
SUBRINGS OF THE MAXIMAL RING OF QUOTIENTS 
ASSOCIATED WITH CLOSURE OPERATIONS 

D. C. MURDOCH 

1. Introduction. This paper contains a number of results that grew out 
of an attempt to solve the following problem : Given a non-commutative ring 
R with suitable ascending chain condition, and a prime ideal P in R, to con
struct a corresponding local ring RP in which the extension P' of P is a unique 
maximal prime, and to prove, if possible, that the intersection of the powers 
of P' is zero. The present investigation is at best a preliminary attack on this 
problem since the contribution to the complete solution is comparatively small 
and the central problem of the intersection of the powers of P' has not been 
touched. Nevertheless it is hoped that the method introduced may yet prove 
fruitful and that publication of this method and the results obtained so far 
may stimulate interest in non-commutative localization problems. 

It is well known that in the commutative case a ring of quotients RM can 
be constructed corresponding to any multiplicatively closed set M such that 
0 $ M. If M contains no zero divisors, RM is an extension of R. Otherwise it 
is an extension of a homomorphic image of R. The multiplicative system M 
also defines a closure operation c(M) on the ideals of R, namely the mapping 
A -+ AM, where 

(1.1) AM = {x (z R\tnx £ A for some m G M}. 

If E(A) is the extension of the ideal A of R to RM and if C(A') is the con
traction of the ideal A' of RM to R (see 12, p. 218), then the ring RM and the 
closure c(M) are related by 

Ac(M) = c[E(A)]. 

If R is a Noetherian ring and M is the complement in R of a prime ideal P, 
then RM = Rp is a local ring in which E(P) is the unique maximal prime. 

In a non-commutative ring R the role of the multiplicative system M is 
usually taken by an w-system (8, 9, 1), since an ideal in R is prime if and 
only if its complement in R is an w-system. If I f is any m-system in R a 
closure operation analogous to (1.1) can be defined on the ideals of R. (See 
9, Theorem 7.) This can be used to define a closure c(M) on the lattice of 
right ideals of R such that all the closed right ideals are two-sided ideals. This 
we call a bilateral closure. By using the methods of Utumi (11) and Johnson 
(4) a subring Rc of the maximal ring of right quotients Q of R can be defined 
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corresponding to any closure c on the right ideals of R. If c is a bilateral closure, 
R £ Rc Q Q- If c = c(P) is the bilateral closure associated with the w-system 
R — P , one might hope, with suitable ascending chain conditions, that RC(P) 
would have the properties of a local ring. In fact we have been able to prove 
much less than this even when we restrict ourselves to prime or semi-prime 
rings. Many of the interesting questions are still open, however, as is pointed 
out in the last section. 

2. Closure operations in a lattice. Let 8 be a lattice of right or two-
sided ideals in a ring R such that R £ 8. A closure operation c is a mapping 
A —> Ac of 8 into itself that satisfies the three rules 

(1) / I Ç i ^ 
(2) A QB implies Ac QB\ 
(3) (Ac)c = Ac. 

Closure operations have been studied by R. E. Johnson (5) and others. We 
recapitulate their main properties. Proofs are immediate or can be found 
in (5). 

An element A of 8 is ^-closed if Ac = A. The intersection of any set of 
oclosed elements is oclosed and the closure Ac of A is the intersection of all 
c-closed elements that contain A. Thus the closure operation c is completely 
determined by the set 8C of ^-closed elements of 8 and 8C is an inset in the 
sense that it is a subset of 8 containing R and closed under complete inter
section. Conversely every inset 3 of 8 determines a unique closure operation c 
such that 3 = £c- The closure operations can be partially ordered1 according 
to the inclusion ordering of the corresponding insets. Thus if a, b are two 
closures we say a < b if and only if 8a £ 8&. This is equivalent to saying a < b 
if and only if Ab Ç Aa for all A in 2. Since the partial ordering of the closure 
operations corresponds to the inclusion ordering of the insets of 8, we can 
make the closure operations into a complete lattice by defining intersection 
and union of the corresponding insets. Thus if {̂ a} is any set of closures and 
{2Ca} are the corresponding insets of closed elements of 8, we define P\8Cfl£ as 
the set-theoretic intersection which is clearly an inset and therefore defines 
a unique closure which we take as r\ca. Similarly U8C a is the inset consisting 
of all elements of 8 of the form 

HA., A9 6 8C", 

i.e. the smallest inset containing all the 8C". The corresponding closure we take 
as yjca. It is now clear that the closure operations form a complete lattice 
under these definitions of intersection and union which is isomorphic to the 
lattice of insets of 8. (In (5) this is a dual isomorphism owing to our reversal 
of the partial ordering.) We note also for future use that if c = ^Jca, then for 
every element A of 8 

xWe have found it convenient to reverse Johnson's ordering. 
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(2.1) Ac = r\Ac« 

since this is the minimal element in 2C t h a t contains A. However, it is not 
t rue in general t ha t Aùc<x = UACa. 

Let R be any ring. We shall use 8 r , or %r(R)j to denote the lattice of all 
right ideals of R and 8, or 2 (JR.) to denote the lattice of all two-sided ideals 
of R. We shall be mainly interested in closure operations c in 2r, having the 
proper ty t ha t 2r

c Q 8. Such a closure we shall call a bilateral closure in £ r 

since the closed right ideals are two-sided ideals. A maximal bilateral closure m 
is obtained by choosing 2r

m = 8 so t ha t if A G ? r , Am is the minimal ideal 
containing A. If now b is any closure on 8, then mb is a bilateral closure on 
8 r . I t is clear from the definitions of union and intersection of insets t ha t the 
bilateral closures in 2r form a complete sublattice S3 of the lattice of all closure 
operations in ? r . 

3. The ring of quotients corresponding to a bilateral closure on 
2r(R)* We shall assume throughout t ha t R is an associative ring wi thout 
to ta l left zero divisors (i.e. xR = 0 implies x = 0). Utumi has shown t h a t 
there is a unique maximal right quotient ring Q of R in the sense t ha t R C Q 
and ii a, P £ Q and (3^0, then there exist elements a, b in R such t h a t 
aa = b and /3<2 ^ 0. There is no loss of generality in assuming j3a G i£. We 
shall outline the construction of Q since we shall need the concepts used in 
this construction. The details may be found in (11 and 4) . 

Following Utumi we use the notat ion Q > R or R < Q to mean t h a t Q is 
a right quotient ring of R in the above sense. We denote by RA the set of all 
r ight ideals 7 in R for which R > 7. Since xi^ = 0 implies x = 0, it follows 
t h a t R ^ R and i^A is not empty . Every right ideal in RA is an essential r ight 
ideal in the sense t ha t it has non-zero intersection with every non-zero right-
ideal of JR. If 7, J G i?A , then 7 H / , 7 / belong to RA. We view i ^ a s a right 
i^-module and consider the set $ of all i^-homomorphisms a defined on a 
r ight ideal Ia in RA and having values in R. Such a mapping a is called a 
semi-i^-endomorphism of R and 7a is its domain. If 7, 7 G iv* and a is a semi-
i^-endomorphism defined on 7, then the set {x G 7 | ax G 7"} is a right ideal 
in RA. These facts enable us to define sums, products, and equivalence of 
semi-i^-endomorphisms as follows: 

1. If Ia = Ip, (a + P)x = ax + fix for x G 7a. 

2. If pip C Ia, (a/3)x = a (fix) and 7a/3 = {x G 7^ | £x G 7a} G i?A . 

3. a ^> (3 if there exists a right ideal 7 in RA such tha t 7 C Ia C\ 1$ and 
ax = (3x for x G 7. 

In part icular a ^ /3 if a extends /3, i.e. if I& Ç 7a and ax = /3x for x G 7^. 
Sums and products of equivalence classes can then be defined and it is easily 
verified t h a t the equivalence classes of semi-i?-endomorphisms form a ring 
Q = $A>, where § consists of all a in JÏ for which a ~ 0. Moreover Q con
tains a subring isomorphic to R. For if a G i£ left multiplication by a is a 
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semi-i^-endomorphism a' with domain R. If a' ~ b', then a'x = b'x or ax = bx 
for all x in I where / G RA. This implies (a — b)x = 0, which contradicts 
i^ > I if a 7^ b. Hence a' ~ b' implies a = b and Q contains the subring 
isomorphic to R consisting of the equivalence classes a' + § where a £ R. 
By identifying a' + & with a we may assume R Q Q. We shall refer to Q as 
the maximal ring of right quotients or maximal right quotient ring of R. It 
is not necessarily equal to the full ring of right quotients even if the latter 
exists. (See 2, pp. 165-166.) It is clear that if a G $ and aa = b, a, b G i?, 
then âa = b when a and ô are viewed as elements of Q and à is the equivalence 
class to which a belongs. 

Now let c be any bilateral closure on 2r(R) and let $ c denote the set of 
all a. G $ such that for every right ideal J Q Ia, 

(3.1) aJQJc. 

THEOREM 1. If c is a bilateral closure on 2r(R) and $c is defined as above, 
then 

Rc= ( t + W § = «c/(^nt) 
is a subring of Q and R C Rc. 

Proof. If a, (3 G $c and Ia = 1$, then clearly for J Ç^ Ia, 

(a + 13) J <^aJ + f3J QJC 

and a + /3 G $c- Similarly if / ^ Ç 7a, Ial3 = {x G /# | /3# G /«}, and if J C 7a^ 
we have (a/3) J = a(/3J) Q a(Ia H / c ) C (Ja Pi 7C)C C 7a

c H 7 e C Jc . Hence 
a/3 G $ c . Thus $ c is closed under addition and multiplication as defined in 
(1) and (2) above, and ($ c + § ) / § is a subring of Q. We denote this ring 
by Rc, and clearly Rc ^ $ c / ( § ^ $<0- Finally since J c is a two-sided ideal, 
all the left multiplications by elements of R satisfy (3.1) and hence belong 
to $tc. It follows that RQRCQ Q. We call Rc the ring of quotients of R 
corresponding to the bilateral closure c. 

4. Maximal closures and closure subrings of Q. To every bilateral 
closure c corresponds a ring Rc of Q such that R C Rc Ç Q. Different closures 
may well give rise to the same ring Rc. For example if R is the ring of integers 
let a be the closure for which 2a is the set {(0), (ô7")}, r = 0, 1, 2, 3, . . . , and 
let b be that for which 8& = {(0), (2r3s)}, r = 0, 1, 2, . . . , 5 = 0, 1, 2, . . . . 
Since Q is the rational field, it is not hard to show that Ra = Rb, each being 
the ring of all rational numbers with denominator prime to 6. 

THEOREM 2. Let a be a bilateral closure in 2r(R)- There is a unique maximal 
bilateral closure â such that Ra = R- and the mapping a —> à is a closure in the 
lattice S3 of all bilateral closure operations in 8r. 

Proof. Let {et} be any set of bilateral closures on 2r and let c = \Jct. By 
(2.1) we have for any right ideal J oi R 

https://doi.org/10.4153/CJM-1963-070-6 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1963-070-6


SUBRINGS OF MAXIMAL QUOTIENT RINGS 727 

je = r\jc\ 

From this and the definition of ®c we see t ha t 

and hence tha t Rc = r\Rci- I t follows tha t the union c of all bilateral closures 
Ci for which Rci = Ra also has the property t h a t Rc = Ra and is the unique 
maximal bilateral closure having this property. T h e maximal closure c for 
which Rc = Ra will be denoted by d. I t is clear t ha t a < d and à = d. Moreover 
if a, b are bilateral closures and a < b, then Jb C J a for all J 6 8 r . I t follows 
t h a t Rb C j?a and i ^ C i?-. Now let c = d \J b and Rc = R-r\ R^ = R^ and 
by the maximal property of b, c < b and hence d < 5. This shows t ha t a —* d 
is a closure operation in the lattice of bilateral closures in 8 r . 

By a maximal bilateral closure we shall mean a closure d t h a t is maximal 
in the above sense, i.e. Rc = R- implies t ha t c < d. Since a —» â is a closure 
operation we have the following corollary. 

COROLLARY 1. The intersection of any set of maximal bilateral closures is a 
maximal bilateral closure. 

For future use we s ta te also the following corollary, whose proof is con
tained in the proof of the theorem. 

COROLLARY 2. If a and b are maximal bilateral closures in 2r(R), then Ra C R^ 
if and only if b < a. 

By Corollary 1 above the set 93? of all maximal bilateral closures on 2r(R) 
becomes a complete lattice (Jffl; r \ W*, < ) if we define a union operation 
U* in m by 

U * a = \Jc~i = r\ b, b> yjct and b G 2». 

When we refer to the lattice 20? of maximal bilateral closures the lattice 
operat ions will be understood to be P\ and VJ*. 

A subring 5 of Q will be called a closure subring of Q if S = Rc for some 
bilateral closure c. I t may, of course, be assumed t ha t c Ç 9W. If {ct} is a n y 
set of bilateral closures in 2r and if Rci are the corresponding rings, we have 
seen in the proof of Theorem 2 t ha t P\ Rci = Rc where c = Uc*. Hence the 
set S of closure subrings of Q is closed under complete intersection and becomes 
a lattice ( S ; O , W*, C ) if we define the union operation VJ* by 

U * Rci = r\Rb, Rb^U Rci and b £ 9K. 

T h e set Ê, of course, defines a closure operation on the lattice of subrings of 
Q t h a t contain R. 

T H E O R E M 3. The lattice 3)? of maximal bilateral closures on 2r is dual iso
morphic to the lattice Ê of closure subrings of Q. 
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Proof. T h e correspondence c —> Rc between the elements of $? and (£ is 
clearly one to one, for if Rb = RC1 Rb[ic = Rb C\ Rc = Rb = Rc and hence if 
b and c are maximal b = c = b^J c. By Corollary 2, Theorem 2, if b, c G 9W, 
P& Q Rc if and only if b > c. We have also P&u*c = ^&ïk = RbUc = P& ^ Rc, 
and P6n c = P& ^ * P c follows in the usual way. 

There is always a unique minimal closure subring Rm of Q, namely the 
intersection of all closure subrings. This ring must correspond to the unique 
maximal bilateral closure m G M. Clearly m is the closure for which 2r

m = 8, 
i.e. for which the closed right ideals are exactly the two-sided ideals. In m a n y 
cases Rm = R. For example, if R is a (commutat ive) Noether ian semi-prime 
ring with uni t element and P is a maximal prime ideal, we shall see later 
t ha t the local ring RP is a closure subring of Q. Since RP consists of all quot ients 
x/y, x G R, y $. P, and since every element of R other than 1 belongs to a 
maximal prime, C\ RP, over all maximal primes P , is P , and hence Rm = R. 

On the other hand it can happen t h a t Rm = Q. For example, let R be a 
primitive ring with non-zero socle T^R. Then R can be viewed as a dense 
ring of linear t ransformations of a vector space V over a division ring D. 
Utumi has shown (11, p . 11) t h a t the maximal r ight quot ient ring Q of R 
is the full ring of D-endomorphisms of V. Every two-sided ideal of R consists 
(6) of a set 

{a G R I dim a F < a} 

for some transrinite cardinal a less than or equal to dim V. Now let J be 
any right ideal of R such t h a t J G P A . Since J is essential it mus t contain the 
socle of R. Let r be the least cardinal such t h a t dim aV < r for all a G P 
T h e density of R plus the fact t h a t / contains the socle implies t h a t r is not 
finite. The minimal two-sided ideal containing J is therefore 

Jm = {a G R I d i m a F < r } , 

since clearly J C Jm and this would not be so if r were replaced by a smaller 
cardinal. Now let fi G Q- It J Ç^ Ip and a G / we have fia £ R and 

dim (fia V) < dim (a V) < r 

and hence /fo G P m . Hence /3 G P m . Since /3 was any element of Q, we have 

Rm = Q. 

5. C o n s t r u c t i o n of t h e m a x i m a l c losure c. Let c be any bilateral 
closure in 2r and let a be a semi-P-endomorphism of R t h a t belongs to $ c . 
W e shall denote by a the element of Rc to which a belongs, i.e. à is the equiva
lence class a + § ^ $c- Now if J" is any right ideal of R we define 

(5.1) J* = Z"(Jnia). 

Here the summat ion extends over all a for which â G P c . Since for all a G P , 
a G P c it follows t h a t Jff is a two-sided ideal. Moreover / C Jff, and J i Çj / 2 
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implies Jx
q Q J2*. We denote by 8 / the set {Je %r\JQ = J} and let {Ja} be 

any set of right ideals in 2r
q. By the above remarks 

Hence 2r
q is closed under complete intersection and since it contains R, 2r

q 

is an inset in 2r and defines a closure g* such tha t 8 / * = 8 / . Moreover, since 
Jq is a two-sided ideal, 2r

q* Ç 8 and g* is a bilateral closure. 

T H E O R E M 4. 7 / c is aw^ bilateral closure and g* is £Ae closure defined above, 
then g* = c. 

Proa/ . If Jc = J and à £ P c , then a(J C\ Ia) Q Jc = J. Hence Sc Ç 8«* 
and c < g*. However, since the definition of g* depends only on Rc and Pc = P c , 
we can also conclude t ha t c < g*. 

However, c < g* implies P ç* Ç P c , whereas if à £ P c and / Ç Ja, we have 

aJ = a(J H Jtt) Ç / « Ç ( / * > = ^ * -

From this it follows tha t à £ Pc* whence Rc ÇZ i^*. Hence P,,* = Rc, which 
combined with c < g* gives g* = c. 

The closure g* defined by means of (5.1) can be generalized somewhat . 
Let S be any set of elements of Q t h a t contains the unit element of Q and 
all elements of R. If we define, for any right ideal / of R, 

(5.2) fs= 2 «UH la) 
cteS 

we see as before t ha t JQs is a two-sided ideal, t ha t / Ç Jffs, and J i Ç J 2 

implies Jis Ç /s*5- We can then define a closure g s * exactly as before and prove 
the following theorem. 

T H E O R E M 5. Let S be any subset of Q that contains R and the unit element 
of Q. Let qs* be the closure defined above and let Rc be the minimal closure sub-
ring of Q containing S. Then RQS* = Rc and qs* = q* = c~-

Proof. If à £ S and J C Ia, then a J C Jqs ç Jqs\ Hence a £ RQS* and 
*S Q RQS* and Rc Ç Rqs*. If on the other hand 5 Ç Rb for some bilateral 
closure b, we have by Theorem 4, JQs Ç Jb and hence RQS* Ç Rb = Rb. Thus 

Rqs* Q Pi Rb = R-c 
S<Rb 

and therefore RQS* = Rc. 
Now since S Ç RC1 Jqs c Jq and g* < g s*. But since P c = P ^ * , Theorem 

4 gives g* = c > gs* and hence g s * = g* = c. 
If we define the cr-closure of a subset 5 of Q to be the minimal closure 

subring containing S, Theorem 5 shows t ha t in constructing the maximal 
closure c corresponding to c, (5.1) may be replaced by (5.2), where 5 is any 
subset of Q containing 1 and R whose cr-closure is Rc. 
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6. Bilateral closures induced by subrings of Q. Let R be any ring 
and let 5 be a ring containing R. If A is an ideal in R we denote by ES(A), 
or simply by E(A) if no confusion is likely, the extension of A to S, i.e. the 
ideal in 5 generated by A. If we write 

A* = Rr\Es(A), 

it is well known that b is a closure operation on 2(R). If m is the maximal 
bilateral closure on 2r, then mb is a bilateral closure on 8 n which may also 
be written 

jmh = Rr\Es(J), 

where E S(J) is the two-sided ideal in S generated by the right ideal / of R. 
We shall call the closure mb so defined the natural closure induced in %r by 
5. If c is any bilateral closure in 2r the natural closure induced in 2r by the 
ring Rc will usually be denoted by à'. Thus 

Jcf = Rr\Ec(J), 

where EC(J) is the two-sided extension of / to Rc. 

THEOREM 6. If c is any bilateral closure in 2r, then Rc C Rc,y and d < c. 

Proof. lî â £ Rc and / Ç Ia we have aJ Q R and hence 

àJ <^Rr\Ec{J) = Jc' 

and therefore « G i?c>. Hence Rc Ç i£c/. Now by Theorem 2, Corollary 2, 
c! < c and hence c' < c. 

Now let c be any closure in 5DÎ. Denote c' by Ci and c/ by c i+i, i = 1 , 2 , 3 , . . . . 
Since c\ < c implies c / < c', we see that 

C ^ Cl ^> ^2 ^ ^3 • • • 

and hence 
22c Q Rci QRciQRc*.-. • 

If we let 
oo oo 

c« = Pi c* and R = U -K̂ -

we can prove the following theorem. 
THEOREM 7. (a) The natural closure induced by R is equal to c„. 
(b) / / the ACC for right ideals holds in R, then RC(a = R and hence cj = cœ. 
(c) If ACC holds for right ideals in R, then 

oo 

Cw = n ct. 

Proof, (a) If .4 is any right ideal of R we use the notation Et(A) for the 
(two-sided) extension of A to the ring Rci. Now if x 6 i%04), 
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where aj G A, ah fij £ R. Since R = URci there is an integer 5 such that 
aj} Pj G RCs for j = 1, 2, . . . , m. Hence x Ç £8(^4) and 

But since -E*(̂ 4) £ ER(A) we have 

Es{A) = U£*G4). 

Now let r be the natural closure induced by R so that 

[ OO J OO CO 

U EM) \ = V[RC\ Et(A)] = U A'*' 

= U Aci+1 QAC». 

It follows that ACi Q Ar ÇZ Ac« ior i = 1, 2, 3, . . . and hence c„ < r < ct and 
CXD 

Cœ ^ Y ^ I l C i = = Cw 

or r = cw. 
(b) Since ca < cu i = 1, 2, 3, . . . , Rci C i?Cw and i? C RC(a. Now if à G i?c&> 

and / £ /a , 

*=i 

Now the ACC implies that aJ is generated by a finite number of elements 
#i, a2, . . . , an and since each 

CO 

there exists an integer 2 such that each a;- Ç /c* and hence aJ C JCf and 
<* £ -Kc* £ R̂. Hence RC(a C 5 , which combined with the previous result gives 
RC(a = 5 . From this it follows that cj = r — cu. 

(c) Let 
CO 

i=l 

Then c < cz-, Rci C î ^ for all i and hence Ë £ R-c. On the other hand 

CO CO 

c„ = n ct < n ct = c. 

Hence R-c £ RC(0 = R and hence R-c = R = RC(a- Since c is a maximal closure, 
being the intersection of maximal closures, this implies cw = c as required. 
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7. Application to commutative rings. If R is commutative, in addi
tion to the maximal quotient ring Q there is the full ring of quotients F con
sisting of the usual equivalence classes of formal quotients ab~l, a, b Ç R and 
b regular. It is easy to see that F Ç Q. For if b is regular the mapping br —> r 
is a semi-jR-endomorphism £ with 1$ = bR. Now if x, y £ i£, y 7* 0, x& Ç 2^ 
for any a 6 Ip. Moreover a can be chosen so that ya 9^ 0 because ybR = 0 
implies yb = 0 since i? has no total zero-divisors and hence y = 0 since 6 
is regular. Thus 1$ Ç RA and /? Ç (X Clearly p = b~l and hence all regular 
elements of i? have inverses in Q and F Ç^ Q. Findlay and Lambek have given 
an example (2, pp. 164-165) in which F 9^ Q. 

A semi-i^-endomorphism is said to be irreducible if it cannot be extended 
to a larger domain. We can now prove the following theorem. 

THEOREM 8. If R is a commutative ring, a necessary and sufficient condition 
that Q = F is that the domain of every irreducible semi-R-endomorphism in $ 
contains a regular element of R. 

Proof. The condition is obviously sufficient, for if a Ç S, a ^ a' where a 
is irreducible and a a = b where a is a regular element in Ia> and b Ç R. 
Hence à = a = bar1 £ F. Conversely, if Q = F and â = ba~l is any element 
of Q, we have âa = b (z R. Now multiplication by â in Q defines a semi-R-
endomorphism a* of i? whose domain, 

Ia* = {x £ R\âx £ R}, 

contains a. Since ax = y implies âx = 3/, it is clear that Ia Ç Ja* and hence 
a* extends a. Hence if a is irreducible, Ia* = Ia and a £ /«• 

COROLLARY. If â (Z Q and âa 6 i?, where a £ R, we may assume that a Ç Ia. 

For we have seen that a £ /«*, where a* ^ a. 

THEOREM 9. If R is commutative, c any closure in 2(R), and d the natural 
closure induced by Rc, then Rc> = Rc and c' = c. 

Proof. Since R is commutative, it is known (2, p. 163) that Q and therefore 
Rc is commutative. Hence if A is any ideal of R, EC(A) is generated by ele
ments of the form âa, where â Ç Rc and a Ç A. Now if âa Ç R we can assume 
by the above corollary that a Ç Ia and hence aa £ Ac and âa Ç Ac. Hence we 
have 

Ac' = Rr\Ec(A) ^Ac, 

whence c < d and Rc> Ç i£c. Hence, by Theorem 6, Rc> = Rc. Since, again 
by Theorem 6, d < c, we see that if c is maximal, c = d. Hence for any c 
we have c = c' — d. 

COROLLARY. If c is maximal, the c-closed ideals of R are exactly the ideals 
of R that are contractions of ideals of Rc. 
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Proof. If Ac = A, then A = Ac' = the contraction to R of EC(A). Con
versely if A = i? P\^4 ' , where ^4' is an ideal of Rc, it is well known t h a t 
Ac' = A (12, p. 219) and hence Ac = A. 

Now let M be any multiplicative system of elements of R. If A is a n y 
ideal of R its AT-component AM is defined by 

iiif = {x G R | rax Ç 4̂ for some m G Af}. 

T h e mapping A —>AM is a, closure operation in 2{R) which we shall denote 
by c(M). If M contains only regular elements of R we shall denote by RM 

the usual quot ient ring constructed from formal quotients atnr1, a G Ry 

m G M. 

T H E O R E M 10. If R is commutative, Q = F, and M is a multiplicative system 
that contains only regular elements of R, then RC(M) — RM-

Proof. If m G M, since m is regular, it has an inverse m~l in Q whose 
domain is mR. If A Ç mR, A = mB, where B is an ideal of R. Clearly 
mrxA Ç 5 Ç AC^M) and hence m~l G RC{M)- I t follows t ha t RM C Rc{M). On 
the other hand if Q = F every element à of Q has the form 5 = bar1, b, 
a G R and a regular. Hence à{aR) ÇZ i? and, by the corollary to Theorem 8, 
aR Q Ia. Now if à G i?c(M), « ( ^ ) = oR C (aR)c(M). Hence for every r f i ? 
there exists mi f I f such t ha t raiôr G ai?. Choose r = m2 (z M and let 
m = WiW2. Then ra6 G ai? where m £ M and is therefore regular. Hence 
mb = ax and 5 = bar1 = xm~l G RM- Thus i?c(M) ^ i?M and the theorem 
follows. 

T H E O R E M 11. Let R be a commutative ring in which the ACC holds, and let 
M be any multiplicative system in R. The closure c(M) is maximal if and only 
if the zero ideal is c(M)-closed, and this occurs if and only if M contains only 
regular elements of R. 

Proof. Since 0C(M) = {x G r \ mx = 0, m G M} it is clear t ha t 0C(M) = 0 if 
and only if M contains only regular elements. I t is also clear t h a t if c(M) 
is maximal, since then c(M) = c(M)', the zero ideal is c(M)-closed. (Alter
natively, if the zero ideal is not c(M) -closed it can clearly be added to the 
inset of c(M)-closed ideals without changing the ring RC(M)-) 

Conversely suppose the zero ideal is c(M) -closed so tha t every element of 
M has an inverse mr1 in Q. The domain of m~l is mR. If A Ç mR, A = mB, 
where B is an ideal of R. Clearly B C A<*M) and m~xA Ç 5 Ç A<+M). Hence 
mr1 G i?c(M) and every element of M has an inverse in RC(M)> 

Now the ACC implies t ha t Ac(-M) = (xh x2, • . . ,xn), where rape* G ^4, 
nti G M. Hence if m = mm2 . . . raw, m £ M and ra^lc(M) Ç ^4, whence 
^c(M) Q m~iA. Now let X = A C\ mR and we have 

Xc(M) = ^c(M) ^ (mR)«M) = Ac(M) 

since (rai?)c (M) = i?. Hence 
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mrlX = wr\A C\ mR) 3 nrl(mAc^M)) = A<+M) = X«M). 

But since mrl Ç Rc(Mh and X C mf?, w ^ X C XC<M). Hence m ^ X = XC(M). 
Now if c(ikf) < c(M) we can choose the ideal A above so that A~cXm C -4C(M) 

and then X**n Ç . 4 ^ > C ^4C(M) = XC<M). Since ra^X = X<*M) <t XC_WJ this 
means that m'1 Î R-C-{M^, which is a contradiction since RC(M) = RJÇMT Hence 
c(M) is maximal. 

COROLLARY. If M contains only regular elements, c(M) = c(M)f and for 
any ideal A of R, 

R^EC(M)(A) = AM. 

8. Bilateral closures associated with an arbitrary m-system. In a 
non-commutative ring R the role of the multiplicatively closed set is, for 
many purposes, filled by an m-system (8). A set M of elements of R is an 
m-system if when x, y Ç M there exists an element r in R such that xry £ M. 
The null set is also, by definition, an m-system. An ideal P is prime if and 
only if its complementary set R — P is an m-system. We have seen that in 
the commutative case a closure c(M), and hence a ring of quotients RC(M), 

can be associated with any multiplicative system M. In the non-commutative 
case, if M is an w-system, an analogous closure c{M) is provided by the 
upper ikf-component u(A, M) defined in (9). The original definition of 
u(A, M) involved considerations that are not needed here. We therefore use 
the definition given by Barnes (1) suitably adapted to the present context. 

Let R be any ring and A any ideal in R. An element x of R is right prime2 

(rp) to A if xRy Ç A implies y Ç A. Otherwise x is not right prime (nrp) 
to A. An ideal is nrp to A if all its elements are nrp to A. Otherwise it is 
rp to A. Now let M be any set of elements in R. If M = 0 we define the right 
upper ikf-component of A to be A itself. If M ^ 0 let © be the set of all 
ideals B in R such that all elements of M are right prime to B. Since R G ©, 
© is not empty. If {A^} is any set of ideals each of which belongs to © it is 
clear that r\Aa G ©. Hence © is an inset in 2(R), and defines a closure c(M). 
We call AC(M) the right upper ikf-component of A and denote it by uT(A, M). 
It is clear that if M r\ A is non-null, then R is the only element of © that 
contains A and hence uT(A, M) = R. But if M C\ A = 0, uT(A, M) is the 
intersection of all ideals X containing A such that all elements of M are rp 
to X. By the intersection property all elements of M are rp to ur(A, M). 

Although in the above there is no restriction on the set M we are interested 
primarily in the case in which M is an m-system. If R is commutative and M 
is multiplicatively closed (and hence an m-system) we know from (9, Theorem 
7) that u(A, M) = AM, and thus use of the same notation c(M) for the closure 

2The left-right terminology of (9) and (1) has been reversed in order to conform with that 
used in (7) and at the same time to fit better the requirements of the present paper. 
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A —>u(A, M) is justified. If M is a non-null m-system we define, as in (9), 
the right lower ikT-component lr(A, M) to be the ideal 

{% G R | mRx Ç A for some m G M}. 

If M = 0 we define lr(A, M) to be 4 itself. We know from (9) that 

A C Z rU, Af) Ç w r ( i , I ) . 

The other properties of these components derived in (9) will be assumed. 
When no confusion will result we omit the subscripts r, although cr(M) and 
Ci(M) will be used when necessary to distinguish the closures defined by 
ur(A, M) and ut(A, M). 

THEOREM 12.3 If the ACC holds for two-sided ideals in R, then for every ideal 
A and every m- system M, u(A, M) = l(A, M). 

Proof. If M = 0, u(A, M) = l(A, M) = A by definition. Also if M H A 9*0, 
u(A, M) = l(A, M) = R. Assume M ^ 0 but M H A = 0. Since the ACC 
holds we can write 

l(A, M) = L = (ci, c2, . . . ,cw). 

For each c* there exists an element mt G M such that ntfRci Ç ^4. Since ikf 
is an w-system there is an element m = m^X\m2x2mz . . . xn~imn G -M" and 
clearly mRL Q A. 

Now suppose m'Rx ÇZ L, m' G M. Then mRm'Rx C 4̂ and if we choose r 
so that ra" = wrw' G Af we have m"Rx Ç 4̂ and x (z L. Hence every element 
ra' of M is rp to L and u(A, M) ÇZ L. But since LQu(A, M), equality 
follows. 

THEOREM 13. If M is any m-system and c(M) the corresponding closure in 
2(R), then c{M) is an m-closure in the sense of Johnson (5), that is it is a 
C\-endomorphism of 2(R). 

Proof. We must show that for any ideals A and B, 

(8.1) u(A C\B,M) = u(A, M) C\ u{B, M). 

This is trivially true if M = 0. If M y* 0 we first prove (8.1) for the lower 
components. Clearly l(A C\B,M) Q l(A, M) C\ l(B} M). If 

x G l{A,M)r\l{B,M) 

choose mi, m2 G M so that m\Rx Ç A, mJRx C £ . Then if m = mirm2 G ^", 
raifo Ç 4̂ Pi £ and x G Z(4 H 5 , M). Hence we have 

(8.2) l(A C\B,M) = Z(4f ikf) H Z(B, M). 

From (8.2) we see that 

3This theorem was first proved by W. E. Barnes but has not been published previously. 
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I2 {A C\B,M) = l[l{A, M) C\ l(B, M), M] 

= 12{A,M) fM2(B,M) 

and by transfinite induction, for any ordinal a, 

I*(A r\B,M) = 1°{A, M) r\ 1«{B, M). 

Now (8.1) follows from (9, Theorem 5, Corollary 1). 
If M = R — P , where P is a prime ideal, we write c{P) for c{M), u(A, P), 

l(A,P) for u{A, M), l(A,M) and we refer to the latter as the (right) upper 
and lower P-components of A. 

For the remainder of this section we shall assume the ACC for the ideals 
of R. In this case another characterization of the closure c{P) can be obtained 
by using concepts introduced by Lesieur and Croisot. For completeness we 
shall include the relevant definitions from (7). We use the notation xR*y, 
introduced in (7), for the set {xRy,xy}, and prove the following lemma. 

LEMMA 1. An element a is nrp to an ideal A if and only if there exists an 
element x $ A such that aR*x Ç A. 

Proof. The "if" part is obvious. Conversely, if a is nrp to A there exists 
an x ^ A such that aRx ÇI A. If ax £ A, then aR*x ÇZ A. If ax (jf A, let ax = x\ 
and clearly aR*xx Ç A, xi(£A. 

DEFINITION. The {right) tertiary radical of an ideal A is the set t{A) which 
consists of all elements a of R such that in every principal ideal generated by an 
element not in A there exists an element x $ A such that aR*x Ç A. 

It is shown in (7) that t(A) is an ideal and it is clear from the definition 
that t{A) is nrp to A. 

DEFINITION. An ideal T is (right) tertiary if xR*yQ T implies that either 
y G T or x G t(T). 

By (7, Theorem 5.3), the tertiary radical of a tertiary ideal is prime. Let 
T be P-tertiary, that is, tertiary with tertiary radical P . It follows from the 
above lemma and the definition of a tertiary ideal that every element that 
is nrp to T is contained in P. But we have seen that P is nrp to T and hence 
the elements that are nrp to T are exactly the elements of P . It follows (1, 
p. 2) that T is (right) primal with adjoint P in the sense of the following 
definition. 

DEFINITION. An ideal A is {right) primal if the elements nrp to A form an 
ideal Q. The ideal Q is called the adjoint of A and A is then said to be Q-primal. 

In the presence of the ACC for ideals the adjoint of a primal ideal is prime 
(1, p. 7, Cor. 2.) 

The above definition of a primal ideal is that of Barnes (1). It follows 
from (1, Theorem 10) that it is equivalent to that of Lesieur and Croisot 
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when the ACC holds. Although every P- te r t ia ry ideal is P-pr imal the con
verse is false. 

Lesieur and Croisit (7) have shown t h a t if the ACC holds in R for two-sided 
ideals, then every ideal A has a short representation 

(8.3) A = Tlr\T2r\.. .r\Tn, 

where Tt is a (right) ter t iary ideal whose ter t iary radical is a prime Pt. In 
any such short representation the ter t iary radicals P i , P 2 , . . . , Pn are dist inct 
prime ideals and are uniquely determined by A. We shall call them the (right) 
associated primes of A. The following theorem can be used to provide a charac
terization of the closure c{P) associated with a prime ideal P . 

T H E O R E M 14. Let A be an ideal in a ring R which satisfies the ACC for ideals. 
Every associated prime of A is nrp to A and every prime ideal P that is nrp 
to A is contained in one of the associated primes of A. 

Proof. Let (8.3) be a short representation of A by (right) ter t iary ideals 
and let P] , with ter t iary radical P i , be any one of the ter t iary components . 
Since (8.3) is i r redundant we can choose b G P 2 P • . . P Tn such t h a t b $ 7Y 
By the definition of ter t iary radical if a G P i , there exists an element x £ (b) 
such t ha t x^Ti and aR*x Ç T\. Since x £ (J) Ç r 2 H . . . H Tn, we have 

aRx C aP*x Q Tl Pi T2 C\ . . . C\ Tn = A 

and x $ A since x $ T\. Hence a is nrp to A and since a was arbi t rary , P i is 
nrp to A, proving the first par t of the theorem. 

Now if a is nrp to A by Lemma 1 we can choose x $ A such t h a t aR*x Ç ^4. 
Hence aR*x Ç 7 \ for all i and x $ P7- for a least one j . Since P ; is P r t e r t i a r y 
i t follows tha t a £ Pj. Hence if P is nrp to A, P ÇZ U P f , the set-theoretic 
union of the associated primes of A. I t now follows by a familiar a rgument 
(1, Lemma 5, p. 4 ) t ha t P Ç Pt for some i. 

COROLLARY I. If R satisfies the ACC for ideals, the maximal nrp to A primes 
of A (1) are among the associated primes of A. 

COROLLARY 2. If R satisfies the ACC for ideals and P is any prime ideal 
of R, an ideal A is c(P)-closed if and only if its associated primes are all con
tained in P. 

Proof. A is c(P)-closed if and only if u(A, P) = A, i.e. if and only if every 
element m not in P is rp to A. This is equivalent to saying t h a t every element 
t h a t is n rp to A belongs to P , i.e. all the associated primes of A are contained 
in P . 

COROLLARY 3. If R satisfies the ACC for ideals, P is any prime ideal, and A 
any ideal of R, then u{A, P) is the intersection of all ideals containing A whose 
associated primes are all contained in P . 

In (1) Barnes has defined an upper 5-component u(A,B) of A where B 
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is any ideal. This is precisely the upper if-component u(A, M) where M is. 
the set of elements that are rp to B. Writing c(B) = c(M) we have a closure 
in %(R) corresponding to any ideal B. If the ACC holds in R we see from 
Theorem 14 that A is c(B)-closed if and only if every associated prime of A 
is contained in an associated prime of B. Thus u(A, B) is the intersection of 
all ideals containing A each of whose associated primes is contained in an 
associated prime of B. 

THEOREM 15. If R satisfies the ACC for ideals and B is an ideal of R with 
associated primes Pi , Pi, . . . , Pn, then u(A,B) = C\u(A, P<D, whence 
c{B) = VJc(Pi) and if c(B), c(Pi) are used to define bilateral closures in 2r(R) 
we have Rcm = ^Rdn)-

Proof. Since u(A,Pi) is the intersection of all ideals containing A whose 
associated primes are contained in Pt it is clear that u(A, B) Ç r\u(A, Pt). 
On the other hand u(A, B) = C\X over all X 3 A such that each associated 
prime of X is contained in one of the Pt. Hence each X is the intersection of 
tertiary ideals each of whose radicals is contained in a P t. Grouping together 
those tertiary components of the various X's whose radicals are contained 
in Pi , in P2 , etc. we find 

U(A,B) = n ( n t f 

where for a fixed i the associated primes of each Xa
(i) are contained in Pt. I t 

follows that 
n 

u(A,Pi) <^nxi* and u(A, B) 2 D u(A, Pt). 
<r i—1 

This proves the first statement of the theorem and the other two statements 
are immediate consequences of it. 

The remaining theorems of this section give additional properties of the 
associated primes of an ideal and the corresponding components in a ring 
with ACC for ideals. 

THEOREM 16. If R satisfies the ACC for ideals and P is an associated prime 
of an ideal A, then P is nrp to u(A, P ) . It follows that in this case u(A, P) is 
P-primal. 

Proof. Let (8.3), where Tt is P r te r t ia ry , be a short representation of A. 
Choose any associated prime of A, say P3.. By Theorem 13, u(A,Pi) = 
r\u(Tu Pi ) . By the definition of a P^-tertiary ideal it follows that u(Ti, Pi) = T% 
and hence 

(8.4) u(A,Pi) = r, n U(T2, Pi) n . . . n u(rn, p,). 
If the component Pi were redundant in (8.4) we would have 

Pi 2 n«(r<fPi) ^nrt 
i=2 i=2 

) • 
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contrary to the irredundance of the original short representation of A. Thus 
(8.4) leads to a short representation of u(A,Pi) that contains a P r t e r t i a ry 
component. Hence P i is an associated prime of u(A, Pi) and, by Theorem 14, 
Pi is nrp to u{A, Pi) . Since every element not in P i is rp to u(A, Pi) this is 
equivalent to saying that u(A,Pi) is (right) Pi-primal. 

COROLLARY. If PI, . . . , Pr are the maximal nrp to A primes, then 

(8.5) A = u{A,P1) r\...r\u(A,Pr) 

is a short representation of A as an intersection of {right) primal ideals. 

Proof. The validity of (8.5) follows from Theorem 12 and (1, Theorem 19). 
The maximal primes Pi , . . . , Pn are associated primes of A by Cor. 1, Theorem 
14, and hence each u(A, Pi) is P rprimal . Since Pt ÇL Pj for i ^ j the repre
sentation (8.5) is short. 

It is known from (9, Theorem 18) that if A has a right primary decom
position (which is, of course, also a right tertiary decomposition) the associated 
primes of A are exactly those primes P for which P is nrp to u (A, P ) . Theorem 
16 shows that even when a primary decomposition fails to exist the associated 
primes of A still have this property. That not every prime P for which P is 
nrp to u(A,P) is an associated prime of A may be deduced from the following. 

THEOREM 17. If P is a minimal prime of A, u{A, P) is P-tertiary {and there
fore P-primat). 

Proof. Since P is a minimal prime of A it is also a minimal prime of u{A, P). 
The ACC implies (9, p. 51) that u{A, P) has a minimal prime P' that is nrp 
to u(A, P). Since every element not in P is rp to u{A, P) , we have P' Ç P 
and since P is minimal, P' = P . Hence P is nrp to u{A, P) and u{A, P) is 
P-primal. 

Now suppose u{A,P) = Pi P\ . . . C\ Tsf where Tt is P r te r t iary . By 
Theorem 14 each Pt is nrp to u{A, P) and hence Pt C P for all i. Hence 

P^Pi^Ti^ u(A,P) ^A {i = 1, 2, . . . , s) 

and since P is a minimal prime of A, Pt = P for all i, and u(A, P) is P -
tertiary. 

Theorem 17 shows that every minimal prime P of A has the property that 
P is nrp to u(A, P). But not all minimal primes of A need occur among the 
associated primes of A, as is shown by taking A to be any P-tertiary ideal T 
which is not P-primary. Thus the condition that P be nrp to u{A,P) is 
necessary but not sufficient for P to be an associated prime of A. These 
results, together with (9, Theorem 18), suggest the conjecture that if every 
prime P for which P is nrp to u(A, P) occurs as an associated prime of A, 
then A has a right primary decomposition. I have not been able to prove or 
disprove this conjecture. 
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9. Extended and contracted ideals. If R and 5 are rings and R Ç 5, 
the extended ideals of 5 are those that are extensions to 5* of ideals of R. The 
contracted ideals of R are those that are contractions of ideals of 5, i.e. of 
the form R C\ A', where A' is an ideal of 5. The one-to-one correspondence 
between these two sets of ideals and the various properties of it are well 
known and may be found for the commutative case in (12). We list below 
the main results that hold in the general case. There are important differences 
(to be discussed later) from the corresponding list for the commutative case 
(12, p. 219). 

We denote by d the natural closure induced in %(R) by 5, and by c" the 
corresponding mapping in 8(5) defined by 

Xe" = Es(RnX), 

where X £ 8(5). The mapping c" is an anti-closure in the sense of Querré 
(10), that is, it satisfies the rules (a) Xe" Ç I , ( b ) I Ç Y implies Xe" C Yc", 
and (c) (Xc")c" = Xe". We denote by 8C'(R) the set of ^-closed ideals in R 
and by 8C"(5) the set of ^'-closed ideals in 5 and easily derive the following 
properties. 

1. The contracted ideals of R are exactly those in 8 e' (R) and the extended 
ideals of 5 are exactly those of 8C"(5)-

2. The mapping A —» ES(A) is a one-to-one mapping of %c' (R) onto 8C"(5) 
whose inverse mapping is X —> R C\ X. 

3. 8e' (R) is closed under complete intersection and hence becomes a lattice 
(8C', n , U*, C) when a union U* is defined by W* A, = Ç£ A,)*'. 

4. 8C"(5) is closed under complete sums and hence becomes a lattice (8C", 
P\*, + , ÇI) when an intersection H* is defined by P\* Xa = ( P i l , ) ' " . 

5. The two lattices defined in (3) and (4) are isomorphic under the mapping 
defined in (2). 

It is important to note that whereas in the commutative case the mapping 
A *->Es(A) is also an isomorphism with respect to multiplication of ideals, 
this is not so in general for the non-commutative case. 

The standard theorems (12, Ch. IV, Section 10) about contracted and 
extended ideals in R and RM hold also, in the non-commutative case, for R 
and Rc provided the following three conditions are satisfied: 

(a) 8C"(Rc) = 2(RC), i.e. every ideal of Rc is an extended ideal. 
(b) EC(AB) = EC(A)EC(B) for all ideals A, B of R. 
(c) c = c\ 

In every commutative ring (b) holds, and (c) is true for all maximal closures 
c. Condition (a) presents more difficulty and will be discussed further below. 

THEOREM 18. In a non-commutative ring R which satisfies the ACC for ideals, 
conditions (a), (b), and (c) imply: 

(1) The contracted prime ideals P of R are mapped one-to-one onto the prime 
ideals P' of Rc by the mapping P —* EC(P), and P' —> R P\ P' is the inverse 
mapping. 
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(2) If P and P' = EC(P) are corresponding primes as in (1), then A-*EC(A) 
is a one-to-one mapping of the {right) P-primary ideals A of R onto the {right) 
Pf-primary ideals Af of Rc and A' —> R H\ A' is the inverse mapping. 

Here an ideal A in R is said to be right primary if for any ideals B and 
C in R, BC ÇZ A implies that either C C A or Bn C A for some integer n. If 
R contains a unit element and satisfies the ACC for ideals, this is equivalent 
to the definition xRy C A implies either y G A or x G the radical of A. The 
proof of (1) and (2) is the standard application of (a), (b), and (c) together 
with the lattice isomorphism between 8e' (R) and 2C"{RC). 

Of course this is highly unsatisfactory since it is far from clear in what 
non-commutative rings and for what closures c conditions (a), (b), and (c) 
hold. Condition (b) especially suggests a high degree of commutativity. By 
Theorem 7 every maximal closure c contains a closure cu for which (c) holds, 
but it is not clear, for example, if c — c{P), which of the c{P)-closed ideals 
are also ^-closed and hence are contracted ideals. In the next section we 
discuss conditions that ensure (a) and a weakened form of (b) but which 
nevertheless yield both results of Theorem 18 provided we use left primary 
ideals and c = Ci{P). 

10. Semi-prime rings with right quotient conditions. Let R be a 
semi-prime ring that satisfies A. W. Goldie's right quotient conditions, namely, 
(a) R has finite dimension as a right jR-module and (b) R satisfies the ACC 
for annihilator right ideals. Goldie has shown (3, Theorem 5) that R has a 
full ring of right quotients F and (3, Lemma 4.2) that the right singular 
ideal4 of R is zero. It follows from (11, Theorem 3) that RA consists precisely 
of the essential right ideals of R. Since by (3, Theorem 4.8), a right ideal 
is essential if and only if it contains a regular element, it follows that Q = F. 

THEOREM 19. Let R be a semi-prime ring that satisfies Goldie s right quotient 
conditions. Let c be a bilateral closure in 2r{R) such that every element a of Rc 

can be written in the form à = ba~l, where a, b G R, a is regular, and a'1 G Rc. 
Then (a) 8C"'{Rc) = 2{RC) and (b) if A,B G 2{R) and B is c-closed, 

EC{AB) = EC{A)EC{B). 

Proof, (a) Let Ar be any ideal of Rc and let a G A'. Then à — ba~l, where 
a'1 e Rc Since aa = b 6 R H A', à = ba~l G EC{R Pi A'). Hence 

A' = EC{RC\A') 

and every ideal of Rc is an extended ideal. 
(b) Clearly EC{AB) Ç EC{A)EC{B). Now EC{A)EC{B) is generated by 

elements of the form âafîby where a G A, b G B and a, fi, y G Rc, oc £, 7 

4The right singular ideal of R (4, p. 894) is the two-sided ideal consisting of all elements x 
such that the right annihilator of x is an essential right ideal. 
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being semi-P-endomorphisms in $tc. T h e domain of the semi-P-endomorphism 

aafiby is the essential r ight ideal 

I = {x G Iy | Ô7X G 7/3 and afibyx G /«}, 

which, by Goldie's result, contains a regular element x. Since x G Iy, yx G R 
and 67X G Ip C\ B. Hence since /3 G ®c and 5 is ^-closed, /367X G # and 
aaftbyx = aa6 ' , b' (z B. Under the assumption of the theorem x can be so 
chosen t ha t x~~l G P c and hence âafiby = àab'xr1 G EC(AB). Hence 

P C ( /1 )E C (3 ) = E C ( 4 B ) . 

From this we have the following theorem. 

T H E O R E M 20. Let R be a ring satisfying the hypotheses of Theorem 19 and 
the ACC for two-sided ideals. Let c be a bilateral closure in 8 r ( P ) satisfying 

c' = c and the hypothesis of Theorem 19. Then 

(1) ^ e mapping P —> EC(P) maps the set of contracted prime ideals of R 
into the set of prime ideals of Rc, 

(2) if P and P' = EC(P) are corresponding primes as in (1) and A is a 
right P-primary ideal of R, then EC(A) is a right P'-primary ideal of Rc. 

Proof. T h e proof is immediate . T h e only effect of the weakening of Con
dition (b) is to invalidate the proof in Theorem 18 t ha t if P' is prime in Rc 

then R C\ P' is prime in R and similarly for the pr imary ideals. However, 
this feature can be restored for the closures ct(P) defined by the left upper 
P-components , We have in fact the following theorem. 

T H E O R E M 21 . Let R be a ring, P a prime ideal in R, and let c be the bilateral 
closure defined by 

Jc = M , ( / » , P ) . 

If R and c satisfy the hypotheses of Theorem 20, then Theorem 18(1) follows 
and also Theorem 18(2) for left primary ideals. Moreover EC{P) is a unique 
maximal prime of Rc and [Ec(P)]n = Ec(P

n). 

Proof. The conclusions of Theorem 20 follow as before. Suppose Pr is a 
prime ideal in Rc. We wish to show t h a t R P \ Pf is prime in R. Since R C\ Pf 

is a contracted ideal it is enclosed and hence c-closed since we are assuming 
c = c'. Let A,B be ideals in R. Since Bc = Ui(B,P) by Theorem 12, 
BcRm C B for some element m $ P and hence ABcRm C AB and AB° C (AB)C. 
Now if AB QRH P'\ since R C\ P' is c-closed, (AB)C Ç R Pi P ' and hence 
ABC Ç RC\Pr. Since Bc is c-closed Theorem 19 now yields EC(A)EC(BC) = 
EC(ABC) QEe(Rr\P') = P'. Hence EC(A) Q Pf or EC(BC) Q Pf and, by 
contracting, either Ac Cl R C\ P' or Bc CL R C\ P' and a fortiori either A or 
B is contained in P H P ' . 

Now suppose P ' is a prime ideal in Rc and yl ; is left P ' -p r imary . Suppose 
B, C are ideals of R and j B C Ç ^ H i ' . T h e same a rgument as above yields 
EC(B)EC(CC) C .4 ̂ n d since ^4'is left P r i m a r y £ , ( £ ) C A'or [Ec(C

c)]nQA'. 
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Since Cc is c-closed the latter gives Ec[(Cc)n] C A' and by contracting we get 
either B C R H A' or Cn Ç (Cc)n Ç i ^ H i ' . Hence i? H ,4' is left primary. 
Now suppose the radical of R C\ A' is P\. Since P1 is nilpotent mod 4 ' , 
i ? n ? ' is nilpotent moà R f~\ A'. Hence R C\ A' C i? H P' C P l t But 
R r\ P' is prime and P i is a minimal prime of i ^ P l i ' . Hence Pi — R C\ P' 
and R C\ A' is left (P Pi P')-primary. 

Finally if P' is any prime of Rc, R C\ P' is c-closed and hence either 
RC\P' = R or Rr\Pr C P . It follows that P ' = EC(RC\ P') is either P c 

itself or is contained in E{P). Hence E(P) is a unique maximal prime of 
Rc and [Ec(P)]n = Ec{Pn). 

If c = c(P) when P is a prime ideal in P , a necessary condition for c = c' 
is clearly that the 0 ideal is oclosed, that is u(0, P) = 0. This means that 
no two-sided ideal can be annihilated by multiplying on the left (right) by 
an element not in P . If u(0, P) = N ^ 0 we can of course work in the ring 
R/N, as is done in the commutative case, since c induces a closure in R/N 
for which the zero ideal is closed. 

It is clear that many fundamental questions are left unanswered by the 
above theorems. For example if c = c(P) is c maximal if w(0, P) = 0? For 
what primes in what rings is c = c'l Are P and the P-primary ideals of R 
£w-closed, where ca is the closure constructed in Theorem 7? When does the 
ring RC(P) have a unique maximal prime EC(P) and if it does is r\[Ec{P)]n = 0? 
For what rings and what closures is the hypothesis of Theorem 19 satisfied? 
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