S2

� , with slope 3/2. This scaling aligns with
dimensional analysis and Kolmogorov scaling, 〈Φ�|S2

�〉 ∼ [S2
�]3/2 and 〈Π�|S2

�〉 ∼ [S2
�]3/2.

In contrast, when conditioning Φ� and Π� on Ω2
� (figure 7b), a different trend emerges,

with much weaker dependence on rotation rate.
To develop a more detailed understanding of the inverse cascade region within

〈Φ�|S2
�, Ω

2
� 〉, we perform a further analysis by dividing the samples based on Φ� > 0 and

Φ� < 0 for � = 45η. We then calculate the conditional average of these separated samples
considering S2

� and Ω2
� , denoted as 〈Φ�|S2

�, Ω
2
� , Φ� > 0〉 and 〈Φ�|S2

�, Ω
2
� , Φ� < 0〉. The

results are presented in figure 8. From figure 8(a), it can be observed that the forward
cascade clearly increases with S2

� , with the highest values of Φ� concentrated in the
upper left corner. It increases also with Ω2

� , but less rapidly. Combined, the trend seems
to be an increase approximately proportional to ∼S2

� + 0.75 Ω2
� . Differently, figure 8(b)

illustrates that the inverse cascade is approximately proportional to ∼S2
� + 0.5 Ω2

� , i.e.
shallower isolines extending more in the horizontal direction than in the vertical compared
to the forward cascade case shown in figure 8(a). This observation elucidates why the
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Figure 8. (a,b) The conditional averages of cascade rates obtained by sampling positive and negative signs,
i.e. 〈Φ�|S2

�, Ω
2
� , Φ� > 0〉 and 〈Φ�|S2

�, Ω
2
� , Φ� < 0〉, respectively. (c,d) The logarithm base 10 of the number of

samples on the S2
�, Ω

2
� map (out of a total of 2 × 106 samples). The isolines in (c,d) are the values corresponding

to the contour.

strongest red region in figure 6(b) emerges at the largest S2
� , while below this threshold,

the forward cascade events weaken progressively and are gradually cancelled out by the
inverse cascade. Finally, in regions characterized by a weak strain rate and strong rotation
rate, the inverse cascade becomes the dominant contribution.

Figures 8(c,d) display the distribution of the number of samples corresponding to
positive and negative cascade rates in logarithmic scale (out of the 2 million samples
(balls) considered). Our focus is directed specifically towards the bottom right corners
of the plots, which correspond to the region where the inverse cascade is observed
in figure 6(b). Interestingly, we observe that at Ω2

� /〈Qw〉 ≈ 40 and S2
�/〈Qw〉 < 10, the

numbers of samples representing both inverse and forward cascade rates are approximately
equivalent, falling within the range 101–101.5. This implies that within this region, the
magnitude of the inverse cascade must be significant to achieve net negative values for
the conditional average. Still, for the conditions with net inverse cascade, the number of
occurrences for both forward and inverse cascade rates is quite small, of the order of
only 1/105 of the total samples, indicating a very low frequency. We point out that in
the extreme bins, the conditionally averaged fluxes are unlikely to be fully converged.
Therefore, our observations are meant to be mostly qualitative in these regions. In
particular, the inverse cascade regions depicted in figure 6 are attributed primarily to rare
but intense events. In the next subsection, we will show that inverse cascade can be better
characterized by conditioning on Q� and R� invariants.

5.2. Conditional statistics based on Q� and R� invariants
In the context of the Ω2

� and S2
� map shown in figure 6, we observe the presence of a

distinct inverse energy cascade in the region characterized by strong rotation but weak
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Figure 9. Plots of (a–d) 〈Φ�|Q�, R�〉 and (e–h) 〈Π�|Q�, R�〉 at � = {30, 45, 60, 75}η. The black solid lines
separate the four quadrants, and the two lines Q = −( 27

4 R2)1/3 (Vieillefosse lines) are also shown. Here, Φ�

and Π� are normalized by 〈ε〉; Q� is normalized by 〈Qw〉; and R� is normalized by 〈Qw〉3/2. The data and
editable analysis code that generated these joint p.d.f.s (for the case at � = 45η) can be found at https://www.
cambridge.org/S0022112023010662/JFM-Notebooks/files/figure9.

strain (corresponding to large Q� values) for Φ�. However, such observations did not
hold for Π�. But these results do not preclude the possibility that net forward and inverse
cascade may be associated with other invariants of the filtered velocity gradient tensor Ãij.

Figure 9 shows the joint conditionally averaged 〈Φ�|Q�, R�〉 and 〈Π�|Q�, R�〉 at four
different scales, namely, � = {30, 45, 60, 75}η. Across all plots, we can observe the
distinctive teardrop-shape pattern on the Q–R map, as reported in previous studies (Chong
et al. 1990; Meneveau 2011). The black solid lines are the boundaries, separating the
four quadrants based on the signs of Q� and R�. Notably, it becomes evident that both
Φ� and Π� exhibit a strong and dominant inverse cascade in the quadrant characterized
by Q� > 0 and R� > 0. It is useful to recall that the variable R� is associated with the
rate of change of Q� (in fact, assuming restricted Euler dynamics, they are related by
dQ�/dt = −3R�; Cantwell 1992; Meneveau 2011). Therefore R� > 0 corresponds to a
decreasing trend of Q�, i.e. vortex compression. We find that such events are associated
with inverse energy cascade. This observation is particularly interesting considering the
absence of an observable inverse cascade for Π� in the S2

� and Ω2
� map. Hence these

results indicate that the variables Q� and R� provide a more effective characterization to
identify inverse cascade using conditional averaging.

The region characterized by Q� < 0 and R� > 0, which corresponds to the
strain-dominated region, exhibits the most pronounced forward cascade. This observation
aligns with the findings of many prior analyses in the literature (Borue & Orszag 1998;
van der Bos et al. 2002; Carbone & Bragg 2020; Johnson 2021) as well as those depicted
in figure 9, further emphasizing that the strong local strain rate plays a crucial role in
driving the forward energy cascade. We note that Borue & Orszag (1998) and van der
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Figure 10. (a,b) Plots of 〈Φ�|Q�, R�, Φ� > 0〉 and 〈Φ�|Q�, R�, Φ� < 0〉. (c,d) Plots of the logarithm base 10
of the number of samples on the Q�, R� map. The isolines in (c,d) are the values corresponding to the contours.

Bos et al. (2002) display conditional averages weighted by the joint p.d.f. of R� and
Q�. In their results, there was hardly any indication of backscatter/inverse cascade in the
Q� > 0 and R� > 0 ‘vortex compression’ region, because the overall probability density
of that region is smaller than for the other regions. However, the unweighted conditional
averaging represents the relevant values if the large-scale flow is in that particular state
(Q� > 0 and R� > 0), and is therefore relevant to our analysis. We also notice a small blue
region in the Q� < 0, R� < 0 quadrant of 〈Φ�|Q�, R�〉 (but not seen for 〈Π�|Q�, R�〉). The
occurrence of inverse cascade in strain-dominated, strain self-stretching regions appears
intriguing. However, the small number of samples (∼O(10)) in the bin showing inverse
cascade precludes us from ascribing much significance to this observation for now.

In a manner similar to that in figure 8, we perform further conditional averaging,
also distinguishing positive and negative cascade rates. Figures 10(a,b) present
〈Φ�|Q�, R�, Φ� > 0〉 and 〈Φ�|Q�, R�, Φ� < 0〉 at � = 45η. In the case of the inverse
cascade, it is observed to occur in all four quadrants (figure 10b), with a more evenly
distributed and symmetric presence in the upper two quadrants associated with Q� > 0,
i.e. the rotation-dominated regions. The characteristic teardrop shape is less prominent
and exhibits a shorter tail compared to the forward cascade (figure 10a). Regarding the
forward cascade, it is evident that it is most dominant in the Q� < 0, R� > 0 quadrant,
consistent with figure 9. However, in the Q� > 0, R� > 0 quadrant, the forward cascade
is weaker and is overall cancelled out by the stronger inverse cascade in that particular
region.

Figures 10(c,d) display the distributions of number of samples of forward and inverse
cascade rates, respectively. The shapes of the distributions align with figures 10(a,b), but a
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Figure 11. (a,b) Isosurfaces of local Φ�/〈ε〉 = −60 (light blue), Q�/〈Qw〉 = 20 (yellow) and R�/〈Qw〉3/2 =
30 (black) in two different 3-D subdomains. (c,d) Isosurfaces of local Π�/〈ε〉 = −20 (green-blue) in the same
subdomains and isosurface of Q�/〈Qw〉 and R�/〈Qw〉3/2 as in (a,b). Interactive visualizations are available for
each panel at Panel (a), Panel (b), Panel (c), Panel (d). The link to the directory containing the visualization
code and the 3-D fields for these data can be found at https://www.cambridge.org/S0022112023010662/JFM-
Notebooks/files/figure11.

majority of the samples are concentrated at the centre, corresponding to small values of Q�

and R�. This observation confirms that the strong instances of inverse cascade and forward
cascade observed in figure 9 are determined primarily by infrequent but extreme events
(intermittency). Note that the joint p.d.f. in figure 10(d) is more left–right symmetric than
that in figure 10(c), suggesting a less non-Gaussian behaviour of the flow in regions of
inverse cascade than in the forward cascade regions.

Finally, to provide a visual impression of the spatial distribution of regions of negative
Φ� in the flow, in figure 11 we provide a 3-D visualization of two instances in specific
small subdomains of size 1503 grid points (i.e. (225η)3 out of the overall 81923 DNS
domain. The selection of these subdomains was based on the condition that Q�/〈Qw〉 > 15
and R�/〈Qw〉3/2 > 15 at the centre of each subdomain, such that the centre is at a strong
vortex compression region. We then calculate the values of Φ�, Π�, Q� and R� at every
second grid point. In figures 11(a,b), the light blue regions correspond to the isosurface
of a large negative value of Φ�/〈ε〉 = −60, indicating the presence of an inverse cascade
with significant magnitude. Clearly, we can see that the occurrence of a strong inverse
cascade is associated closely with the presence of the vortices. Figure 11(a) depicts
that large negative Φ� appears near the centre and not at the core of the yellow tube,
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although one should recall that Φ�(x, t) is defined locally as centred at x but represents
the energy cascade into balls of diameter 45η, i.e. comparable to the diameter of the
vortex (yellow region) shown. The blue region is also largely connected with the black
isosurface (R� = 20〈Qw〉3/2), indicating a strong ‘vortex compression’ region within the
yellow tube. Interactive 3-D versions of the figure that can be accessed following the links
in the figure caption help to elucidate the spatial structure. Figure 11(b) is an entirely
different instance of similar conditions, showing a more broken up vortex, and showing
that Φ� can also peak near the sides, and appear more scattered within the vortex. Coupled
with the results shown in figure 9, the visualizations suggest that the strong inverse cascade
occurs along the large-scale vortices, in regions of these vortices in which R� > 0, i.e. the
vortex compression regions. We can also observe some yellow tubes, within which inverse
cascade and compression are both absent. This is consistent with the statistics such that
when conditionally averaging in terms of Q� but irrespective of R�, the inverse cascade
becomes very weak and almost non-existent. However, once one considers only R� > 0
regions, inverse cascade can be observed clearly in high vortical regions.

We also show Π�/〈ε〉 = −20 (green-blue isosurface) in the corresponding 3-D
subdomains shown as figures 11(c,d). Clearly, we can see that the green-blue and black
regions largely overlap within the yellow region in figure 11(c). In figure 11(d), the
overlapping between green-blue, yellow and black regions occurs at the centre and top
right region of the subdomain, indicating that strong negative Π� is also associated
with strong vortex compression within a high vortical region, consistent with figure 9.
However, the patterns of the green SGS flux regions are smoother, consistent with the
two-dimensional visualisation in figure 5.

Caution must be expressed that visualizations provide only qualitative impressions,
and more quantitative analysis requires structure-based conditional averaging, such as
undertaken recently in Park & Lozano-Duran (2023). While such analysis is beyond
the scope of the present paper, the conditional statistics presented in figure 9 already
by themselves provide the strong statistically robust connection between cascade rate
measures and features of the large-scale velocity gradient tensor.

6. Conclusions

In this paper, we explore, based on a DNS dataset of isotropic forced turbulence at a
relatively high Reynolds number (Rλ = 1250), local features of the energy cascade. We
compare two common definitions of the spatially local rate of kinetic energy cascade at
some scale �. The first is based on the cubic velocity difference term appearing in the
scale-integrated local KH equation, in the structure-function approach. The second is the
subfilter-scale (SFS) energy flux term in the transport equation for subgrid-scale kinetic
energy, i.e. as used in the filtering approach often invoked in LES. Particular attention
is placed on interpretation and statistical robustness of observations of local negative
structure-function energy flux and SFS energy flux. The notion and relevance of local
inverse cascade or ‘backscatter’ has been open to debates in the literature. We argue that
the interpretation of Φ�(x, t) as a spatially local energy flux appears unambiguous because
it arises naturally from a divergence term in scale space. And the symmetric formulation
of Hill (2001, 2002) leads to the spherically averaged third-order structure function based
definition of a local cascade rate involving velocities at two points that are treated equally
via angular averaging over the sphere.
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The data confirm the presence of local instances where Φ�(x, t) is negative, i.e.
indicative of local inverse cascade events in 3-D turbulence. Flow visualizations show
that spatially, the inverse cascade events are often located near the core of large-scale
vortex structures. Comparable observations for the LES-based energy flux Π�(x, t) (which
also displays negative values at many locations in the flow, as is well-known in the
LES literature on ‘backscatter’) show that Π�(x, t) displays smoother and more blob-like
features. Regarding the statistical significance of such observations, local observations
from single realizations are extended using conditional averaging. Attention is placed first
on relationships between the local cascade rate and the local filtered viscous dissipation
rate ε�(x, t) that plays a central role in the classic KRSH (Kolmogorov 1962). Results show
that conditional averaging of both Φ�(x, t) and Π�(x, t) eliminates negative values, and
that the conditional averages in fact equate ε�(x, t) to very good approximation, entirely
consistent with KRSH predictions.

The analysis then focuses on conditional averages of Φ� and Π� conditioned on
properties of the filtered velocity gradient tensor properties, in particular four of its
most important invariants (strain and rotation rate square magnitude, and the two Q–R
invariants). We find statistically robust evidence of inverse cascade as measured with Φ�

when both the large-scale rotation rate is strong and the large-scale strain rate is weak.
When defined using Π�, the conditional averaging based on large-scale strain and rotation
rates does not lead to any significant average backscatter. When conditioning based on
the R� and Q� invariants, significant net inverse cascading is observed for Φ� in the
‘vortex compression’ R� > 0, Q� > 0 quadrant. Qualitatively similar, but quantitatively
much weaker trends are observed for the conditionally averaged SFS energy flux Π�. We
recall that a multiscale decomposition of Π� in terms of velocity gradients at multiple
scales (Johnson 2020, 2021) shows that Π� < 0 appears associated with a vortex-thinning
mechanism occurring at smaller scales interacting with large-scale strains.

In summary, present results show that locally negative values of kinetic energy fluxes
at scale � are observed for both the structure-function and filtering approaches, and
at least for the structure-function approach, the interpretation as a flux in scale space
appears unambiguous. Regarding statistical robustness and the potential net impact of
such local observations, conditional averaging reveals that both negative Φ� and negative
Π� (representing inverse cascade) become statistically dominant mechanisms in regions
where turbulent motions at scales larger than � exhibit a ‘vortex compression’ behaviour
(R� > 0 and Q� > 0). However, the magnitude of inverse cascade in filtering approaches
is weaker and negligible on the (S2

�, Ω
2
� ) map.

For future work, it would be of interest to explore the sensitivity of results to Reynolds
number, especially as it is expected that at higher Reynolds numbers, the intermittency of
the variables would increase. It would be also interesting to extend conditional averaging
to more accurately reflect local energy distribution, entire flow structures and their possible
connections to local inverse cascade mechanisms. Other pointwise quantities such as
helicity can also be explored. It would also be instructive to connect present results
with the multiscale decomposition of Johnson (2020, 2021), and thus be able to identify
the small-scale mechanisms associated with local backscatter/inverse cascade events.
And further theoretically obtained exact relations between structure-function and filtering
approaches may yet be found.

Supplementary material. Supplementary material and computational notebook files are available at https://
doi.org/10.1017/jfm.2023.1066. Computational notebooks can also be found online at https://www.cambridge.
org/S0022112023010662/JFM-Notebooks.
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Appendix A. Turbulence database access tools

The high-resolution isotropic DNS data are accessible via new Python-based tools built
upon the data housed in the JHTDB (Li et al. 2008). The JHTDB has been operating for
over a decade and has led to hundreds of peer-reviewed articles on turbulence. A new set
of data access tools based on Jupyter Notebooks has been developed that enables direct
access to subsets of the data continuing the ‘virtual sensors’ concept (Li et al. 2008).
The new notebooks provide fast and stable operation on the existing turbulence datasets
while enabling user-programmable, server-side computations. To date, the new data access
tools have been implemented and tested on the high Reynolds number, forced isotropic
turbulence dataset on 81923 grid points (the isotropic8192 datasets) of which five snapshots
are at a Taylor microscope Reynolds number Reλ = 1250 (Yeung et al. 2012), and one with
very high spatial resolution at Reλ = 610.

The isotropic8192 dataset has been partitioned into 4096 Zarr database files, each of
which is a 5123 volume cubelet of the 81923 data. Each Zarr file stores the velocity and
pressure variables in distinct Zarr groups, and the data in each group are broken down
further into chunks. The chunks are ijk-ordered such that cutouts and interpolation buckets,
the size of which are dependent on the interpolation or differentiation method selected by
the user, can be cut out directly from the intersecting chunk(s).

The new Python-based data access tools, pyturb, are accessed via the SciServer
(sciserver.org) platform. Pyturb interfaces directly with the data files in Zarr format,
stored on volumes mounted to each user’s SciServer container. The entirety of the
isotropic8192 dataset (81923 volume, six snapshots) in Zarr format is available publicly
through Python Notebook on SciServer. Users can apply for a SciServer account freely,
and download the demo Notebook. In the Notebook, users can get access to pre-coded
‘Get’ functions for arbitrary sets of points: GetPressure to retrieve and interpolate
pressures, GetPressureGradient to retrieve and interpolate pressure gradient, and
similarly GetPressureHessian, GetVelocity, GetVelocityGradient, GetVelocityHessian,
GetVelocityLaplacian and GetCutout to read raw data for a user-specified box.

Demo codes for accessing data at user-specified arrays of points (in various sample
geometrical configurations) are listed in the Notebook. The isotropic8192 datasets
can be also accessed via the web-portal cutout service where the pyturb GetCutout
function has replaced the legacy function for user queries (see https://turbulence.pha.
jhu.edu/newcutout.aspx). The JHTDB still provides and maintains other datasets (https://
turbulence.pha.jhu.edu/datasets.aspx) through legacy SQL systems with C, Fortran,
Matlab, Python and .Net interfaces. However, the aim is to transfer the existing datasets
and any newcoming datasets to the pyturb system in the future for faster and more stable
services.
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Appendix B. Evaluating and comparing 〈ksf ,�〉 and 〈ksgs,�〉
The average values 〈ksf ,�〉 and 〈ksgs,�〉 can be obtained from classical turbulence theory
and the Kolmogorov spectrum. To evaluate 〈ksf ,�〉, we use the general expression for the
structure-function tensor in isotropic turbulence in the inertial range

〈δui(r) δuj(r)〉 = C2〈ε〉2/3r2/3
(

4
3

δij − 1
3

rirj

r2

)
, (B1)

and write

〈ksf ,�〉 = 1
2V�

∫∫∫
V�

1
2

〈δu2
i (r)〉 d3rs = 1

4
1

V�

∫∫∫
V�

C2〈ε〉2/3r2/3
(

4
3

δii − 1
3

riri

r2

)
d3rs,

(B2)
where rs = r/2. The integration yields

〈ksf ,�〉 = C2〈ε〉2/3�2/3

4 × 3π(�/2)3/4

�/2∫
0

4πr2
s (2rs)

2/3 drs = 3
4

C2〈ε〉2/3�2/3 ≈ 1.6〈ε〉2/3�2/3 (B3)

when using the usual empirical Kolmogorov structure-function constant C2 ≈ 2.1.
In order to evaluate 〈ksgs,�〉, we use (Pope 2000; Li & Meneveau 2004)

〈τij〉 =
∫∫∫ (

1 − Ĝ2
�(k)

)
Φij(k) d3k

(i=j)= CK〈ε〉2/3
∫ ∞

0

(
1 − Ĝ2

�(k)
)

2k−5/3 dk, (B4)

where Ĝ�(k) = Ĝ�(k) is the Fourier transform of the filter function at scale �, and Φij(k) =
E(k)/(4πk2)(δij − kikj/k2) is the spectral tensor for isotropic turbulence, while E(k) =
CK〈ε〉2/3k−5/3 is the radial 3-D energy spectrum of turbulence.

For the spherical top-hat filter, its Fourier transform can be shown to be

Ĝ�(k) = 3
(k�/2)3

(
sin

k�
2

− k�
2

cos
k�
2

)
, (B5)

where k = |k|. The definite integral needed to evaluate the right-hand side of (B4) exists
(using WolframAlpha online) and is given by∫ ∞

0

(
1 −

[
3

(κ/2)3

(
sin

κ

2
− κ

2
cos

κ

2

)]2
)

κ−5/3 dκ = −544 Γ (−20/3), (B6)

with κ = k� and where Γ (·) is the gamma function. Evaluating and using CK ≈ 1.6, the
result is

〈ksgs,�〉 = 1
2 〈τii〉 = 0.76 CK〈ε〉2/3�2/3 ≈ 1.2 〈ε〉2/3�2/3. (B7)

As can be seen, the 3-D integration needed to evaluate 〈ksf 〉 involves the radius to the
8/3 power, while that for 〈ksgs〉 involves the wavenumber to the −5/3 power. The former
is thus much more strongly dominated by the large-scale limit of integration (�/2) than
the latter. As a result, the latter is more strongly affected by the spectral behaviour of
turbulence at smaller scales, including the viscous range. This explains why the values of
〈ksgs〉 measured from DNS are significantly smaller than the prediction in (B7), while the
measurements of 〈ksf 〉 agree well with the prediction in (B3).
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