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We consider the discrete Safronov-Dubovskǐı aggregation equation associated with
the physical condition, where particle injection and extraction take place in the
dynamical system. In application, this model is used to describe the aggregation of
particle-monomers in combination with sedimentation of particle-clusters. More
precisely, we prove well-posedness of the considered model for a large class of
aggregation kernel with source and efflux coefficients. Furthermore, over a long time
period, we prove that the dynamical model attains a unique equilibrium solution
with an exponential rate under a suitable condition on the forcing coefficient.
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1. Introduction

Aggregation is a fundamental dynamic process to augment an animate or inanimate
matter. Technically, the aggregation process describes an event where two smaller
particles merge to form a large cluster. Generally, by this particulate process,
although the number of daughter particles gradually decreases; however, the size of
the new particle increases. In 1916, M. von Smoluchowski proposed a mathematical
structure for this particulate process, well known as Smoluchowski’s aggregation
equation (SAE) [15]. In practical field of study, this equation is ubiquitously used
to describe cloud physics [12], oceanography phenomena [2] and different models
in chemistry [1]. In this context, if ai(t), i ∈ N\{0} denotes the concentration of
i-clusters at the time t � 0 then the SAE reads as

dai(t)
dt

= Wi(a(t)) with initial data ai(0) = ain
i � 0, (1.1)

where Wi(a(t)) :=
∑i−1

j=1 Ki−j,jai−j(t)aj(t) −
∑∞

j=1 Ki,jai(t)aj(t). The first and
second terms in the right-hand side of Wi(a(t)) represent the birth and death coeffi-
cients, respectively. In general, Ki,j defines the aggregation kernel and is symmetric
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with respect to i, j, which physically indicates the rate at which i-mers merge with
j-mers to form a large (i + j)-cluster. It is worth to note that due to SAE (1.1) the
clusters can only grow in size while no smaller particles are created or inserted in
the system. Therefore, existence of a equilibrium solution cannot be achieved from
the original form of SAE (1.1). In their article, Carr and Costa [3] proved that
for a certain class of aggregation kernel the gelation phenomena may occur at any
time interval. However, there is a handful number of articles on various mathemat-
ical aspects such as existence, uniqueness and large-time analysis of the solution to
the SAE (1.1) and its continuous form. In later years, the SAE was extended as
in [11, 13] to achieve its stationary state by adding source and efflux term

dai(t)
dt

= Wi(a(t)) + si − riai(t). (1.2)

Here, si represents the rate at which the cluster of i-mers is injected into the
system. The third term is the removal term, which indicates the cluster of size i is
removed from the system at a rate riai. These two factors are together called forcing
coefficients as they play a vital role to add or remove i-mers from the system. The
existence of stationary solutions and their uniqueness is well studied in [4, 17]. In
the recent years, for a large class of coagulation kernels, the well-posedness and
convergence to the unique equilibrium to equation (1.2) have been studied in [14].

During 1990 s, renowned mathematician Pavel B. Dubovskǐı has introduced a new
mechanism of discrete aggregation process, which plays a significant role to describe
several physical fields of studies such as astrophysics (cloud forming), cosmology
(formation of planets and galaxies), astronomy (asteroid size distribution), etc.

In the past few decades [9, 10]. In literature, this discrete aggregation model is
referred as the discrete Safronov–Dubovskǐı aggregation equation (SDAE) [6, 8].
According to SDAE, for the above-mentioned discrete size distribution function
ai(t), we consider that a0(t) is equal to zero at any time t � 0. With this consid-
eration, the governing equation, which describes the time evolution dynamics of
cluster growth, is given by

dai(t)
dt

= ai−1 (t)
i−1∑
j=1

βi−1,jjaj (t) − ai (t)
i∑

j=1

βi,jjaj (t) − ai (t)
∞∑

j=i

βi,jaj (t) .

(1.3)
We now interpret the terms appearing in the right-hand side of equation (1.3).

The aggregation kernel βi,j (with i �= j) denotes the collision rate of i-mers with
j-mers. In general, βi,j is a non-negative and symmetric function. The first term
in the right-hand side of (1.3) represents the inclusion of i-mer particles into the
system. This i-mer particles formed during the collision of (i − 1)-mers with the
monomers formed by the breakup of a j-mer into j monomers. In the similar way,
the second and third sum represents the removal or death of i-mers from the system
due to the fusion of the monomers with i-mers and forming a larger (i + 1)-mer.
For a detailed interpretation of the second and third terms, readers can refer to [6].

Since the pioneer studies of Dubovskǐı [9, 10], the discrete SDAE acquired
a remarkable popularity in experimental research. In the literature of
Safronov–Dubovskǐı aggregation model, there are few articles available, which deal
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Equilibrium solution for Safronov–Dubovskǐı equation with forcing 3

with the mathematical aspect such as existence, uniqueness, mass conservation,
large time analysis or convergence of equilibrium solution to the discrete SDAE
(1.3) [6–8, 16]. After the classical works of Dubovskǐı, Wattis [16] and Davidson
[8] reported some works on the mathematical aspect of discrete SDAE. Recently,
Das and Saha [6] established the existence of unique mass conserving solution for a
large class of unbounded coagulation rate. Therefore, to summarize, most of the cur-
rent research is devoted to the existence and uniqueness of solutions of the original
Safronov–Dubovskǐı aggregation equation. It turns out that achieving steady state
becomes inevitable to stabilize several cosmological phenomena or to reduce the
expense of some physical experiments. Like SAE, the discrete SDAE is pure aggre-
gation equation, thus no smaller daughter particle can be generated by the system
(1.3). Similar to the SAE with source and efflux term (1.2), it can be expected that
the discrete SDAE with effect of external force approaches an equilibrium state as
t → ∞. In this regard, we consider the discrete Safronov–Dubovskǐı aggregation
equation with source and efflux term reads

dai (t)
dt

= Fi(a(t)), i � 1, (1.4)

associated with the initial data

ai(0) = ain
i . (1.5)

The operator F is defined as

Fi(a(t)) := ai−1 (t)
i−1∑
j=1

βi−1,jjaj (t) − ai (t)
i∑

j=1

βi,jjaj (t)

− ai (t)
∞∑

j=i

βi,jaj (t) + si − riai(t). (1.6)

The non-linear initial value problem (IVP) (1.4)–(1.5) represents the time evolu-
tion of the cluster growth dynamics under the effect of external force, in which the
source function permits an external supply of particles into the system with rate si.
On the other hand, the efflux term represents the rate riai, at which the particles
are removed from the system. In application, this efflux term is often considered
to define the sedimentation of particles due to gravity. We can retain the original
SDAE (1.3) by setting si = 0 = ri in equation (1.4).

The objective of this article is devoted into two parts. First, we need to establish
the well-posedness of the evolution equation (1.4) for a large class of aggregation
kernels and removal rates which consolidate the model. This discussion is neces-
sary to validate the model mathematically. Secondly, we show that for large time
interval, the solutions converge to a unique equilibrium with exponential rate of
convergence. This will be the first evidence in literature to discuss the stationary
state solutions for the SDAE coupled with source and efflux components. Another
underlying motivation for studying equation (1.4) is to work towards establishing a
relation with additional differential equations, which is a common theme in the con-
text of reaction–diffusion systems. Before the extension can be achieved, we should
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understand the motivation behind considering the injection and extraction terms
in equation (1.4).

For particulate events, the moment functions take part an important role as some
of them bear relation to significant physical entities. In this regard, for any μ � 0,
we define the μ − th order moment and the truncated moment of a solution to
equation (1.4) as

Mμ (t) =
∞∑

i=1

iμai (t) , and Mm
μ (t) =

m∑
i=1

iμai (t) respectively. (1.7)

In general, zeroth-order moment denotes the total number and first-order moment
represents the total mass of particles in the system. From the classical principle of
conservation laws, mass can neither be created nor destroyed in any particulate
system. Therefore, we can expect that the total mass M1(t) =

∑∞
i=1 iai(t) will

remain unaltered by the original form of SDAE (1.3). In a current study, Das and
Saha [6] studied the mass conserving behaviour for a large class of aggregation rate

βi,j � β0 (1 + i + j)α with 0 � α � 1.

Some more evidence on mass conservation of the SDAE can be found in [8].
In contrast to the mass conserving behaviour, recently Das and Saha [7] proved
the occurrence of mass-loss phenomena at any time interval for the kinetic kernels
satisfying the rate

βL
(
iαjβ + iβjα

)
� βi,j � βU (1 + i)ω (1 + j)ω with 0 � α � β and β, ω > 1.

Moreover, the authors also highlighted that the system (1.3) will be ill-posed for
the aggregation kernel with growth rate βi,j = iλ + jλ, with λ > 1.

In this context, to attain the convergence to a unique equilibrium, we impose the
additional force. More precisely, the current article adopts a removal rate with the
coefficient ri such that the efflux term riai causes the solution of (1.4) to exhibit
analogous properties as a solution to the system with strong fragmentation regime.
However, the consequence to inject or remove a particle externally is that, the mass
conserving behaviour cannot be expected for (1.4). However, M1 in general satisfies
the equation

dM1(t)
dt

=
∞∑

i=1

isi −
∞∑

i=1

iriai(t).

In spite of having high non-linearity due to aggregation coefficients in the considered
model (1.4), our study successfully proves the existence of stationary state solutions
as t → ∞. In this regard, to establish well-posedness or achieve steady state, the
growth rate of the source and efflux coefficients si and ri play a significant role to
attain the convergence to a unique equilibrium. As already mentioned, the removal
coefficient ri usually sketches the effect of sedimentation. In this circumstance, we
assume that all the clusters are spherical and represented by their concentration
i ∈ N along with the fractal dimension D(γ). Under these conditions, we can obtain
the scaling ri ∼ iγ [2, 12].
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On the other hand, concerning the source term si, a general assumption is that
only monomers are injected, i.e. si = 0 for i > 1. In the present study, we allow the
particle to be injected into the system at a more general rate. More precisely, we
only require that, with the increment concentration of cluster, the injection rate si

decreases sufficiently fast.
The work is organized as follows. In § 2, we state some preliminary definitions

on the solution and equilibrium solution of equation (1.4), which are essentially
required in the subsequent discussion. Moreover, we brief all the conditions, which
we assume on the kinetic coefficients. Based on these conditions, we estimate several
higher-order moments of the solution to equation (1.4) in § 3. In the subsequent
§ 4, we establish the existence of solution to the IVP (1.4)–(1.5). In subsection 4.1,
we introduce the truncated form of the IVP (1.4) followed by the proof of local
existence of solutions to the truncated problem. Later in subsection 4.2, we prove
the global existence theorem with the help of some strong convergence result like
Arzelà–Ascoli theorem. We prove a contraction property in § 5, which plays a key
role for existence and the rate of convergence to the equilibrium solution. Moreover,
with this property, we discuss the uniqueness of solution to the IVP (1.4)–(1.5) in
the same section. In the second part of this article, we achieve equilibrium solution
with the help of previously obtained contraction property in § 6. Furthermore, we
also prove that the solution converges to the steady state with exponential rate
under a suitable smallness condition on the kinetic coefficient. Finally, we end our
article by drawing some conclusions of the contribution in § 7.

2. Preliminaries: definition and hypothesis

For μ � 0, let �1μ denote the weighted �1 space of real sequence a := {ai}∞i=1, defined
as

�1μ :=

{
a = {ai}i∈N

∣∣∣∣∣ ai ∈ [0,∞) for all i ∈ N and ‖a‖�1μ
:=

∞∑
i=1

iμ|ai| < ∞
}

.

Since the system of differential equation (1.4)–(1.5) is an infinite dimensional
system, we need to define the solution.

Definition 2.1. Let T > 0 be given. A solution of the Cauchy problem (1.4)–(1.5)
on [0, T ) with the initial data ai(0) =: ain ∈ �11 is a continuous function ai(t) :
[0, T ) → [0, ∞) for all i ∈ N such that

(i) ai(0) = ain
i for all i ∈ N,

(ii) for any μ � 1, we have a ∈ L∞([0, T ), �11) ∩ C1((0, T ), �1μ), and

(iii) for each i ∈ N equation (1.4) satisfies for all t ∈ (0, T ).

The solution a will be global if T = ∞.

Definition 2.2. A solution a to the problem (1.4)–(1.5) is considered a stationary
solution (global) if a remains independent of time, satisfying the condition:

Fi (a) = 0, i � 1.

https://doi.org/10.1017/prm.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.116


6 A. Das and J. Saha

Also, a will be a equilibrium solution of the initial value problem (1.4)–(1.5) if it
is a global stationary solution for the same problem.

In this article, we prove the results under the following assumptions on the
coefficient of equation (1.4),

Hypothesis 2.1.

(H1): There exist some constants A∗ > 0 such that min{i, j}βi,j � A∗(iαjβ +
iβjα) with α � β and α, β ∈ [0, 1].

(H2): The efflux coefficient has rapid growth for large cluster size, i.e. there exists
a positive constant R∗ such that ri � R∗iγ , where γ > α + β.

(H3): The source term has a fast decay rate, i.e. for each μ � 0 there exists a
positive constant Sμ

∗ such that
∑∞

i=1 iμsi � Sμ
∗ .

In lieu of the above hypotheses, the aggregation kernel enjoys the unbounded
kinetic rates at infinity. With assumption (H1), the aggregation rate covers the
well-known diffusion-controlled growth kernel, βi,j = i−2/3 + j−2/3 (see [5]).

In the second hypothesis, the exponent γ plays a crucial role in our study to obtain
a suitable moment estimation. Moreover, this restriction on the efflux term includes
a significant example of sedimentation of particles aggregating due to Brownian
motion, i.e. ri = i2/3.

Lastly, hypothesis (H3) describes that the injected clusters gradually decrease
with the size of the cluster. More precisely, the source term si is permanently zero
for large i-mers.

For notational convenience, we will use the following scaling factors;

Â∗ :=
A∗
R∗

and Ŝμ
∗ :=

Sμ
∗

R∗
for all μ � 0. (2.1)

To estimate the moments, we note the following moment equation for a solution
of equation (1.4).

Lemma 2.3. Let a be a solution to equation (1.4) and ϕ = {ϕi}i∈N is a positive
sequence of real numbers with at most polynomial growth, then

d
dt

∞∑
i=1

ϕiai =
∞∑

i=1

i∑
j=1

[j (ϕi+1 − ϕi) − ϕj ] βi,jaiaj +
∞∑

i=1

ϕisi −
∞∑

i=1

ϕiriai.

Proof. The proof of the lemma is straightforward. �

3. Moment estimation

We obtain a priori estimates of several higher-order moments of solution to equation
(1.4). These estimations are the primary requirement for the proofs of several the-
orems. In this regard, we now prove the following sequence of lemmas starting
with the uniform-boundedness of the first moment, i.e. total mass. Based on this
result, we derive a differential inequality for the higher-order moments, and by
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the application of Grönwall’s inequality, we can obtain the estimation for all other
moments.

Lemma 3.1. Assume (H1), (H2) and (H3) hold; also consider that a be a solution
to problem (1.4) with the initial data (1.5). Then the corresponding first moment
M1 is uniformly bounded, that is, if we denote Min

1 := M1(0), we have

M1(t) � M := max
{
Min

1 , Ŝ1
∗
}

.

In particular, there exists a time T > 0 such that M1(t) � 2Ŝ1
∗ , for all t � T .

Here, T depends only on the constants Min
1 , Ŝ1

∗ and R∗.

Proof. Choose ϕi = iχ{i�m} in lemma 2.3 and using hypotheses (H2) and (H3), we
have

dMm
1 (t)

dt
=

m−1∑
i=1

i∑
j=1

(i + 1) jβi,jaiaj −
m∑

i=1

i∑
j=1

ijβi,jaiaj −
m∑

i=1

∞∑
j=i

iβi,jaiaj

+
m∑

i=1

isi −
m∑

i=1

iriai

�
m∑

i=1

i∑
j=1

jβi,jaiaj −
m∑

i=1

m∑
j=i

iβi,jaiaj + S1
∗ − R∗Mm

1 (t)

=
m∑

i=1

m∑
j=1

jβi,jaiaj−
m∑

i=1

m∑
j=i

(i+j) βi,jaiaj +
m∑

i=1
j=i

iβi,ia
2
i +S1

∗−R∗Mm
1 (t)

=
1
2

m∑
i=1

m∑
j=1

(i + j) βi,jaiaj −
m∑

i=1

m∑
j=i

(i + j) βi,jaiaj

+
m∑

i=1

iβi,ia
2
i + S1

∗ − R∗Mm
1 (t).

For first three sums, substitute φi,j := (i + j)βi,jaicj in proposition 2.1 of [6], we
can obtain

dMm
1 (t)

dt
+ R∗Mm

1 (t)�S1
∗ implies Mm

1 (t) �
(Mm

1 (0) + S1
∗t
)−R∗

∫ t

0

Mm
1 (ξ)dξ.

(3.1)
Using Grönwall’s inequality to (3.1) and using relation (2.1), we get

Mm
1 (t) �

(
Mm

1 (0) − Ŝ1
∗
)

exp (−R∗t) + Ŝ1
∗ . (3.2)

Therefore, Mm
1 (t) � max

{
Mm

1 (0), Ŝ1
∗
}

. Now using Mm
1 (0) � Min

1 and taking
the limit m → ∞, we can get the first result.

The second claim will be obvious for Min
1 = 0. If Min

1 > 0, the claim follows

from relation (3.2) that it suffices to take T > max
{

0,
log(Ŝ1

∗/Min
1 )

R∗

}
. �
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We derive a differential inequality which will be used for the higher-order (greater
than one) moment estimation of the corresponding solution to equation (1.4).

Lemma 3.2. Assume (H1) −−(H3) hold; also consider that a be a solution to prob-
lem (1.4) with the initial condition (1.5). Then for each μ > 1, we have the following
differential inequality for the truncated moments corresponding to a;

dMm
μ (t)

dt
+

R∗
2
Mm

μ+γ(t) � (qR∗)
1−p

2p

(
2μ+2A∗

)p
(Mm

1 (t))1+p + Sμ
∗ ,

where p := μ+γ−1
γ−α−β and q := p

p−1 .

Proof. Taking the sum on equation (1.4) associated with the weight ϕi = iμχ{i�m},
we get

dMm
μ (t)

dt
=

m−1∑
i=1

i∑
j=1

(i + 1)μ
jβi,jaiaj

−
m∑

i=1

⎡⎣ i∑
j=1

iμjβi,jaiaj +
∞∑

j=i

iμβi,jaiaj − iμsi + iμriai

⎤⎦
�

m∑
i=1

⎡⎣ m∑
j=i

(((j + 1)μ − jμ) i − iμ) βi,jaiaj + iμsi − iμriai

⎤⎦
As μ > 1, we use the inequality (i + j)μ � 2μ−1(iμ + jμ) on the right-hand side

of the above estimation

dMm
μ (t)

dt
�

m∑
i=1

⎡⎣ m∑
j=i

(2μi − 1) (iμ + jμ) βi,jaiaj + iμsi − iμriai

⎤⎦
�

m∑
i=1

⎡⎣ m∑
j=i

2μijμβi,jaiaj + iμsi − iμriai

⎤⎦ .

(3.3)

Recalling hypothesis (H1), that is βi,j � A∗(iαjβ + iβjα) together with (H2) and
(H3) on inequality (3.3), we have

dMm
μ (t)

dt
� 2μ+1A∗Mm

1 (t)Mm
μ+α+β(t) + Sμ

∗ − R∗Mm
μ+γ(t). (3.4)

Thanks to Hölder’s inequality, we can write

Mm
μ+α+β(t) � (Mm

1 (t))
1
p
(Mm

μ+γ(t)
) 1

q (3.5)

and thus inequality (3.4) is written as

dMm
μ (t)

dt
� 2μ+1A∗ (Mm

1 (t))1+
1
p
(Mm

μ+γ(t)
) 1

q + Sμ
∗ − R∗Mm

μ+γ(t). (3.6)
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Using Young’s inequality (with ε) yields that

2μ+1A∗ (Mm
1 (t))1+

1
p
(Mm

μ+γ(t)
) 1

q � ε
(Mm

μ+γ(t)
)

+
(qε)1−p

p

(
2μ+1A∗

)p
(Mm

1 (t))1+p
. (3.7)

Hence, combining both inequalities (3.6) and (3.7) for ε = R∗
2 , we can obtain the

desired result. �

We now obtain a generalized non-linear differential inequality which will be used
to estimate the higher-order moments.

Lemma 3.3. Let ζ > 0 and φ ∈ C([0, ∞), R�0) ∩ C1((t0, ∞)) for some t0 � 0,
satisfy

dφ(t)
dt

+ A [φ(t)]1+ζ � B for all t � t0 (3.8)

with some constants A and B, then

φ(t) � max

{(
2B
A
) 1

1+ζ

,

(
2

ζA
) 1

ζ

(t − t0)
− 1

ζ

}
for all t � t0.

Proof. We claim that the set{
t > t0

∣∣∣∣ φ(t) �
(

2B
A
) 1

1+ζ

}
is non-empty. Otherwise, assume the contrary that

φ(t) >

(
2B
A
) 1

1+ζ

for all t > t0. (3.9)

Combining inequalities (3.8) and (3.9), we get

dφ(t)
dt

� −B which implies φ(t) � φ(t0) − (t − t0)B for all t > t0. (3.10)

Thus, φ(t) < 0 whenever t > t0 + φ(t0)
B , which contradicts the non-negativity of φ.

Next, assume that

T := inf

{
t > t0

∣∣∣∣ φ(t) �
(

2B
A
) 1

1+ζ

}
.

If T does not exist, then there exist a t′ � T and ε > 0 such that

φ(t) > φ(t′) =
(

2B
A
) 1

1+ζ

for all t ∈ (t′, t′ + ε) . (3.11)

Again by similar argument as (3.10), we get φ(t) < φ(t′) for t ∈ (t′, t′ + ε), which
contradicts relation (3.11).
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If T = t0, then the proof is complete. Otherwise if T > t0, we consider the interval
(t0, T ). The definition of T gives B � A

2 [φ(t)]1+ζ . Using this bound on inequality
(3.8), we get

dφ(t)
dt

+
A
2

[φ(t)]1+ζ � 0 that is φ(t)

�
(

1

(φ(t0))
−ζ + Aζ

2 (t − t0)

) 1
ζ

for all t ∈ (t0, T ) .

Using the non-negativity of φ(t0), we get

φ(t) �
(

2
ζA
) 1

ζ

(t − t0)
− 1

ζ for all t ∈ (t0, T ). (3.12)

Hence, the proof is completed for all t � t0. �

With the help of lemma 3.2 and lemma 3.3, we can estimate the higher-order
moments of solution to (1.4).

Lemma 3.4. Assume (H1) −−(H3) hold; also consider that a be a solution to prob-
lem (1.4) with the corresponding first moment M1 and initial condition (1.5). Then
for any μ > 1,

Mμ(t) � max

⎧⎪⎪⎨⎪⎪⎩
⎛⎝ 21+p

(
2μ+1Â∗

)p
q1−p

p
M1+p+λμ + 2Ŝμ

∗ Mλμ

⎞⎠
1

1+λμ

, M

(
4

R∗λμt

)1/λμ

⎫⎪⎪⎬⎪⎪⎭ ,

where λμ := γ
μ−1 and p, q defined in lemma 3.2. In particular, there exists a constant

Cμ such that Mμ(t) � Cμ(1 + t−1/λμ). Note that Cμ depends only on the constants
namely, α, β, γ, Ŝ1

∗ , Ŝμ
∗ , Â∗ and R∗.

Proof. Thanks to the Hölder’s inequality, which gives the following result for the
higher-order truncated moments(Mm

μ (t)
)μ+γ−1

μ−1 �
(Mm

μ+γ(t)
)
(Mm

1 (t))
γ

μ−1 . (3.13)

The uniform boundedness of the first truncated moment Mm
1 yields

Mm
μ+γ(t) �

(Mm
μ (t)

)μ+γ−1
μ−1 M− γ

μ−1 .

Using the bound Mm
1 (t) � max

{
Mm

1 (0), Ŝ1
∗
}

and the above inequality on
lemma 3.2, we have the following required differential inequality

dMm
μ (t)

dt
+

R∗
2

M− γ
μ−1
(Mm

μ (t)
)1+λμ �

(qR∗)
1−p (2μ+2A∗

)p
2p

M1+p + Sμ
∗ . (3.14)

Now, consider

A :=
R∗
2

M− γ
μ−1 and B :=

(qR∗)
1−p (2μ+2A∗

)p
2p

M1+p + Sμ
∗
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and apply lemma 3.3 for t0 = 0, we can get the claim. Finally, we can get the estima-
tion Mμ(t) � Cμ(1 + t−1/λμ) by considering Cμ := max

{
( 2B
A )

1
1+λμ , ( 2

ζA )
1

λμ

}
. �

The following lemma estimates the higher-order moments in which the estimates
are free from the initial data.

Lemma 3.5. Assume (H1) −−(H3) hold; also consider that a be a solution to prob-
lem (1.4) with the corresponding first moment M1. If λμ = γ

μ−1 and p, q defined in
lemma 3.2, then for any μ > 1 there exists a time T > 0 (depends on a) such that

Mμ(t) �
{

22+λμ

p

(
2μ+3Â∗

)p

q1−p(Ŝ1
∗)1+p+λμ + 22+λμ Ŝμ

∗
(
Ŝ1
∗
)λμ
} 1

1+λμ

(3.15)

and

Mμ(t) � 4

⎧⎨⎩
(
2μ+3Â∗

)
p

q1−p
(
Ŝ1
∗
)1+p

+ Ŝμ
∗

⎫⎬⎭ for all t � T. (3.16)

Proof. From lemma 3.1, we get T1 > 0 such that M1(t) � 2S1
∗ for all t � T1. Using

this inequality on relation (3.13) and proceed similarly as lemma 3.3 to get

dMm
μ (t)

dt
+

R∗
(
Ŝ1
∗
)− γ

μ−1

21+ γ
μ−1

(Mm
μ (t)

)1+λμ

�
(qR∗)

1−p (2μ+3A∗
)p

p

(
Ŝ1
∗
)1+p

+ Sμ
∗ for all t � T1.

Setting t0 = T1, A := R∗(Ŝ1
∗)

− γ
μ−1

2
1+ γ

μ−1
, B := (qR∗)1−p(2μ+3A∗)p

p (Ŝ1
∗)1+p + Sμ

∗ and
applying lemma 3.3, we have

Mm
μ (t) � max

{(
2B
A
) 1

1+λμ

,

(
2

ζA
) 1

λμ

(t − T1)
− 1

λμ

}
for all t � T1.

Choose T2 � T1, such that

(
2

ζA
) 1

λμ

(t − T1)
− 1

λμ �
(

2B
A
) 1

1+λμ

(3.17)

for all t � T2. Now substituting the values of A, B and taking limit m → ∞, we
obtain estimate (3.15) by recalling relation (2.1).
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We now proceed to get inequality (3.16). Since γ � 0, we have the following
results hold true for any higher-order moments

Mm
μ (t) � Mm

μ+γ(t) and Mμ(t) � Mμ+γ(t) (3.18)

for all t � 0. Combining these results together with M1(T ) � 2S1
∗ for all t � T2,

lemma 3.2 generates

dMm
μ (t)

dt
+

R∗
2
Mm

μ (t) � B.

Direct application of Grönwall’s inequality and estimation (3.15) together give

Mm
μ (t) �

(
2B
A
) 1

1+λμ

exp
[
−R∗

2
(t − T2)

]
+
(

1 − exp
[
−R∗

2
(t − T2)

])
2B
R∗

.

(3.19)
Suppose that T � T2 such that(

2B
A
) 1

1+λμ

exp
[
−R∗

2
(t − T2)

]
� 2B

R∗
.

Setting the above inequality on (3.19) and passing the limit m → ∞, we obtain
estimate (3.16) for t � T with the help of relation (2.1). �

Remark 3.6. The above lemma 3.5 gives two different estimates of the moment
function Mμ(t). One of the estimates (3.15) depends on γ, and the second estimate
(3.16) is independent of γ.

4. Existence of a solution

To prove the existence theorem, we adopt the similar approach which is frequently
used for the discrete Safronov–Dubovskǐı aggregation equation [6]. We truncate all
the coefficients β, s, r and the initial data ain of equation (1.4) as follows

βm
i,j :=

{
βi,j , when 1 � i, j � m,

0, otherwise,
, sm

i :=

{
si, when 1 � i � m,

0, otherwise,

rm
i :=

{
ri, when 1 � i � m,

0, otherwise,
and am,in

i :=

{
ain

i , when 1 � i � m,

0, otherwise.
(4.1)

Therefore, the above truncations generate the following system of m(� 2)
ordinary differential equations of model (1.4);

dam
i

dt
= am

i−1

∑i−1
j=1 jβm

i−1,ja
m
j −am

i

∑i
j=1 jβm

i,ja
m
j −am

i

∑m
j=i βm

i,ja
m
j + sm

i −rm
i am

i ,

when i � m,

am
i (t) = 0, when i > m.

(4.2)
Note that am = (am

i )i∈N is also a solution of equation (1.4) where all the coeffi-
cients are defined as in (4.1). Also from (4.1), it is clear that βm

i,j , sm
i and rm

i satisfy
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the assumptions (H1), (H2) and (H3), respectively. So, all the moment estimations
derived in § 3 remain valid for the truncated solution am.

4.1. Existence of solution for finite dimensional system

The following proposition proves the existence of unique global solution to the
truncated system (4.2).

Proposition 4.1. Assume that am,in = {am,in
i }i∈N ∈ �11 and non-negative. Then

system (4.2) has unique solution with am = (am
i )i∈N ∈ C1([0, ∞), �11) for each i ∈

N.

Proof. Existence and uniqueness of solution of finite dimensional system (4.2) fol-
lows from the classical argument from theory of ordinary differential equations. In
this regard, we define a polynomial function fi : R

m → R
m as

fi (x1, . . . , xm) = xi−1

i−1∑
j=1

jβi−1,jxj − xi

i∑
j=1

jβi,jxj − xi

m∑
j=i

βi,jxj + sm
i − rm

i xi

such that the truncated equation (4.2) is written as

dam
i (t)
dt

= fi (am
1 , . . . , am

m) , for all i = 1, . . . , m.

Therefore, each fi is a polynomial function of components ai, moreover it is locally
Lipschitz continuous. Therefore, the existence and uniqueness of local solution
am to the Cauchy problem (2.1) follows from the standard Picard–Lindelöf exis-
tence theorem. Thus, there exists a maximal time interval am

i ∈ C1([0, T∗)) for all
i = 1, . . . , m.

Again for the non-negativity of the solution, we consider that for arbitrary ε > 0,
there exists a solution aε

i for the system, that is

daε
i(t)
dt

= fi (aε
1, . . . , a

ε
m) + ε. for all i = 1, . . . , m.

Also consider, for some t0 > 0 and 1 � i � m, we have aε
i(t0) > 0 and aε

r(t0) = 0
when r �= i. Then, daε

r(t)
dt = aε

r−1(t)
∑r−1

j=1 jβr−1,ja
ε
j(t) + si + ε > 0. Taking ε −→ 0,

we get the non-negativity result.
Finally, for the global existence of solution (i.e. T∗ = ∞), we use lemma 3.1 as

follows

0 � ai(t) � i−1
m∑

i=1

iai � M. (4.3)

So, the above result (4.3) shows that the solution cannot blow up on [0, T∗),
which implies the solution am ∈ C1([0, ∞), �11). �

4.2. Global existence theorem

In this section, we state and prove the main existence theorem of the global
solution to the IVP (1.4)=(1.5). Before this, we will prove two important results
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which will be used to prove the compactness and passing the limit n → ∞ on the
local solution obtained from proposition 4.1.

Lemma 4.2. Assume conditions (H1) − (H3) hold. Also consider that am be a solu-
tion to problem (4.2) with the corresponding initial first moment Min

1 := M1(0).
Then for each fixed i ∈ N, there exists a positive constant 	 (depends on i but not
on m) such that ∥∥∥∥dam

i (t)
dt

∥∥∥∥
L∞(0,∞)

� 	 for all m � i.

Proof. Using non-negativity of the coefficient β, s and the solution am, together
with condition (H1) on equation (4.2), we get∣∣∣∣dam

i (t)
dt

∣∣∣∣ � A∗
i−1∑
j=1

(
(i − 1)α

jβ + (i − 1)β
jα
)

am
i−1a

m
j +

A∗
i∑

j=1

(
iαjβ + iβ + jα

)
am

i am
j

+ A∗
m∑

j=i

(
iαjβ + iβ + jα

)
am

i am
j + si + ria

m
i .

(4.4)

Applying the estimation iμam
i � ‖am‖�1μ

on the above inequality, we have∣∣∣∣dam
i (t)
dt

∣∣∣∣ � 6A∗‖am‖�1α
‖am‖�1β

+ si � 6A∗ (Mm
1 (t))2 + S1

∗ +
ri

i
‖am‖�11

.

Applying lemma 3.1, we conclude that∥∥∥∥dam
i (t)
dt

∥∥∥∥
L∞(0,∞)

� 6A∗M2 + S1
∗ +

ri

i
M. �

Proposition 4.3. Let all the conditions (H1) − (H3) hold. Also consider for the
non-negative sequences (βn

i,j), (rn)n∈N, (sn)n∈N and (an)n∈N ∈ L∞([0, ∞), �11) for
each n ∈ N, there exists some sequence a = (ai)i∈N, r = (ri)i∈N and s = (si)i∈N such
that

βn
i,j → βi,j , rn

i → ri, sn
i → si as n → ∞ for each i, j ∈ N.

as well as an
i (t) → ai(t) as n → ∞ uniformly on compact subset of [0, ∞).

Moreover, there exists a constant Ω1 for (an)n∈N satisfying

Mn
1 (t) :=

∞∑
i=1

ian
i (t) � Ω1 for all t � 0

and for all μ > 1 there exists some constant Ωμ and λ ∈ [0, 1) for (an)n∈N such
that

Mn
μ(t) :=

∞∑
i=1

ian
i (t) � Ωμ

(
1 + t−λ

)
for all t � 0.
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Then

(i) For each fixed i ∈ N

lim
n→∞

⎛⎝i−1∑
j=1

jβn
i−1,ja

n
i−1a

n
j −

i∑
j=1

jβn
i,ja

n
i an

j −
∞∑

j=i

βn
i,ja

n
i an

j + sn
i − rn

i an
i

⎞⎠
=

i−1∑
j=1

jβi−1,jai−1aj −
i∑

j=1

jβi,jaiaj −
∞∑

j=i

βi,jaiaj + si − riai (4.5)

converges uniformly on each compact subset of (0, ∞).

(ii) For each fixed i ∈ N and for any t > 0

lim
n→∞

⎡⎣∫ t

0

⎛⎝i−1∑
j=1

jβn
i−1,ja

n
i−1(ξ)a

n
j (ξ) −

i∑
j=1

jβn
i,ja

n
i (ξ)an

j (ξ)

−
∞∑

j=i

βn
i,ja

n
i (ξ)an

j (ξ) + sn
i − rn

i an
i (ξ)

⎞⎠⎤⎦dξ

=
∫ t

0

⎛⎝i−1∑
j=1

jβi−1,jai−1(ξ)aj(ξ)

−
i∑

j=1

jβi,jai(ξ)aj(ξ) −
∞∑

j=i

βi,jai(ξ)aj(ξ) + si − riai(ξ)

⎞⎠ dξ. (4.6)

Proof. With the help of Fatou’s lemma and the assumption of the proposition, we
can say that the limit sequence (ai)i∈N satisfies the estimates

M1(t) :=
∞∑

i=1

iai(t) � Ω1 and Mμ(t) :=
∞∑

i=1

iai(t) � Ωμ

(
1 + t−λ

)
. (4.7)

We deduce result 4.5 by proving the convergence for each term separately, under
the assumption sn

i −→ si as n −→ ∞ already assumed in the proposition. The
locally uniform convergence of an

i (t) to ai(t) on [0, ∞) and finite number of terms
in the following terms, we can get

i−1∑
j=1

jβn
i−1,ja

n
i−1a

n
j

n→∞−−−−→
i−1∑
j=1

jβi−1,jai−1aj ,

i∑
j=1

jβn
i,ja

n
i an

j
n→∞−−−−→

i∑
j=1

jβi,jaiaj and

rn
i an

i
n→∞−−−−→ riai

(4.8)
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are also locally uniformly convergent on [0, ∞). It remains to estimate the difference∑∞
j=i βn

i,ja
n
i an

j −∑∞
j=i βi,jaiaj . Choose some Z ∈ N (which we fix later) and rewrite

the difference in the following way∣∣∣∣∣∣
∞∑

j=i

βn
i,ja

n
i an

j −
∞∑

j=i

βi,jaiaj

∣∣∣∣∣∣ � |an
i − ai|

∞∑
j=i

βn
i,ja

n
j

+ ai

Z−1∑
j=i

(∣∣βn
i,j − βi,j

∣∣ an
j + βi,j

∣∣an
j − aj

∣∣)
+ ai

∞∑
j=Z

(
βn

i,ja
n
j + βi,j .aj

)
. (4.9)

Using condition (H1) in the first term on the right-hand side of (4.9), we get

|an
i − ai|

∞∑
j=i

βn
i,ja

n
j � A∗ |an

i − ai|
∞∑

j=i

(
iαjβ + iβjα

)
an

j

� 2A∗iβ |an
i − ai|

∞∑
j=i

jan
j � 2A∗iβΩ1 |an

i − ai| . (4.10)

By using the assumption of proposition 4.1, we get the right-hand side of (4.10)
that converges to zero as n −→ ∞ locally uniformly on [0, ∞). To estimate the
second term on the right-hand side of (4.9), we follow the same argument as (4.8).
For the completeness, each term of the sum converges to zero locally uniformly on
[0, ∞) and since the sum contains a fixed number of terms,

lim
n→∞

⎛⎝ai

Z−1∑
j=i

(∣∣βn
i,j − βi,j

∣∣ an
j + βi,j

∣∣an
j − aj

∣∣)⎞⎠ = 0 (4.11)

converges locally uniformly on [0, ∞). Finally, to estimate the third term on
the right-hand side of (4.9), we use the relation βi,j � A∗(iαjβ + iβjα) � 2A∗iβjβ

(since α � β < μ) and λ ∈ [0, 1) we get

ai(ξ)
∞∑

j=Z

(
βn

i,ja
n
j (ξ) + βi,jaj(ξ)

)
� 2A∗Zβ−μiβai(ξ)

∞∑
j=Z

jμ
(
an

j (ξ) + aj(ξ)
)

� 2A∗Ω1Z
β−μ

(Mn
μ(ξ) + Mμ(ξ)

)
� 2A∗Ω1Ωμ

(
1 + ξ−λ

)
Zβ−μ −→ 0 as Z −→ 0

(4.12)

converges locally uniformly on [0, ∞). Since the right-hand side of (4.11) is inde-
pendent of n, the right-hand side of (4.9) is arbitrarily small by taking n −→ ∞ and
then Z −→ ∞. This estimation together with (4.8), we get the convergence result
(4.5).
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Moreover, since all the estimations (4.8), (4.10) and (4.11) are uniform with
respect to ξ and since

∫ t

0
(1 + ξ−λ)dξ = t + t1−λ/(1 − λ), the convergence result

(4.6) follows directly. �

We are now at the stage where we can prove the global existence theorem for the
IVP (1.4).

Theorem 4.4 Global existence theorem. Consider that ain ∈ �11. Under the
assumptions (H1) − (H3), there exists at least one global solution a to (1.4)–(1.5)
with initial condition ain.

Proof. Let (am)m∈N be the solution of m-dimensional system (4.2) obtained from
proposition 4.1 and lemma 3.1 states that, am have a uniformly bounded first
moment, i.e. Mm

1 (t) � M. Therefore, lemma 4.2 guarantees that (am)m∈N is uni-
formly bounded on C0,1(0, T ) for all fixed T ∈ (0, ∞). Thus, by Arzelà–Ascoli
theorem we ensure that there exists a subsequence of (am

i )m∈N (for notational
convenience, we will not relabel) and a continuous sequence a = (ai)i∈N such that

am
i −→ ai as m −→ ∞ (4.13)

converges locally uniformly on [0, ∞). Moreover, with the help of lemmas 3.1, 3.4
and Fatou’s lemma, we have for some μ > 1 and λ ∈ [0, 1) that

M1(t) � M and Mμ(t) � Ωμ

(
1 + t−λ

)
. (4.14)

Since (am
i )m∈N is a solution of (4.2), we have

am
i (t) − am,in

i =
∫ t

0

⎛⎝am
i−1(ξ)

i−1∑
j=1

jβm
i−1,ja

m
j (ξ) − am

i (ξ)
i∑

j=1

jβm
i,ja

m
j (ξ)

−am
i (ξ)

∞∑
j=i

βm
i,ja

m
j (ξ) + sm

i − rm
i am

i (ξ)

⎞⎠ dξ. (4.15)

Applying proposition 4.1 by taking the limit m −→ ∞ on equation (4.15), we get

ai(t) − ain
i =

∫ t

0

⎛⎝ai−1(ξ)
i−1∑
j=1

jβi−1,jaj(ξ) − ai(ξ)
i∑

j=1

jβi,jaj(ξ)

−ai(ξ)
∞∑

j=i

βi,jaj(ξ) + si − riai(ξ)

⎞⎠ dξ. (4.16)

Now, consider (4.14) with the convergence (4.13), we get a ∈ L∞([0, ∞), �11) ∩
C1((0, ∞), �1μ). Moreover, continuity of the initial data and equation (4.16) implies
that a ∈ C1([0, ∞)). So, by the help of Leibnitz rule differentiating (4.16) with
respect to t establishes that a(t) solves (1.4). Hence, the proof of theorem 4.4 is
completed. �
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5. A contraction property

This property plays a key roll to prove the existence and the rate of convergence
to the equilibrium solution. Moreover, relying on this contraction property, we will
also prove the uniqueness of the solution to equation (1.4).

Lemma 5.1. Suppose the assumptions (H1) − (H3) hold, also c = (ci)i∈N and
d = (di)i∈N be two solutions to equation (1.4). Then for μ � 1 there exists a constant
kμ, such that

d
dt

∞∑
i=1

iμ |ci − di| �

⎛⎝2A∗ (2μ + 2 + kμ)
∞∑

j=1

jμ+β (cj + dj) − R∗

⎞⎠ ∞∑
i=1

iμ |ci − di| .

Proof. Consider lemma 2.3 for the solutions c = (ci)i∈N, d = (di)i∈N and taking the
difference by setting ϕi = iμ sgn(ci − di), we get

d
dt

∞∑
i=1

iμ |ci − di| =
∞∑

i=1

∞∑
j=i

[i (ϕj+1−ϕj) − ϕi] βi,j (cicj − didj)−
∞∑

i=1

ϕi (ci − di) ri

=
∞∑

i=1

∞∑
j=i

[i (ϕj+1 − ϕj) − ϕi] βi,j [cj (ci − di) + di (ci − di)]

−
∞∑

i=1

ϕi (ci − di) ri

=
∞∑

i=1

∞∑
j=i

[i (ϕj+1 − ϕj) − ϕi] βi,jcj (ci − di)

+
∞∑

i=1

∞∑
j=i

[i (ϕj+1 − ϕj) − ϕi] βi,jdi (ci − di)

−
∞∑

i=1

ϕi (ci − di) ri. (5.1)

Putting the explicit form of ϕi, we can get the following estimations

[i (ϕj+1 − ϕj) − ϕi] (ci − di)

= (ci − di) [i ((j + 1)μ sgn (cj+1 − dj+1) − jμ sgn (cj − dj)) − iμ sgn (ci − di)]

= (ci − di) [i (j + 1)μ sgn (cj+1 − dj+1) − ijμ sgn (cj − dj)] − iμ |ci − di|
� |ci − di| [i (1 + j)μ + ijμ − iμ]

� (2μ + 1) ijμ |ci − di| (5.2)
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[i (ϕj+1 − ϕj) − ϕi] (cj − dj)

= (cj − dj) [i (j + 1)μ sgn (cj+1 − dj+1) − iμ sgn (ci − di)] − ijμ |cj − dj |
� |cj − dj | [i (1 + j)μ + iμ − ijμ]

� |cj − dj |
[
kμijμ−1 + iμ

]
(5.3)

for some constant kμ. Use estimations (5.2) and (5.3) on (5.1), to get

d
dt

∞∑
i=1

iμ |ci − di| � (2μ + 1)
∞∑

i=1

∞∑
j=i

ijμβi,jcj |ci − di|

+
∞∑

i=1

∞∑
j=i

[
kμijμ−1 + iμ

]
βi,jdi |cj − dj | −

∞∑
i=1

iμ |ci − di| ri

� 2A∗

⎡⎣(2μ + 1)
∞∑

i=1

∞∑
j=i

iβjμ+βcj |ci − di|

+ (kμ + 1)
∞∑

i=1

∞∑
j=i

iβjμ+β−1di |cj − dj |
⎤⎦

−
∞∑

i=1

iμ |ci − di| ri

� 2A∗ (kμ + 2μ + 2)
∞∑

i=1

∞∑
j=i

(
iβjμ+βcj + jβiμ+β−1dj

) |ci − di|

− R∗
∞∑

i=1

iμ |ci − di|

�

⎛⎝2A∗ (kμ + 2μ + 2)
∞∑

j=1

jμ+β (cj + dj) − R∗

⎞⎠ ∞∑
i=1

iμ |ci − di| .

�

Lemma 5.2. Suppose assumptions (H1) − (H3) hold and we redefine p, q and λ as

p =
μ + γ − 1
γ − α − β

, q =
p

p − 1
and λμ+β =

γ

μ + β − 1
respectively.

Then for any pair of solutions c = (ci)i∈N and d = (di)i∈N, there exists a time T∗
such that

d
dt

∞∑
i=1

iμ |ci − di| � −η

∞∑
i=1

iμ |ci − di| for almost every t � T∗,

https://doi.org/10.1017/prm.2023.116 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.116


20 A. Das and J. Saha

where η := max{η1, η2} with η1 and η2 defined as

η1 := R∗

− 4A∗ (kμ + 2μ + 2)
{

q1−p22+λμ+β

p

(
2μ+β+3Â∗

)p

(Ŝ1
∗)1+p+λμ+β

+ 22+λμ+β Ŝμ+β
∗

(
Ŝ1
∗
)λμ+β

} 1
1+λμ+β

> 0

and

η2 := R∗−16A∗ (kμ + 2μ + 2)
{(2μ+β+3Â∗

)
p

q1−p
(
Ŝ1
∗
)1+p

+ Ŝμ+β
∗

}
> 0.

Proof. We need to show that there exists a time T∗ such that

2A∗ (kμ + 2μ + 2)
∞∑

j=1

jμ+β (cj + dj) − R∗ � −η for almost every t � T∗.

(5.4)
According to lemma 3.5, for a large time T∗ the left-hand side of the inequality

(5.4)

2A∗ (kμ + 2μ + 2)
∞∑

j=1

jμ+β (cj + dj) − R∗

� 4A∗ (kμ + 2μ + 2) min

{
4

⎛⎝
(
2μ+β+3Â∗

)
p

q1−p
(
Ŝ1
∗
)1+p

+ Ŝμ+β
∗

⎞⎠ ,

(
1
p
22+λμ+β

(
2μ+β+3Â∗

)p

q1−p(Ŝ1
∗)1+p+λμ+β

+22+λμ+β Ŝμ+β
∗

(
Ŝ1
∗
)λμ+β

) 1
1+λμ+β

}
− R∗

for all t � T∗. Now, using the definition of η1 and η2 and take η := max{η1, η2}, we
can conclude the proof. �

The uniqueness of the solution to equation (1.4) is obtained through lemma 5.1.

Proposition 5.3 Uniqueness of global solution. Let all the conditions of theorem
4.4 hold. Then there exists atmost one global solution to equation (1.4).
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Proof. Consider c = (ci) and d = (di) be two solutions to equation (1.4). Set μ = 1
in lemma 5.1, to get

d
dt

∞∑
i=1

i |ci − di| �

⎛⎝10A∗
∞∑

j=1

jβ+1 (cj + dj) − R∗

⎞⎠ ∞∑
i=1

i |ci − di| .

Recalling lemma 3.4, for R∗ > 0 the above assumption can take the form

d
dt

∞∑
i=1

i |ci − di| �
(
20A∗C1+β

(
1 + t−β/γ

)) ∞∑
i=1

i |ci − di| .

The fact β < γ gives t → (1 + t−β/γ) is integrable at zero. Thus, due to the
Grönwall’s inequality, we can obtain c = d. �

6. Existence and convergence of equilibrium solution

In this section, we will establish the existence of a unique equilibrium solution.
Moreover, with the help of lemma 5.2, we will show that any solution to equation
(1.4) converges to this equilibrium with an exponential rate.

Theorem 6.1. Let conditions (H1) − (H3) hold. Moreover, for each μ � 1 either

2A∗ (kμ + 2μ + 2)
{

1
p
22+λμ+β

(
2μ+β+3Â∗

)p

q1−p(Ŝ1
∗)1+p+λμ+β

+ 22+λμ+β Ŝμ+β
∗

(
Ŝ1
∗
)λμ+β

} 1
1+λμ+β − R∗<0

or

8A∗ (kμ + 2μ + 2)
{(2μ+β+3Â∗

)
p

q1−p
(
Ŝ1
∗
)1+p

+ Ŝμ+β
∗

}
− R∗<0,

where p = μ+γ−1
γ−α−β , q = p

p−1 and λμ+β = γ
μ+β−1 . Then

(i) there exists a unique stationary solution Q = (Qi)i∈N ∈ �1μ for all μ � 1,

(ii) for each solution a, there exists some constant K, η > 0 (independent of a)
and a time Tc > 0 such that

‖a(t) − Q‖�1μ
� K exp[−ηt] for all t � Tc.

We will prove the following lemma, which is a direct consequence of lemma 5.2.

Lemma 6.2. Let all the conditions of theorem 6.1 hold. Then for any solution
a = (ai)i∈N to equation (1.4), we have

lim
t→∞

∣∣∣∣ ddt
ai(t)

∣∣∣∣ = 0 for all i ∈ N.
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Proof. For any h > 0, we introduce a shifted (along time) sequence ah = (ah
i )i∈N,

defined as ah
i (t) = ai(t + h). Therefore, ah is again a solution to equation (1.4).

Applying lemma 5.2 with these two solutions a and ah yields

d
dt

∞∑
i=1

iμ |ai(t + h) − ai(t)| � −η
∞∑

i=1

iμ |ai(t + h) − ai(t)| for all t � T∗.

(6.1)
Integrating

∞∑
i=1

iμ |ai(t + h) − ai(t)| �
∞∑

i=1

iμ |ai(T∗+h)

−ai(T∗)| exp [−η (t − T∗)] for all t � T∗.

Since a ∈ C1((0, ∞), �1μ), so taking the limit h → 0 yields∥∥∥ d
dt

ai(t)
∥∥∥

�1μ

�
∥∥∥ d

dt
ai(T∗)

∥∥∥
�1μ

exp [−η (t − T∗)] for all t � T∗.

Further taking limit t → ∞ on the above estimation, we obtain

lim
t→∞

∥∥∥ d
dt

ai(t)
∥∥∥

�1μ

= 0.

Which completes the proof. �

Now we have reached the point where we can prove the existence and uniqueness
of the equilibrium solution. Consequently, we will prove exponential convergence to
the equilibrium solution.

Proof of theorem 6.1. We will prove the theorem in three steps.

Existence of equilibrium solution: Let a = (ai)i∈N be a solution to equation (1.4)
associated with some initial data ain. According to lemmas 3.1 and 3.5, for each
μ > 1 we have

M1(t) � 2Ŝ1
∗ and Mμ(t) � Ωμ

(
1 + t−λμ

)
for sufficiently large t. (6.2)

This yields the existence of a sequence (tn) which satisfies tn → ∞ as n → ∞
and non-negative sequence (Qi) such that

a(tn) −→ Q in �1μ for all μ � 1 as n −→ ∞.

In particular, with the help of Fatou’s lemma and estimation (6.2), the sequence Q
also satisfies

∞∑
i=1

iQi � 2Ŝ1
∗ and

∞∑
i=1

iμQi � Ωμ for all μ > 1.
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It is now a straightforward application of proposition 4.1 to the stationary sequence
a(tn) and taking into account lemma 5.2, we get

Fi(Q) = lim
n→∞Fi(a(tn)) = lim

n→∞
d
dt

ai(tn) = 0.

This proves that Q is an equilibrium solution to equation (1.4).
Uniqueness of equilibrium solution: On the contrary, we assume that there exist

two equilibrium solutions Q1 and Q2 to equation (1.4). Since Q1 and Q2 both are
solutions of equation (1.4), applying lemma 6.2 we can obtain

0 =
d
dt

∞∑
i=1

iμ
∣∣Q1

i − Q2
i

∣∣ � −η

∞∑
i=1

iμ
∣∣Q1

i − Q2
i

∣∣ for all μ � 1,

from which the uniqueness follows.
Convergence to equilibrium: Applying lemma 5.2 for any solution a and equilib-

rium solution Qi, we have

d
dt

∞∑
i=1

iμ |ai − Qi| � −η

∞∑
i=1

iμ |ai − Qi| for all t � T∗.

By integrating the above differential inequality, we can obtain

∞∑
i=1

iμ |ai(t) − Qi| �
∞∑

i=1

iμ |ai(T∗) − Qi| exp[−η(t − T∗)] for all t � T∗. (6.3)

According to lemma 3.5, there exists a constant K̃ which is independent of a and
a time T̃ such that

∞∑
i=1

iμ |ai(T∗) − Qi| �
∞∑

i=1

iμ (ai + Qi) � 2K̃ for all t � T̃ . (6.4)

Finally, take Tc = max{T∗, T̃}, K := 2K̃ exp(T∗) and using esimation (6.4) on
(6.3) we get

∞∑
i=1

iμ |ai(t) − Qi| � K exp[−ηt] for all t � Tc,

which concludes the proof. �

7. Concluding remarks

In this article, we consider an extension of the Safronov–Dubovskǐı aggregation
equation, where particles input and output can take place. A complete theoreti-
cal investigation for well-posedness and convergence to the steady-state solution
to the IVP (1.4)–(1.5) has been done. Here all the associated kinetic coefficients
are unbounded and cover a large class of physical kinetic rates. Initially, we trun-
cated system (1.4) in a finite-dimensional system and with the help of standard
Picard–Lindelöf theorem, we have proved the local existence theorem. After that,
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a strong convergence result, which is known as Arzelà–Ascoli theorem, ensures the
convergence of the sequence of solution whose limit function is proved to be a solu-
tion of the IVP (1.4)–(1.5). In the subsequent sections, by proving some contraction
property of the solution, for a long time limit, we established that the solution
converges to a unique equilibrium solution with the exponential convergence rate.
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