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Summary

Due to the tremendous cost of the traditional mutation-accumulation approach (the

Bateman–Mukai technique), data are rare for deleterious mutation parameters such as genomic

mutation rate, selection and dominance coefficients. Two alternative approaches have been

developed (the Morton–Charlesworth and Deng–Lynch techniques). Except for the Deng–Lynch

method, the statistical properties (bias and sampling variance) of these techniques are poorly

understood; therefore we investigated them using computer simulation. With constant fitness

effects of mutations, the Bateman–Mukai (assuming additive effects) and Deng–Lynch (assuming

multiplicative effects) techniques are unbiased; the Morton–Charlesworth technique (assuming

multiplicative effects) is very biased if fitness is used in the regression to estimate h, but slightly

biased if the logarithm of fitness is used. With variable fitness effects, all techniques are biased. The

Deng–Lynch technique is statistically better than the others except when fitness is used to estimate

the average degree of dominance in selfing populations with the Morton–Charlesworth technique.

If fitness effects are multiplicative but additivity is assumed, the Bateman–Mukai technique is

biased under constant fitness effects, and less biased under variable fitness effects relative to when

fitness effects are additive (as assumed by the technique). Our study not only quantifies the degree

of bias under the biologically plausible situations investigated, thus forming a basis for correct

inference of the true parameters by using these techniques, but also provides insights into the

relative efficiencies of these techniques when the same number of genotypes are handled

experimentally.

1. Introduction

The three essential parameters of deleterious genomic

mutations are : (1) the genomic mutation rate (U,

measured in units of the number of new mutation

occurrences per genome per generation), (2) the mean

selection coefficient (sa , measuring the relative re-

duction of performance of mutant homozygotes

relative to the wild-type homozygotes), and (3) the

mean dominance coefficient (h- , describing the extent

to which heterozygotes express harmful effects of

mutant alleles).

Estimation of these parameters in diverse taxa is

important for testing many modern evolutionary and

* Corresponding author. Telephone: ­1(402)-280-5911. Fax:
­1(402)-280-5034.

population genetics theories, and is also of con-

siderable practical value. For example, U estimates

are crucial in testing hypotheses on the evolution of

sex and recombination (Muller, 1964; Kondrashov,

1985, 1988; Charlesworth, 1990), mate choice

(Kirkpatrick & Ryan, 1991), diploidy (Kondrashov

& Crow, 1991) and outbreeding mechanisms

(Charlesworth & Charlesworth, 1987). They also

determine the magnitude of mutation load in popu-

lations at equilibrium (Haldane, 1937; Kimura et al.,

1963; Burger & Hofbauer, 1994). Estimates of h and

s are important for testing the hypothesis of transition

from haploidy to diploidy (Perrot et al., 1991). Joint

estimates of U and s are critical in determining the role

of deleterious mutations in the extinction of small

populations through the accumulation of mutations

(Lande, 1994; Lynch et al., 1995, 1996). Estimates of
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U, h and s determine the rate of input of genetic

variance from mutation per generation (Deng &

Lynch, 1996) and the extent to which neutral

molecular variation is reduced due to background

selection (Charlesworth et al., 1993, 1995; Hudson &

Kaplan, 1995).

Despite their importance, estimates are rare. There

are now three approaches to estimation:

1. The mutation-accumulation (M-A) approach.

This was proposed by Bateman (1959) and first

employed by Mukai (1964) and Mukai et al. (1972)

(referred to as the Bateman–Mukai technique here-

after). This technique estimates U and s. Most

estimates have come from this approach applied to

Drosophila melanogaster (Mukai, 1979; Crow &

Simmons, 1983; Keightley, 1994), and have been very

hard to acquire, requiring large and long-term

mutation-accumulation (M-A) and special chromo-

somal constructs or inbred lines. The data from M-A

can also be analysed by the maximum likelihood

method of Keightley (1994); however, due to its large

computational requirement, investigation of its stat-

istical properties by large-scale simulations remains a

challenge.

2. The inbreeding depression approach. This was

implied by Morton et al. (1956) in outcrossing

populations, and explicitly proposed by Charlesworth

et al. (1990) for use with highly selfing populations

(both collectively referred to as the Morton–

Charlesworth technique hereafter). This technique per

se estimates U only. In the highly selfing annual plants

Lea�enworthia (Charlesworth et al., 1994) and

Amsinckia (Johnston & Schoen, 1995), U estimates

from this approach are in line with earlier ones from

M-A in Drosophila.

3. The fitness moments approach. This is an ex-

tension of the Morton–Charlesworth technique by

Deng & Lynch (1996) (referred to as the Deng–Lynch

technique hereafter). It estimates U, h and s. For two

outcrossing species of cyclical parthenogenetic

Daphnia (a freshwater microcrustacean), the pre-

liminary data estimated by this approach generally

agree with earlier ones (Deng & Lynch, 1997).

Except for the Deng–Lynch technique, statistical

properties such as bias and sampling variances have

not been investigated. Such investigations, especially

those under realistic biological situations, are im-

portant, since they will provide a basis for a correct

interpretation of the estimates obtained under some

necessary but unrealistic assumptions. Although

Charlesworth’s technique was investigated for its

robustness under synergistic mutations and partial

selfing (Charlesworth et al., 1990), it assumed constant

fitness effects of mutations with a known h. However,

h estimation is not trivial and fitness effects are most

likely variable (Mackay et al., 1992; Keightley, 1994).

While the traditional M-A analysis assumes additive

fitness effects, there is good evidence that genes for

fitness or its components may act multiplicatively

(Morton et al., 1956; Crow, 1986; Fu & Ritland,

1996). In order to infer the parameters correctly from

experimental data, investigating the estimation

properties under realistic mutational effects is im-

portant. Additionally, the statistical properties of

these techniques need to be investigated under the

same number of genotypes that are handled ex-

perimentally, so that their relative efficiencies can be

compared.

In this study, in order to provide necessary

background information, we will first outline the

principles of the techniques. Next, we will investigate

their statistical properties under constant mutational

effects, which will serve as a starting point for the

comparison with the more realistic situations later in

this study. We will then investigate their robustness

under variable fitness effects. Finally, we will study the

robustness of the Bateman–Mukai technique under

multiplicative fitness effects.

2. Principles

(i) The Bateman–Mukai technique

If data on the rates of change of mean fitness (M ) and

genetic variance (V ) due to new mutations are

available, bounds on U and sa may be estimated:

Assuming that fitness effects are additive, the mutation

probability per generation at each locus is small, and

mutations on all loci are independent, then (Mukai et

al., 1972) :

U&
M#

V
, sa %

V

M
. (1)

In M-A experiments involving special chromosomal

constructs in Drosophila, U is typically the haploid

mutation rate for the chromosome isolated for M-A

(Mukai et al., 1972).

(ii) The inbreeding depression approach

This approach applies to fitness (or related traits) in

large populations at mutation–selection (M–S) equi-

librium, in which the number of mutations per genome

is Poisson distributed. It assumes that the fitness

effects of mutations are constant and multiplicative,

and loci are unlinked.

In such outcrossing populations (Morton et al.,

1956), selfing (or any other form of inbreeding; here

we concentrate on selfing) of random genotypes results

in inbreeding depression

δ
o
¯

w-
s

w-
o

,
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where w-
o

and w-
s

are the mean fitnesses of the

outcrossed parental and selfed offspring generations

respectively. Given h :

U¯
4h ln δ

o

2h®1
. (2)

U in the inbreeding depression approach and in the

Deng–Lynch technique is usually for the whole diploid

genome.

In highly selfing populations (Charlesworth et al.,

1990), crossing random genotypes results in out-

breeding enhancement δ
i
¯wa

s
}w-

o
, where w-

s
and w-

o

are the mean fitnesses of the selfed parental and

outcrossed offspring generations respectively. Given

h :

U¯
2 ln δ

i

2h®1
. (3)

An advantage of estimating U in selfing populations

is that overdominance or lethals are unlikely to bias U

estimation (Charlesworth et al., 1990).

Since the inbreeding depression approach depends

on prior knowledge of h, it must be evaluated with an

h-estimating technique. The h-estimating technique

suggested (Charlesworth et al., 1990) was the one

proposed by Mukai et al. (1972). It estimates the

average h at individual loci weighted by the genetic

variance of the homozygotes (ha ), from the regression

slope of the outcrossed progeny fitness (x) on the

fitness sum (y) of the two corresponding homozygous

parents (Mukai et al., 1972; Simmons & Crow, 1977;

Crow & Simmons, 1983) :

ha ¯
Cov (x, y)

Var (y)
. (4)

In the derivation of this expression, additive fitness

effects were implicitly assumed (Mukai et al., 1972). A

key assumption is that the rare allele frequency at any

locus is very low (Charlesworth & Hughes, 1997;

Deng, 1998), which is usually met given M–S

equilibrium (Crow & Kimura, 1970). In (4), the

regression is for the genotypic values x and y. Thus

genetic variance and covariance should be used to

estimate h- (Mukai et al., 1972). Assuming additivity,

h- can also be estimated by the genetic variances

among the homozygous and heterozygous lines

derived from populations at M–S equilibrium

(Hughes, 1995).

(iii) The Deng–Lynch technique

Under the same assumptions as the Morton–

Charlesworth technique, this method requires that

genetic variances of fitness before and after selfing}

outcrossing be measured (Deng, 1995; Deng & Lynch

1996, 1997).

In outcrossing populations. I. A sample of genotypes

are selfed to obtain a number of selfed progeny from

each parent to form selfed families. II. Parental

genotypes are cloned. Genotypes from both

generations are assayed together in one environment

to estimate wa
o

and w-
s
. III. One-way ANOVA are

performed. In the outcrossed parental generation,

parental genotypes are treated as main effects and

clonal replicates as random effects, so that we obtain

estimates of the genetic variance (σ#

!
). In the selfed

offspring generation, selfed families are treated as

main effects and selfed progeny genotypes within each

family as random effects so that we can obtain the

genetic variance among the mean of selfed families

(σ#
s
). Then:

h¯
1

4
z

x
®2

U¯
4hy

2h®1
s¯

z

Uh
, (5)

where

x¯ ln
σ#

o

wa #
o

­1 , y¯ ln
wa

s

wa
o

, z¯ ln
σ#

s

wa #
s

­1 . (6)

In highly selfing populations. I. Random pairs of

genotypes are sampled and outcrossed. II. The selfed

parent and outcrossed progeny genotypes are cloned

and assayed in one common environment. III. One-

way ANOVAs are performed with genotypes as main

effects and clonal replicates as random effects, to

estimate the genetic variances in the outcrossed

progeny (σ#
o
) and selfed parental (σ#

s
) generations,

together with wa
s
and w-

o
. Let x, y, z be defined in (6),

then:

h¯
x

2z
U¯

2y

2h®1
s¯

2z

U
. (7)

3. Statistical properties under constant fitness effects

The investigation of the methods under their respective

assumptions with constant fitness effects can serve as

a starting point for the comparison with the more

realistic situations investigated later in this study. In

order to focus on comparing the estimation power of

the three approaches (M-A and change of fitness

moments upon outbreeding}selfing in populations at

M–S equilibrium), all genotypic values are assumed to

be measured accurately in this study. In reality, this

would require that each genotype be clonally repli-

cated and assayed a very large number of times.

Ignoring measurement error for genotypic values will
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Table 1. Estimation with the Bateman–Mukai

technique under constant fitness effects

U s Uq sW

0±1 0±01 0±10 (0±02) 0±010 (0±001)
0±03 0±10 (0±02) 0±030 (0±004)
0±05 0±10 (0±02) 0±050 (0±007)

0±5 0±01 0±53 (0±09) 0±010 (0±003)
0±03 0±53 (0±09) 0±029 (0±004)
0±05 0±53 (0±09) 0±048 (0±007)

1±0 0±01 1±03 (0±15) 0±010 (0±001)
0±03 1±04 (0±15) 0±029 (0±004)
0±05 1±04 (0±15) 0±049 (0±007)

1±5 0±01 1±53 (0±24) 0±010 (0±002)
0±03 1±53 (0±24) 0±030 (0±005)
0±05 1±53 (0±24) 0±050 (0±008)

The numbers in this and all of the following tables are based
on 100 simulations, in which genotypic values are assumed
to be measured accurately. Throughout, the number within
each set of parentheses indicates the associated standard
deviation of the estimate over the repeated simulations.
Each simulation is based on 100 independent M-A lines.
# denotes an estimated value throughout. Mutations are
allowed to accumulate for 40 generations and the fitnesses
of the lines are assayed every 10 generations, which is similar
to the actual experiment (Mukai et al., 1972). The total
sample size of genotypes used in the M-A is 4000.

probably reduce the sampling error of estimates, but

is unlikely to bias either the estimation or the

comparison of the techniques, assuming the same

number of genotypes that would be handled ex-

perimentally. This is partly supported by the investi-

gation of measurement error on mutation parameter

estimation for the Deng–Lynch technique (Deng &

Lynch, 1996).

(i) The Bateman–Mukai technique

This simulation simplifies some complex features of

the actual experiments (e.g. the need for raising large

controls for temporal environmental changes and

backups in case of line losses) :

1. Fitnesses for L identical lines are set to 1±0 at the

onset of the M-A.

2. As in the Drosophila experiments (Mukai et al.,

1972), mutations are allowed to accumulate in the

heterozygous state, but are measured in the

homozygous state. Mutations, with constant s and

h, occur in each line as a Poisson process at a rate

of U per generation, and are allowed to accumulate

independently for T generations. The fitness (W )

equals 1®s¬n, where n is the number of mutations

accumulated. All lines are assayed at time intervals

of I generations. L¬T is the total number (S ) of

genotypes handled, which includes those

strenuously maintained as M-A lines but not in the

measurement generations.

3. As in Mukai et al. (1972), the means and variances

among the lines measured at different times are

used in simple regression analyses to estimate M

and V, and then U and s (1).

The simulation is performed for a range of

parameter sets (e.g. U¯ 0±1–1±5, s¯ 0±01–0±05). There

is no estimation bias and the sampling variance is very

small regardless of the parameters simulated (Table

1). Therefore, for the parameters U¯1±0 and s¯
0±03, we investigate the estimation under different

experimental designs (Table 2). Employing this par-

ameter set in simulations may help facilitate later

comparison with the other techniques under the same

parameter set (Tables 4, 7). It can be seen that, for the

simulated parameters, if genotypic �alues are measured

with high accuracy, 10 M-A generations and two

assays (at the onset and the end of M-A) are enough

to obtain unbiased estimates with small sampling

variance, if many M-A lines are employed (&100).

This conclusion should hold regardless of the para-

meters simulated, as supported by the results in Table

1 and those not shown.

(ii) The Morton–Charlesworth technique

It is assumed that the number of mutations per

individual (n) is Poisson distributed and all are at the

heterozygous}homozygous stage in outcrossing}
selfing populations at M–S equilibrium (Charlesworth

et al., 1990; Deng & Lynch, 1996).

In outcrossing populations. 1. Estimating h : Assume H

random pairs of homozygotes are established from

natural populations, such aswith special chromosomal

constructs (Mukai et al., 1972). The fitness of a line is

W¯ (1®s)n, where n is the number of mutations

randomly determined from the Poisson distribution

with mean U}(2hs). At M–S, the frequency of the

mutant allele at a locus is usually very low (Crow &

Kimura, 1970) ; it is thus unlikely that these homo-

zygotes have mutations at the same loci. For an

outcrossed progeny, the number of its heterozygous

mutations is the sum of those homozygous mutations

in its parents (n
m

and n
f
), with its fitness being W¯

(1®hs)nm+nf. h is estimated by (4).

2. Estimating U : N individuals are sampled, each

having fitness W¯ (1®hs)n, where n is determined as

above. From each of them, O selfed progeny are

produced. The genotype of each selfed offspring is

obtained by allowing the n parental heterozygous loci

to segregate randomly into AA, Aa, and aa classes

with respective probabilities of 0±25, 0±5 and 0±25.

Letting n
"

and n
#

(both resulting from random
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Table 2. Different experimental designs with the Bateman–Mukai technique (U¯1±0 and sa ¯ 0±03)

Constant fitness effects Variable fitness effects

T I L S Uq sW Uq saW

40 10 50 2000 1±039 (0±232) 0±0300 (0±0059) 0±526 (0±135) 0±0603 (0±0133)
100 4000 1±039 (0±149) 0±0294 (0±0040) 0±516 (0±084) 0±0597 (0±0093)
200 8000 1±021 (0±112) 0±0297 (0±0032) 0±510 (0±053) 0±0597 (0±0065)

40 50 2000 1±039 (0±236) 0±0303 (0±0066) 0±517 (0±109) 0±0608 (0±0124)
100 4000 1±038 (0±154) 0±0295 (0±0042) 0±508 (0±071) 0±0602 (0±0083)
200 8000 1±020 (0±104) 0±0297 (0±0031) 0±502 (0±049) 0±0603 (0±0056)

10 2 50 500 1±075 (0±227) 0±0290 (0±0058) 0±519 (0±124) 0±0605 (0±0146)
100 1000 1±049 (0±164) 0±0292 (0±0044) 0±516 (0±082) 0±0597 (0±0095)
200 2000 1±012 (0±115) 0±0300 (0±0031) 0±507 (0±056) 0±0599 (0±0068)

10 50 500 1±043 (0±225) 0±0300 (0±0063) 0±501 (0±096) 0±0621 (0±0111)
100 1000 1±016 (0±133) 0±0299 (0±0038) 0±498 (0±074) 0±0615 (0±0094)
200 2000 1±011 (0±093) 0±0298 (0±0027) 0±504 (0±054) 0±0602 (0±0066)

T denotes the total number of M-A generations, I the number of interval generations between each assay, L the number of
M-A lines, and S (¯T¬L) the total number of genotypes handled in M-A.

Table 3. Estimating h by Mukai’s regression method and U under constant fitness effects

Regression of fitness to estimate h Regression of ln(fitness) to estimate h

U h s Uq hW Uq hW

(a) Morton’s technique in outcrossing populations
0±5 0±2 0±01 ®1±732 (0±092) 0±886 (0±033) 0±497 (0±005) 0±199 (0±000)

0±05 ®1±818 (0±369) 0±876 (0±090) 0±483 (0±016) 0±196 (0±000)
0±4 0±01 ®12±822 (98±715) 0±511 (0±013) 0±493 (0±014) 0±399 (0±000)

0±05 0±074 (31±090) 0±507 (0±027) 0±464 (0±058) 0±394 (0±000)
1±5 0±2 0±01 ®2±316 (0±013) 17±804 (1±169) 1±490 (0±007) 0±199 (0±000)

0±05 ®2±322 (0±041) 16±843 (3±494) 1±453 (0±020) 0±196 (0±000)
0±4 0±01 ®0±944 (0±078) 0±834 (0±035) 1±482 (0±025) 0±399 (0±000)

0±05 ®1±041 (0±333) 0±813 (0±081) 1±391 (0±070) 0±394 (0±000)

(b) Charlesworth’s technique in selfing populations
0±5 0±2 0±01 0±561 (0±018) 0±232 (0±003) 0±499 (0±014) 0±199 (0±000)

0±05 0±555 (0±035) 0±231 (0±006) 0±491 (0±029) 0±196 (0±000)
0±4 0±01 0±628 (0±061) 0±420 (0±003) 0±495 (0±039) 0±399 (0±000)

0±05 0±611 (0±112) 4±18 (0±008) 0±466 (0±074) 0±394 (0±000)
1±5 0±2 0±01 2±416 (0±109) 0±313 (0±008) 1±497 (0±024) 0±199 (0±000)

0±05 2±379 (0±205) 0±309 (0±014) 1±485 (0±058) 0±196 (0±000)
0±4 0±01 4±445 (1±143) 0±464 (0±008) 1±483 (0±059) 0±399 (0±000)

0±05 4±412 (6±249) 0±458 (0±018) 1±424 (0±143) 0±399 (0±000)

segregation) be the numbers of heterozygous and

homozygous loci containing mutations in a selfed

offspring, then its fitness is W(n
"
, n

#
)¯

(1®hs)n"(1®s)n#. U is then estimated by (2).

In each simulation, H¯10, N¯100 and O¯1. Uq
and hW are summarized in columns 4 and 5 of Table 3a.

h# is significantly biased and sometimes much larger

than 1±0, and U= is almost always negative. This is

because the fitness function is assumed to be multi-

plicative in the Morton–Charlesworth technique, but

additive in Mukai’s h-estimating technique. For the

multiplicative fitness function, the logarithm of fitness

approximates the fitness reduction due to mutation in

the additive fitness function:

lnW¯ ln (1®s)n E®ns (for small s). (8)

Thus ln (W ) should be used in the regression to

estimate h, and U should be estimated by this h# and a

change of fitness on the original scale. The results of

simulations using this procedure are summarized in

columns 6 and 7 of Table 3a. h and U can now be

estimated with small bias and sampling variance. The

bias of h# decreases with a decreasing s, due to a better

approximation of (8).
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Fig. 1. Estimation of U(Y-axis) as functions of h, and
inbreeding depression (δ

o
) in outcrossing populations or

outbreeding enhancement (δ
i
) in selfing populations. The

upper plot is for selfing populations (equation 3), the
lower one is for outcrossing populations (equation 2).

In selfing populations. 1. Estimating h : Homozygotes

are readily obtainable with fitness W¯ (1®s)n, where

n is randomly determined from the Poisson dis-

tribution with mean U}(2s).

2. Estimating U : N pairs of individuals are sampled.

For each individual, W¯ (1®s)n, where n is de-

termined as above. From each pair, an outcrossed

progeny is produced with fitness W(n
m
, n

n
)¯

(1®hs)nm+nn. U is estimated by (3).

In each simulation, H¯10 and N¯100, hW and Uq
are summarized in columns 4 and 5 of Table 3b. hW and

Uq are always significantly upwardly biased, although

the bias is not as dramatic as in outcrossing

populations. The bias is for the reason outlined for

outcrossing populations. The degree of bias of hW and

Uq depends largely upon U, with smaller bias under

smaller U. This is because W¯ (1®s)n E1®ns holds

better with smaller n, and E(n)¯U}(2s) is smaller

with smaller U. The ridiculous Uq values in outcrossing

populations are partly due to its larger E(n)¯U}(hs)

than E(n)¯U}(2s) in selfing populations, for the

same U, h and s. Additionally, Uq is more sensitive to

hW in outcrossing populations than in selfing popula-

tions (Fig. 1). Negative estimates of Uq and their larger

sampling variance in outcrossing than in selfing

populations are due to hW values being over 0±5 (2) and

having larger sampling variance. Using lnW in the

regression, h and U can be estimated satisfactorily

(columns 6 and 7 of Table 3b). The bias of hW and Uq is

small and decreases with a decreasing s. Therefore,

with the Morton–Charlesworth technique, the pro-

cedure for estimating h is extremely important. Under

constant fitness effects, only with an appropriate

procedure can U and h be estimated accurately.

(iii) The Deng–Lynch technique

Simulations similar to the Morton–Charlesworth

technique are performed. Besides wa
s

and wa
o
, σ#

o
and

σ
s
# are computed as described in Section 2. Ad-

ditionally :

In outcrossing populations. The number of selfed

progeny (O) from each of N outcrossed parents has to

be at least two to form selfed families. H{ , hW and s# are

computed by (5) and (6).

In selfing populations. Uq , hW and sW are estimated by (6)

and (7).

For a range of parameters simulated (U¯ 0±5–1±5,

h¯ 0±2–0±4, s¯ 0±01–0±5) in both outcrossing and

selfing populations, data not shown here and those in

Deng & Lynch (1996) indicate that estimates are

unbiased and have small sampling errors.

(iv) Comparison of the techniques

The most frequently cited data suggest that UE1±0,

hE 0±36 and sE 0±03 (Mukai et al., 1972; Lynch

et al., 1995). We compare the techniques with

these parameters under approximately 1000 genotypes

handled in the experiments (Table 4). For the

Bateman–Mukai and Deng–Lynch techniques, the

estimates are unbiased, the sampling variance for Uq is

the smallest in selfing populations with the Deng–

Lynch technique, and that for sW by the Bateman–

Mukai technique is only slightly smaller than by the

Deng–Lynch technique in selfing populations. For

outcrossing populations studied using the Deng–

Lynch technique, the results show that sampling

variance changes little with the three experimental

designs simulated. The sampling variance of the

Morton–Charlesworth technique is smaller than that

of the other two, but the estimates are slightly biased.
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Table 4. Comparison of methods under constant fitness effects (U¯1±0,

h¯ 0±36 and s¯ 0±03)

Techniques employed and
the experiment design Uq hW sW

B–M (L¯100, T¯10, I¯10) 1±016 — 0±0299
(0±133) (0±0038)

M–C (outcrossing populations) 0±964 0±357 —
H¯10, N¯ 485, O¯1 (0±012) (0±000) —

M–C (selfing populations) 0±970 0±357 —
H¯10, N¯ 323 (0±034) (0±000) —

D–L (outcrossing populations)
1. N¯ 50, O¯19 1±015 0±359 0±0298

(0±187) (0±017) (0±0094)
2. N¯ 40, O¯ 24 0±987 0±357 0±0293

(0±180) (0±016) (0±0094)
3. N¯ 25, O¯ 39 0±941 0±352 0±0332

(0±146) (0±014) (0±0113)

D–L (selfing populations) 0±995 0±358 0±0309
N¯ 333 (0±115) (0±014) (0±0050)

B–M, M–C and D–L, respectively, denote the techniques of Bateman–Mukai,
Morton–Charlesworth and Deng–Lynch. L, T, I are denoted as in the note to
Table 2. H is the number of pairs of homozygotes used to estimate h. N is the
number of genotypes sampled in outcrossing}selfing populations. O is the number
of selfed offspring obtained from each outcrossed parent. For the Morton–
Charlesworth technique, ln(fitness) is used to estimate h.

4. Statistical properties with variable fitness effects

It seems clear that s and h are not constant across loci,

and the few available data suggest that s has a roughly

leptokurtic distribution (Gregory, 1965; Mackay et

al., 1992; Keightley, 1994). As in Deng & Lynch

(1996), we model the mutation rate for different s(f(s))

as :

f(s)¯
1

sa
exp(®s}sa), (1" s" 0), (9a)

where sa #¯V
s
. This is an exponential distribution,

which is a special form of the gamma distribution

modelled by Keightley (1994). We adopt it as a special

alternative to the constant effects. It is used for

modelling the non-lethal mutations, since lethal

mutations appear to represent a true discontinuity in

the distribution of mutant effects (Crow & Simmons,

1983). The effect of lethals on the estimation can be

minimized by eliminating extreme lines as practised}
suggested with the Bateman–Mukai (Mukai et al.,

1972) and Deng–Lynch (Deng & Lynch, 1996)

techniques. Little information exists on the distri-

bution of h, but biochemical arguments suggest an

inverse relationship between s and h, mutant alleles

with larger effects tending to be more recessive (Kacser

& Burns, 1981). Therefore, we approximate this

relationship as

h¯
1

2
exp(®13s). (9b)

This function yields h¯ 0±36 when s¯ 0±03, hU 0±5 as

sU 0±0, and hU 0±0 as sU 1±0 – all in rough accordance

with the few available data (Crow & Simmons, 1983).

With variable fitness effects and U¯1±0, ha ¯ 0±36

and sa ¯ 0±03, we studied the respective techniques,

then compared them with approximately 1000 geno-

types handled in the experiments. Simulations are the

same as before, except that s is variable.

(i) The Bateman–Mukai technique

s is randomly sampled from the exponential dis-

tribution of (9a). U= is C 0±5 U, saW C 2sa (Table 2), as

expected theoretically (Mukai et al., 1972). Again, if

the genotypes can be measured accurately, increasing

the total number of M-A generations (T ) from 10 to

40 gives little improvement in the estimates, nor does

increasing the number of assays (Table 2).

(ii) The Morton–Charlesworth technique

We use a discrete version of the exponential dis-

tribution of (9a) by dividing the entire range of s (0,

1) into 200 classes of width 0±005 (Deng & Lynch,

1996). Each parent is randomly assigned a number of

mutations from each of these classes by drawing

from a Poisson distribution with an expectation of

Up
i
}(h

i
s
i
) in outcrossing and Up

i
}(2s

i
) in selfing

populations, where p
i
is the density of the mutational
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Table 5. Estimating ha by Mukai’s regression method and U under

�ariable fitness effects

Regression of fitness for
estimating h

Regression of ln(fitness)
for estimating h

U ha sa Uq haW Uq haW

Outcrossing populations (Morton’s technique)
1±5 0±44 0±01 ®1±492 0±592 0±697 0±377

(0±214) (0±013) (0±067) (0±008)
0±30 0±05 ®2±949 9±661 0±273 0±045

(0±120) (2±824) (0±052) (0±008)
0±5 0±44 0±01 0±570 0±440 0±233 0±376

(0±109) (0±008) (0±029) (0±008)
0±30 0±05 0±581 0±322 0±093 0±045

(13±078) (0±050) (0±018) (0±007)

Selfing populations (Charlesworth’s technique)
1±5 0±44 0±01 1±222 0±427 0±796 0±389

(0±177) (0±008) (0±089) (0±007)
0±30 0±05 1±168 0±244 0±909 0±172

(0±097) (0±015) (0±063) (0±012)
0±5 0±44 0±01 0±306 0±405 0±265 0±390

(0±053) (0±007) (0±044) (0±008)
0±30 0±05 0±348 0±204 0±315 0±174

(0±036) (0±015) (0±032) (0±015)

The simulation conditions are the same as those for Table 3 (see text), except that
100 random pairs of homozygotes and their crossed progeny are used to estimate
ha .

Table 6. Estimation by the Deng–Lynch technique under �ariable fitness

effects

U ha sa Uq haW saW

Outcrossing populations
1±5 0±44 0±01 0±784 (0±054) 0±387 (0±006) 0±0202 (0±0026)

0±30 0±05 0±543 (0±040) 0±122 (0±004) 0±1356 (0±0159)
0±5 0±44 0±01 0±262 (0±025) 0±386 (0±009) 0±0200 (0±0027)

0±30 0±05 0±281 (0±020) 0±117 (0±007) 0±1411 (0±0182)

Selfing populations
1±5 0±44 0±01 0±943 (0±238) 0±402 (0±019) 0±0169 (0±0044)

0±30 0±05 1±045 (0±055) 0±216 (0±013) 0±0728 (0±0088)
0±5 0±44 0±01 0±308 (0±087) 0±400 (0±023) 0±0175 (0±0051)

0±30 0±05 0±358 (0±022) 0±217 (0±012) 0±0700 (0±0085)

For outcrossing populations, each simulation is based on 200 random parents,
from each of which 40 random selfed offspring are obtained as described in the
text. For selfing populations, each simulation is based on 200 random pairs of
parents and their outcrossed progeny.

distribution in the ith class. The results are summarized

in Table 5.

In outcrossing populations. Using fitness in the re-

gression to estimate h- results in ridiculous values of Uq
and haW when U¯1±5, and reasonable estimates when

U¯ 0±5 and sa ¯ 0±01 (when sa ¯ 0±05, the sampling

error for Uq is very high due to the larger V
s
). When

sa ¯ 0±01, using ln(fitness) to estimate ha results in Uq of

C 0±5 U and haW of C 0±86 h- . When s- gets larger

(s- ¯ 0±05), so does V
s
, the bias gets much larger, U= and

haW are C 0±18 U and 0±15 ha respectively.

In selfing populations. Using fitness to estimate ha
results in Uq of C 0±6 U to 0±8 U and haW of C 0±65 ha to
0±95 ha . Using ln(fitness) to estimate ha results in Uq of C
0±55 U to 0±60 U and haW of C 0±58 ha to 0±89 ha . The

sampling variances are relatively small.

Therefore, under variable fitness effects of

mutations, applying the Morton–Charlesworth tech-
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Table 7. Comparison under �ariable fitness effects (U¯1±0, ha ¯ 0±36, sa ¯ 0±03)

Techniques employed and
the experimental design Uq haW saW

B–M (L¯100, T¯10, I¯10) 0±519 [0±238] — 0±0594 [0±9±5E-4]

M–C (outcrossing populations) :
H¯100, N¯ 350, O¯1 0±340 [0±437] 0±173 [0±035] —

®3±273 [18±79] 0±624 [0±072]
H¯ 200, N¯ 200, O¯1 0±345 [0±430] 0±175 [0±034]

®3±257 [18±790] 0±632 [0±075]

M–C (selfing populations) :
H¯100, N¯ 233 0±569 [0±187] 0±253 [0±012] —

0±703 [0±092] 0±300 [0±004]
H¯ 200, N¯133 0±569 [0±187] 0±253 [0±012] —

0±704 [0±091] 0±300 [0±004]

D–L (outcrossing populations) :
1. N¯ 50, O¯19 0±574 [0±197] 0±234 [0±017] 0±0597 [0±0012]
2. N¯ 40, O¯ 24 0±583 [0±195] 0±236 [0±016] 0±0606 [0±0013]
3. N¯ 25, O¯ 39 0±557 [0±212] 0±231 [0±017] 0±0609 [0±0015]

D–L (selfing populations)
N¯ 333 0±650 [0±123] 0±284 [0±006] 0±047 [0±0004]

Numbers within square brackets are the associated MSEs. B–M, M–C, D–L, H, N and O are defined in the note to Table
4, and L, T, I in the note to Table 2. For populations applied with the Morton–Charlesworth technique, results are given
for two experimental designs, with each given two results (the upper one is for the estimate obtained by using ln(fitness) to
estimate h- , and the lower one for that obtained by using fitness). For outcrossing populations studied using the Deng–Lynch
technique, results are given for three experimental designs.

Table 8. Estimation by the Bateman–Mukai technique with multiplicati�e fitness effects

Constant fitness effects (V
s
¯ 0) Variable fitness effects (V

s
¯ s(−#))

U sa Uq sW Uq saW

0±1 0±01 0±105 0±0097 0±053 0±0190
(0±017) (0±0013) (0±011) (0±0040)

0±03 0±106 0±0283 0±054 0±0555
(0±017) (0±004) (0±011) (0±0110)

0±05 0±108 0±0458 0±055 0±0901

(0±018) (0±0058) (0±011) (0±0169)
0±5 0±01 0±536 0±0093 0±274 0±0181

(0±087) (0±0013) (0±043) (0±0027)
0±03 0±592 0±0240 0±301 0±0471

(0±097) (0±0033) (0±045) (0±0063)
0±05 0±653 0±0345 0±330 0±0681

(0±109) (0±0047) (0±049) (0±0085)
1±0 0±01 1±124 0±0086 0±550 0±0177

(0±147) (0±0011) (0±080) (0±0026)
0±03 1±377 0±0191 0±669 0±0394

(0±183) (0±0024) (0±094) (0±0053)
0±05 1±694 0±0239 0±815 0±0491

(0±233) (0±0030) (0±116) (0±0064)

For each simulation, 100 M-A lines are accumulated for 10 generations and assayed at the outset and the end of the M-A.

nique to outcrossing populations results in ridiculous

estimates if ln(fitness) is used to estimate ha , and

estimates that are sensitive to the parameters if fitness

is used. In selfing populations, using fitness to estimate

ha results in better estimates of ha and U than using

ln(fitness). Note that this is quite different from the

situation with constant fitness effects. This is because,

under variable fitness effects, h- and U are always

underestimated, and Uq and haW estimated by using

fitness in the regression are always larger than those
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using ln(fitness) (Tables 3, 5). Hence, whether to use

fitness or ln(fitness) to estimate ha largely depends on

whether fitness effects are constant or variable, and

probably on how variable they are.

(iii) The Deng–Lynch technique

All of the values of Uq and haW are underestimated and

those of saW overestimated; the degree of bias depends

on the parameters of U, ha and sa (Table 6). In

outcrossing populations, Uq is C 0±36 U to 0±56 U, haW C
0±41 ha to 0±88 ha , and saW C 2±0 sa to 2±8 sa . In selfing

populations, Uq is C 0±63 U to 0±73 U, haW C 0±72 ha to

0±91 ha and saW C1±40 sa to 1±75 sa . The sampling variances

for all the estimates are reasonably small.

(iv) Comparison of the techniques

Since all the estimates are biased, we compute their

MSE (mean square error) for comparison:

MSE¯E(xW ®E(x))#¯Var(xW )­(xaW ®E(x))#,

where xaW stands for the estimated mean. Note that

when xaW is unbiased, MSE is simply the variance of xW .
By comparing MSEs, several conclusions emerge

(Table 7) : (1) For the Morton–Charlesworth and

Deng–Lynch techniques, the different experimental

designs simulated have negligible effects on estimation.

(2) For selfing populations, better estimates of U and

ha will be achieved by the Deng–Lynch than by the

Morton–Charlesworth technique if ln(fitness) is used

in the regression to estimate ha . The opposite is true if

fitness is used. (3) For outcrossing populations, better

estimates of U and ha are obtained by the Deng–Lynch

than by the Morton–Charlesworth technique. (4) For

estimating U, the Deng–Lynch and Morton–

Charlesworth (for selfing populations) techniques are

better than the Bateman–Mukai technique, which is

better than the Morton–Charlesworth technique for

outcrossing populations. (5) For estimating s- , the

Deng–Lynch technique applied to selfing populations

is better than the Bateman–Mukai technique, which is

slightly better than the Deng–Lynch technique applied

to outcrossing populations.

5. The Bateman–Mukai technique with multiplicative

fitness effects

We lack the knowledge of the mode of gene action

underlying fitness. However, there is good evidence

that genes for fitness or its components may act

multiplicatively, at least as a first approximation

(Morton et al., 1956; Crow, 1986; Fu & Ritland,

1996). If this is indeed so, a logarithmic transformation

of data will solve the problem in employing the

Bateman–Mukai technique, as is supported by simu-

lation data (not shown). Unfortunately, a priori

knowledge of the real gene action is generally lacking,

and previous M-A experiments (Mukai et al., 1972)

assumed additive fitness effects. Therefore, there is a

need to study the Bateman–Mukai technique assuming

additive fitness effects, but with real effects being

multiplicative.

With multiplicative fitness effects, for a homozygous

M-A line W¯ (1®s)n E1®ns with small s and n,

where n is the number of mutations accumulated.

Thus, estimation by the Bateman–Mukai technique

should be relatively robust to different fitness effects,

if n and s are small. We perform simulations for both

constant and variable effects where s is exponentially

distributed (Table 8).

For constant effects, when U and s are small (e.g.

U¯ 0±1 and s¯ 0±01), the bias of Uq and sW is very

small. When U and s get larger, so does the bias, due

to the poorer approximation of W¯ (1®s)n E1®ns,

where n is smaller with smaller U. With U¯1±0 and

s¯ 0±05, Uq is C1±7 U and sW C 0±48 s.

For the variable effects, when U and sa are small (e.g.

U¯ 0±1 and sa ¯ 0±01), Uq is C 0±5 U and saW C 2 sa ,
similar to that with additive effects (Table 2).

Interestingly, when U and sa get larger, the bias of Uq
and saW get smaller. With U¯1±0 and sa ¯ 0±05, Uq is C
0±82 U and saW C 0±96 sa . This is because, under variable

fitness effects alone, U is underestimated and s

overestimated (Table 2) ; while under multiplicative

fitness effects alone, U is overestimated and s

underestimated. The two sources of bias act in different

directions and decrease the overall degree of bias

when acting simultaneously.

In summary, when fitness effects are multiplicative,

but additivity is assumed, U will generally be

overestimated and s underestimated with constant

effects. With variable effects, U will generally be

underestimated and s- overestimated, but interestingly

the bias is smaller than with the assumed additive

effects by the technique.

6. Discussion

Our results show that, under constant effects, the

Bateman–Mukai and Deng–Lynch techniques are

unbiased; the Morton–Charlesworth technique is very

biased if fitness is used to estimate h, and slightly

biased if ln(fitness) is used. Under variable effects, all

three techniques are biased. The Deng–Lynch tech-

nique is statistically better than the others, except

when fitness is used in the regression to estimate h- in
selfing populations by the Morton–Charlesworth

technique. When fitness effects are multiplicative but

additivity is assumed, the Bateman–Mukai technique

is biased under constant effects and less biased under

variable effects relative to when fitness effects are
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Fig. 2. Change of the estimation bias with M-A
generations by the Bateman–Mukai technique when
fitness effects are multiplicative but additivity is assumed.
Data for each point are obtained by 100 simulations, with
each using 10000 M-A lines. The upper plot is for
constant fitness effects, and the lower one for variable
fitness effects (according to the exponential distribution).

additive as assumed by the technique. The reasons

underlying the bias for each technique are detailed in

the previous sections. The observed differences in

statistical performance among the approaches are

largely due to the different genetic processes utilized

(M-A, change of fitness moments at M–S balance,

etc.) and the different complex estimation methods

developed.

Compared with the others, the Bateman–Mukai

technique does not need to assume M–S balance.

However, it requires a much longer time and also

much more labour, even with the same number of

genotypes involved in the experiments. This is partly

because of the need to raise large controls for temporal

environmental changes, and to raise backups in case

of accidental line losses (Mukai et al., 1972). Lines

need to be replicated in order to estimate genetic

variance. Thus, increasing the number of assays greatly

increases the cost but does not necessarily improve the

estimation (Tables 2, 5), although it may shed some

light on the mode of gene action (Mukai, 1964).

Without knowing the fitness effects of mutations,

increasing M-A generations may result in estimation

of larger deviations from analytical predictions. This

is because, for example, if fitness effects are multi-

plicative but additivity is assumed, increasing M-A

generations results in progressively larger bias under

constant effects and progressively smaller bias than

predicted under variable effects (Fig. 2). An important

message from this is that, if fitness effects are variable

and do act multiplicatively, the common practice of

inferring U to be twice the value of U= from M-A by

assuming constant and additive effects (Mukai et al.,

1972; Lynch et al., 1995) o�erestimates U. The degree

of overestimation depends on the number of M-A

generations (Fig. 2). Again, this is because the

approximation W¯ (1®s)n E1®ns holds better for

smaller n ; and n is, on average, smaller with a smaller

number of M-A generations. In our simulations, 100

M-A lines, 10 M-A generations and two assays may

yield reasonable estimations (Table 2). This is

interesting. However, it assumes that genotypic values

can be measured accurately with many replicates for

each genotype. Since there is a growing interest in

performing M-A, extensive research is needed to

concentrate on studying optimal M-A designs by

considering the number of replicates for each genotype

and the number of M-A generations under different

cost schemes and with different mutation parameters.

The Deng–Lynch technique estimates all three

essential parameters ; additionally, it may provide

other useful information, such as the input of genetic

variation introduced by mutation per generation (V
m
),

and the mean number of mutations per genome in the

population (Deng & Lynch, 1996, 1997). The

Bateman–Mukai technique per se can estimate V
m

for

homozygous mutation lines, but it cannot estimate V
m

in outcrossing populations (such as Drosophila) in

nature, unless h is also estimated by additional crossing

experiments. Then our formulae linking V
m

with U, h

and s (Deng & Lynch, 1996) can be employed to

estimate V
m

for outcrossing populations. Nevertheless,

the larger amount of information that the Deng–

Lynch technique generates involves no cost in accuracy

as reflected by the comparison of the variances and

MSEs (Tables 4, 7). Although the Morton–

Charlesworth technique sometimes results in slightly

better estimation in selfing populations, it is com-

promised by its dependency on whether fitness or

ln(fitness) should be used to estimate h.

We concentrate on studying the most plausible case

of multiplicative fitness effects. If the fitness effects of

mutations are additive, the techniques developed for

natural populations are not recommended, as a large

bias will result as revealed by our simulation (not
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shown here). Although epistatic fitness effects may be

possible, little convincing information exists on the

subject. We therefore do not study its effects here. The

effects of synergistic epistasis on estimation have been

investigated and it was found that U will be

overestimated by the Charlesworth technique (as-

suming a known h ; Charlesworth et al., 1990), and U

and h will be underestimated and s overestimated by

the Deng–Lynch technique (Deng & Lynch, 1996).

However, the effects of even strong synergism are

slight (Charlesworth et al., 1990; Deng & Lynch,

1996).

The techniques of Morton–Charlesworth and

Deng–Lynch makes the same assumptions – M–S

equilibrium, large population size, unlinked loci, etc.,

– whose limitation, validity and effects on estimation

have been discussed (Charlesworth et al., 1990; Deng

& Lynch, 1996). Deng & Lynch (1996) also discussed

the effects on estimates of a pool of very mildly

deleterious but effectively neutral mutations (those

with s!1}(4N
e
), where N

e
is the effective population

size), and concluded that they are unlikely to be

significant. Some practical issues (experimental design,

elimination of maternal effects, estimation of sampling

variance, etc.) have also been discussed for the

Deng–Lynch technique (Deng & Lynch, 1996, 1997).

The effects of a small proportion of lethal mutations

on estimation have been simulated for the Deng–

Lynch technique (Deng & Lynch, 1996, 1997), and

discussed for data analyses using the Bateman–Mukai

technique (Mukai et al., 1972). For the techniques of

Morton–Charlesworth and Deng–Lynch, it is assumed

that the net fitness can be measured or that the fitness

component under study is largely independent of the

other fitness components. Net fitness is usually difficult

to measure, if not entirely impossible. Pleiotropic

effects underlying fitness components can be a source

of bias (Charlesworth & Hughes, 1997) if only one of

the correlated fitness components is studied. For the

Deng–Lynch technique, cloning of genotypes is

currently required in order to estimate the total

genetic variance in the parental and offspring

generations. In highly selfing plant populations, this

can be easily achieved. Multiple seeds resulting from

each homozygous parental line will, upon further

selfing, be genetically identical clones of their parental

line. Multiple seeds resulting from crossing two

homozygous parental lines will also be genetically

identical clones, which form the outcrossed offspring

generation. In outcrossing populations such as those

of cyclical parthenogenetic populations, cloning of

genotypes can be easily achieved by asexual re-

production (Deng, 1995; Deng & Lynch, 1997).

Additionally, for outcrossing populations, we have

been developing techniques in which cloning of

genotypes in parent}inbred offspring generations may

not be necessary.

For the two techniques applicable to natural

outcrossing populations, the crucial assumption that

the variation of fitness is maintained by M–S balance

needs to be examined. Alternatives to M–S balance,

such as functional overdominance or overdominance

induced by fluctuating selection can, in principle,

maintain polymorphisms, although no strong case has

emerged for their generality. The evidence for func-

tional overdominance does not seem to be very

convincing, most cited examples being compatible

with associated overdominance, an artefact of linked

deleterious recessive genes (Houle, 1989, 1994). Data

bearing directly on the issue of the maintenance of

variation by fluctuating selection are essentially non-

existent. By reviewing and comparing all the available

data on the mutational variabilities from seven distinct

species, Houle et al. (1996) concluded that the standing

pattern of genetic variability is consistent with an

M–S balance model. Charlesworth & Hughes (1997)

reviewed the results of over 25 years of investigations

of quantitative genetics of D. melanogaster life-history

traits, concluding that there is probably a substantial

contribution from deleterious alleles maintained by

mutation to the standing genetic variance for fitness

or related traits, and to the genetic load revealed by

inbreeding. The well-corroborated data from studies

of molecular population genetics in Drosophila and

emerging data in mice and humans suggest that

polymorphism is maintained}operated upon under

dominance (rather than overdominance) selection in

most genomic regions of these organisms (Deng et al.,

1998). Briefly, this is because a positive correlation

between molecular heterozygosity and the regional

recombination rate across the genome is expected

under dominance selection and is usually observed

(Deng et al., 1998). Nevertheless, mechanisms re-

sponsible for the maintenance of genetic variance are

complex and may differ among populations. A critical

question is how robust the techniques are with different

degrees of violation of the M–S balance assumption.

Extensive studies are needed and are being pursued.

Some progress has been made. An algorithm has been

developed (Deng, 1998) that can be employed to

investigate the effects of overdominance (including

balancing selection) on estimation. The violation of

M–S balance may not be as substantial as envisioned.

This is suggested by our results that the estimation of

h with Mukai’s regression method (Mukai et al., 1972)

is not greatly biased by the violation of the M–S

balance assumption: even if half the inbreeding

depression is due to loci under overdominance or

balancing selection, h estimated for the loci under

dominance is about 70% of the true value (Deng,

1998).

Besides the statistical properties investigated in this

paper, different approaches have different advantages

and drawbacks in practice, and are best applicable to
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different organisms and in different situations. The

estimates obtained by different approaches in different

organisms will be able to crosscheck each other and,

it is hoped, eventually resolve the issues concerning

the genomic mutations.
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