ON WEIGHTED SOBOLEV SPACES

SENG-KEE CHUA

Abstract

We study density and extension problems for weighted Sobolev spaces on bounded (ε, δ) domains \mathcal{D} when a doubling weight w satisfies the weighted Poincaré inequality on cubes near the boundary of \mathcal{D} and when it is in the Muckenhoupt A_{p} class locally in \mathcal{D}. Moreover, when the weights $w_{i}(x)$ are of the form $\operatorname{dist}\left(x, M_{i}\right)^{\alpha_{i}}, \alpha_{i} \in \mathbb{R}$, $M_{i} \subset \mathcal{D}$ that are doubling, we are able to obtain some extension theorems on (ε, ∞) domains.

1. Introduction. Recently there has been quite a number of works related to weighted Sobolev spaces. For example, Kufner [23] studied various properties of weighted Sobolev spaces on certain domains \mathcal{D} for weights arising from $\operatorname{dist}(\cdot, M)$ with $M \subset \partial \mathcal{D}$. Also, Brown and Hinton [2], [3], [4] and Gutierrez and Wheeden [20] obtained weighted Sobolev interpolation inequalities. Meanwhile, the author [9], [11], [13] has studied the extension and restriction problems on weighted Sobolev spaces. In this paper, we would like to improve some results in [9]. Namely, we will study density problems and extension problems on weighted Sobolev spaces. Note that some of our results overlap some of those in [23] and [17].

By a weight w, we mean a non-negative locally integrable function on \mathbb{R}^{n}. By abusing notation, we will also write w for the measure induced by w. Sometimes we write $d w$ to denote $w d x$. We always assume w is doubling, by which we mean $w(2 Q) \leq C w(Q)$ for every cube Q, where $2 Q$ denotes the cube with the same center as Q and twice its edgelength. All cubes in this paper are assumed to be closed and with edges parallel to the axes. By $w \in A_{p}$, we mean w satisfies the Muckenhoupt A_{p} condition, i.e.,

$$
\begin{gathered}
\frac{1}{|Q|}\left(\int_{Q} w d x\right)^{1 / p}\left(\int_{Q} w^{-1 /(p-1)} d x\right)^{1 / p^{\prime}} \leq C \quad \text { when } 1<p<\infty, \text { and } \\
\frac{1}{|Q|} \int_{Q} w(x) d x \leq C \underset{x \in Q}{\operatorname{essinf} w(x)} \quad \text { when } p=1
\end{gathered}
$$

for all cubes Q in \mathbb{R}^{n}. Note that w is doubling when it is in A_{p}. Moreover, when \mathcal{D} is an open set, we will write $w \in A_{p}^{\text {loc }}(\mathcal{D})$ if for any cube $Q_{0} \subset \mathcal{D}$, there exists $C_{Q_{0}}>0$ such that

$$
\frac{1}{|Q|} w\left(Q \cap Q_{0}\right)^{1 / p}\left(\int_{Q \cap Q_{0}} w^{\frac{-1}{p-1}}(x) d x\right)^{1 / p^{\prime}} \leq C_{Q_{0}} \quad \text { when } 1<p<\infty, \text { and }
$$

Received by the editors March 14, 1993; revised May 1995.
AMS subject classification: 46E35.
Key words and phrases: Poincaré inequalities, A_{p} weights,power weights, doubling, locally A_{p} weights, (ε, δ) and (ε, ∞) domains.
(c) Canadian Mathematical Society, 1996.

$$
\frac{w\left(Q \cap Q_{0}\right)}{|Q|} \leq C_{Q_{0}} \underset{x \in Q \cap Q_{0}}{\operatorname{essinf}} w(x) \quad \text { when } p=1
$$

for all cubes Q in $\mathbb{R}^{n} .{ }^{1}$
Let \mathcal{D} be an open set in \mathbb{R}^{n}. If α is a multi-index, $\alpha=\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right) \in \mathbb{Z}_{+}^{n}$, we will denote $\sum_{j=1}^{n} \alpha_{j}$ by $|\alpha|$ and $D^{\alpha}=\left(\frac{\partial}{\partial x_{1}}\right)^{\alpha_{1}} \cdots\left(\frac{\partial}{\partial x_{n}}\right)^{\alpha_{n}}$. By $\alpha \geq \beta$, we mean $\alpha_{j} \geq \beta_{j}$ for all $1 \leq j \leq n$. Moreover we write $\alpha>\beta$ if $\alpha \geq \beta$ and $\alpha \neq \beta$. We denote by ∇ the vector $\left(\frac{\partial}{\partial x_{1}}, \frac{\partial}{\partial x_{2}}, \ldots, \frac{\partial}{\partial x_{n}}\right)$ and by ∇^{m} the vector of all possible $m^{t h}$ order derivatives for $m \in \mathbb{N}$. A locally integrable function f on \mathcal{D} (we will write $f \in L_{\text {loc }}^{1}(\mathcal{D})$) has a weak derivative of order α if there is a locally integrable function (denoted by $D^{\alpha} f$) such that

$$
\int_{\mathcal{D}} f\left(D^{\alpha} \varphi\right) d x=(-1)^{|\alpha|} \int_{\mathcal{D}}\left(D^{\alpha} f\right) \varphi d x
$$

for all C^{∞} functions φ with compact support in \mathcal{D} (we will write $\varphi \in C_{0}^{\infty}(\mathcal{D})$).
If $1<p<\infty, p^{\prime}$ is always equal to $p /(p-1)$ and $p^{\prime}=\infty$ when $p=1 . Q$ will always be a cube and $l(Q)$ will be its edgelength. Following [22], we say that two cubes touch if a face of one cube is contained in a face of the other. For $1 \leq p<\infty, k \in \mathbb{N}$, and any weight $w, L_{w, k}^{p}(\mathcal{D})$ and $E_{w, k}^{p}(\mathcal{D})$ are the spaces of functions having weak derivatives of all orders $\alpha,|\alpha| \leq k$, and satisfying

$$
\|f\|_{L_{w, k}^{p}(\mathcal{D})}=\sum_{0 \leq|\alpha| \leq k}\left\|D^{a} f\right\|_{L_{w}^{p}(\mathcal{D})}=\sum_{0 \leq|\alpha| \leq k}\left(\int_{\mathcal{D}}\left|D^{\alpha} f\right|^{p} d w\right)^{1 / p}<\infty,
$$

and

$$
\|f\|_{E_{w, k}^{p}(\mathcal{D})}=\sum_{|\alpha|=k}\left\|D^{\alpha} f\right\|_{L_{w}^{p}(\mathcal{D})}<\infty
$$

respectively. Moreover, in the case when $w \equiv 1$, we will denote $L_{w, k}^{p}(\mathcal{D})$ and $E_{w, k}^{p}(\mathcal{D})$ by $L_{k}^{p}(\mathcal{D})$ and $E_{k}^{p}(\mathcal{D})$ respectively. Also, let $\hat{E}_{w, k}^{p}(\mathcal{D})$ be the factor space $E_{w, k}^{p}(\mathcal{D}) / \mathcal{P}_{k-1}$ where \mathcal{P}_{l} is the subspace of polynomials of degree not greater than l. By $f \in L_{w, 1, \mathrm{loc}}^{p}(\mathcal{D})$, we mean $f \in L_{w, 1}^{p}\left(K^{o}\right)$ for all compact sets K in \mathcal{D}.

Let \mathcal{D} be an open connected set. It is easy to see that $L_{w, k}^{p}(\mathcal{D})$ is a Banach space when $w^{-1 / p} \in L_{\text {loc }}^{p^{\prime}}(\mathcal{D})$ [17]. Moreover, the author [9] prove that $\hat{E}_{w, k}^{p}(\mathcal{D})$ is a Banach space when $w \in A_{p}$. Note that it is just a weighted version of Theorem 1.1.13.1 in [26]. We will show that indeed the following is true.

THEOREM 1.1. Let $1 \leq p<\infty$ and let w be a doubling weight. If $w^{-1 / p} \in L_{\text {loc }}^{p^{\prime}}(\mathcal{D})$ then $\hat{E}_{w, k}^{p}(\mathcal{D})$ is a Banach space for any connected open set \mathcal{D}.

Definition 1.2. An open set \mathcal{D} is an (ε, δ) domain if for all $x, y \in \mathcal{D},|x-y|<\delta$, there exists a rectifiable curve γ connecting x, y such that γ lies in \mathcal{D} and

$$
\begin{equation*}
l(\gamma)<\frac{|x-y|}{\varepsilon} \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{equation*}
d(z, \partial \mathcal{D})>\frac{\varepsilon|x-z||y-z|}{|x-y|} \quad \forall z \in \gamma . \tag{1.2}
\end{equation*}
$$

\]

Here $l(\gamma)$ is the length of γ and $d(z, \partial \mathcal{D})$ is the distance between z and the boundary of \mathcal{D}. Moreover, we will write $d(Q, S)=\inf _{x \in Q, y \in S}|x-y|, d(Q)=d(Q, \partial \mathcal{D})$ and $d(z)=d(\{z\}, \partial \mathcal{D})$.

In 1981, P. Jones [22] extended a famous extension theorem on Lipschitz domains to (ε, δ) domains.

THEOREM 1.3. If \mathcal{D} is a connected (ε, δ) domain and $1 \leq p \leq \infty$, then $C^{\infty}\left(\mathbb{R}^{n}\right) \cap$ $L_{k}^{p}(\mathcal{D})$ is dense in $L_{k}^{p}(\mathcal{D})$ and $L_{k}^{p}(\mathcal{D})$ has a bounded extension operator. Moreover the norm of the extension operator depends only on $\varepsilon, \delta, k, p, \operatorname{rad}(\mathcal{D})$, and the dimension n.

Furthermore he proved that

Theorem 1.4. If \mathcal{D} is an (ε, ∞) domain in \mathbb{R}^{n}, then $E_{1}^{n}(\mathcal{D})$ has a bounded extension operator, i.e., there exists $\Lambda: E_{1}^{n}(\mathcal{D}) \rightarrow E_{1}^{n}\left(\mathbb{R}^{n}\right)$ such that $\left.\Lambda f\right|_{\mathcal{D}}=f$ a.e. and $\|\Lambda\|$ is bounded.

Recently, the author extended Theorems 1.3 and 1.4 to weighted Sobolev spaces when the weight is in A_{p} [9]. In this paper, we will extend these results further by relaxing the A_{p} assumption on the weight w to the following conditions on a bounded (ε, δ) domain \mathcal{D} :
w is doubling on $\mathbb{R}^{n}, w \in A_{p}^{\text {loc }}(\mathcal{D})$
w satisfies a local Poincaré inequality on \mathcal{D}.
Indeed, we prove that
Theorem 1.5. Let \mathcal{D} be a bounded (ε, δ) domain. Let $1 \leq p<\infty$ and let w be a doubling weight such that $w \in A_{p}^{\text {loc }}(\mathcal{D})$. Suppose further that

$$
\begin{equation*}
\left\|f-f_{Q, w}\right\|_{L_{w}^{p}(Q)} \leq C(A) l(Q)\|\nabla f\|_{L_{w}^{p}(Q)} \quad \forall f \in L_{w, 1, \mathrm{loc}}^{p}(\mathcal{D}) \tag{1.3}
\end{equation*}
$$

for all cubes $Q \subset \mathcal{D}$ near $\partial \mathcal{D}$ such that $A d(Q) \leq l(Q) \leq d(Q) / A, A>0$ where $f_{Q, w}=\int_{Q} f d w / w(Q)$. Then given any $f \in L_{w, k}^{p}(\mathcal{D})\left(\right.$ resp. $\left.E_{w, k}^{p}(\mathcal{D})\right)$ and $\eta>0$, there exists $f_{\eta} \in C^{\infty}\left(\mathbb{R}^{n}\right)$ such that

$$
\left\|f-f_{\eta}\right\|_{L_{w, k}^{p}(\mathcal{D})}<\eta \quad\left(\text { resp. }\left\|\nabla^{k}\left(f-f_{\eta}\right)\right\|_{L_{w}^{p}(\mathcal{D})}<\eta\right)
$$

Moreover, with the help of [11, Theorems 1.1 and 1.2] and the previous theorem, we show that:

THEOREM 1.6. Let \mathcal{D} be a bounded (ε, δ) domain. Let $1 \leq p<\infty$ and w a doubling weight. If $w \in A_{p}^{\mathrm{loc}}(\mathcal{D}), w^{-1 / p} \in L_{\mathrm{loc}}^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ and (3.3) holds, then there exists an extension operator Λ on $L_{w, k}^{p}(\mathcal{D})$ such that

$$
\|\Lambda f\|_{L_{w, k}^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L_{w, k}^{p}}(\mathcal{D}) .
$$

Moreover, if in addition that \mathcal{D} is a bounded (ε, ∞) domain, then there exists an extension operator Λ^{\prime} on $E_{w, k}^{p}(\mathcal{D})$ such that

$$
\left\|\nabla^{k} \Lambda^{\prime} f\right\|_{L_{w}^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\nabla^{k} f\right\|_{L_{w}^{p}(\mathcal{D})}
$$

Remark 1.7. (a) Let $M \subset \partial \mathcal{D}$ and $1 \leq p<\infty$. It is easy to see that if $w(x)=$ $\operatorname{dist}(x, M)^{\alpha}, \alpha \in \mathbb{R}$, then it follows from the non-weighted Poincaré inequality that

$$
\begin{equation*}
\left\|f-f_{Q}\right\|_{L_{w}^{p}(Q)} \leq \mathrm{Cl}(Q)\|\nabla f\|_{L_{w}^{p}(Q)} \quad \forall f \in L_{w, 1, \mathrm{loc}}^{p}(\mathcal{D}) \tag{1.4}
\end{equation*}
$$

for all cubes Q with $l(Q)$ comparable to $d(Q)$. Moreover, it is clear that $w \in A_{p}^{\mathrm{loc}}(\mathcal{D})$. Hence it follows from Theorem 1.5 that $C^{\infty}\left(\mathbb{R}^{n}\right) \cap L_{w, k}^{p}(\mathcal{D})$ is dense in $L_{w, k}^{p}(\mathcal{D})$ when $w(x)=\operatorname{dist}(x, M)^{\alpha}$ is doubling (note that (1.4) implies (1.3)). Thus when w is doubling and \mathcal{D} is a bounded (ε, δ) domain, we obtain those density theorems in [23].
(b) Furthermore, if $w(x)=s(\operatorname{dist}(x, M))$ where s is a positive and continuous function on positive real numbers that satisfies certain properties described in Kufner [23] or [17], similar conclusion can be obtained by Theorem 1.5 if we know that w is doubling.
(c) We do not know exactly when will the weights w defined as above will be doubling. However, in the case that M is just a finite subset of $\partial \mathcal{D}$, it is easy to see that $\operatorname{dist}(x, M)^{\alpha}$ is doubling if and only if $\alpha>-n$. For more details, refer to [15].

REMARK 1.8. (a) Let w be as in Remark 1.7. If in addition that $w^{-1 / p} \in L_{10 \mathrm{c}}^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, then we can apply Theorem 1.6 to get extension operator for $L_{w, k}^{p}(\mathcal{D})$ or $E_{w, k}^{p}(\mathcal{D})$. This overlaps some results in [17].
(b) The assumption that $w^{-1 / p} \in L_{\mathrm{loc}}^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ in Theorem 1.6 is somewhat too strong. Indeed, we need only to assume that $w^{-1 / p} \in L^{p^{\prime}}(\mathcal{D})$. For the details, see [10]. Note that when \mathcal{D} is a bounded (ε, ∞) domain, $w \in A_{p}^{\text {loc }}(\mathcal{D})$ and (3.3) holds, it follows from [14, Corollary 1.5] that $f \in E_{w, k}^{p}(\mathcal{D})$ if and only if $f \in L_{w, k}^{p}(\mathcal{D})$.

Finally, when the weights are of the form as in Remark 1.7(a), we are able to obtain extension theorems similar to Theorems 1.4 and 1.5 in [9]; see Remark 4.3.

ACKNOWLEDGEMENT. The author is grateful to the reviewer for his suggestions to improve the presentation of the paper and the proof of Lemma 2.5.
2. Preliminaries. In what follows, C denotes various positive constants, they may differ even in a same string of estimates. Moreover, sometimes, we will use $C(\alpha, \beta, \ldots)$ instead of C to emphasize that the constant is depending on α, β, \ldots. Following [22], we say that two cubes touch if a face of one cube is contained in a face of the other. In particular, the union of two touching cubes of equal size is a rectangle.

First, let us state a theorem on polynomials.
Theorem 2.1 ([9, Lemma 2.3]). Let F, Q be cubes such that $F \subset Q$ and $|F|>\gamma|Q|$. If w is a doubling weight, $1 \leq q<\infty$, and p is a polynomial of degree m, then

$$
\|p\|_{L_{w}^{q}(E)} \leq C(\gamma, m, n, w)\left(\frac{w(E)}{w(F)}\right)^{1 / q}\|p\|_{L_{w}^{q}(F)}
$$

for all measurable sets $E \subset Q$.

Next, the following lemma is indeed a special case of a result in [12].
Lemma 2.2 ([12, Theorem 2.1]). Let f be a measurable function on \mathbb{R}^{n} and let w be a doubling weight. Also, let $1 \leq p \leq \infty, k \in \mathbb{N}$ and $L>0$. For each cube Q in \mathbb{R}^{n}, let a (f, Q) be a polynomial of degree k associated to f on Q for each cube Q. Suppose that $\left\{Q_{i}\right\}_{i=0}^{l}$ is a sequence of cubes such that $Q_{i} \cap Q_{i+1}$ contains a cube Q^{i} with $\left|Q^{i}\right| \geq L \max \left\{\left|Q_{i}\right|,\left|Q_{i+1}\right|\right\}$ for each $i=0,1, \ldots, l-1$. Then

$$
\begin{equation*}
\left\|f-a\left(f, Q_{0}\right)\right\|_{L_{w}^{p}\left(Q_{l}\right)} \leq C \sum_{i}\left\|f-a\left(f, Q_{i}\right)\right\|_{L_{w}^{p}\left(Q_{i}\right)} \tag{2.1}
\end{equation*}
$$

where C depends only on L, l, w, k, p and the dimension n.
Proof of Theorem 1.1. We will modify the proof of [26, Theorem 1.1.13.1] and [9, Theorem 4.9].

Let Q_{0} be a Whitney cube in \mathcal{D} and let $\left\{\Omega_{i}\right\}$ be a sequence of open connected sets which are the interiors of finite unions of touching Whitney cubes of \mathcal{D} (when $\mathcal{D}=\mathbb{R}^{n}$, just take $\left\{\Omega_{i}\right\}$ be a sequence of nested cubes) such that $Q_{0} \subset \Omega_{i}, \bar{\Omega}_{i} \subset \Omega_{i+1}, \bigcup_{i} \Omega_{i}=\mathcal{D}$.

Given any Cauchy sequence $\left\{u_{j}\right\} \subset E_{w, k}^{p}(\mathcal{D})$, and any cube Q in \mathcal{D}, let $P\left(Q, u_{j}\right)$ be the unique polynomial of degree $<k$ such that $\int_{Q} D^{\beta}\left(u_{j}-P\left(Q, u_{j}\right)\right) d x=0$ for all $|\beta|<k$. Since

$$
\begin{aligned}
\left\|D^{\beta}\left(u_{j}-u_{l}-P\left(Q, u_{j}-u_{l}\right)\right)\right\|_{L^{1}(Q)} & =\left\|D^{\beta}\left(u_{j}-u_{l}-\left(P\left(Q, u_{j}\right)-P\left(Q, u_{l}\right)\right)\right)\right\|_{L^{\prime}(Q)} \\
& \leq \mathrm{Cl}(Q)^{k-|\beta|}\left\|\nabla^{k}\left(u_{j}-u_{l}\right)\right\|_{L^{\prime}(Q)}
\end{aligned}
$$

for all cubes Q in \mathcal{D} by the unweighted Poincaré inequality, we have if $P_{j}=P\left(Q_{0}, u_{j}\right)$,

$$
\begin{aligned}
\left\|D^{\beta}\left(u_{j}-u_{l}-\left(P_{j}-P_{l}\right)\right)\right\|_{L^{\prime}\left(\Omega_{i}\right)} & \leq C\left(\Omega_{i}\right)\left\|\nabla^{k}\left(u_{j}-u_{l}\right)\right\|_{L^{1}\left(\Omega_{i}\right)} \\
& \leq C\left(\Omega_{i}\right)\left\|\nabla^{k}\left(u_{j}-u_{l}\right)\right\|_{L_{w}^{p}\left(\Omega_{i}\right)}\left\|w^{-1 / p}\right\|_{L^{\prime}\left(\Omega_{i}\right)} \\
& \leq C\left(\Omega_{i}\right)\left\|\nabla^{k}\left(u_{j}-u_{l}\right)\right\|_{L_{w}^{p}\left(\Omega_{i}\right)}
\end{aligned}
$$

by the previous lemma, the Hölder inequality and the assumption on w. Hence if $v_{j}=$ $u_{j}-P_{j}$, then $\left\{D^{\beta} v_{j}\right\}$ is a Cauchy sequence in $L^{1}\left(\Omega_{i}\right)$ for any i and $|\beta| \leq k$. Thus it follows that for each i and β with $|\beta|<k$, there exists $h_{i, \beta} \in L^{1}\left(\Omega_{i}\right)$ such that $\left\|D^{\beta} v_{j}-h_{i, \beta}\right\|_{L^{\prime}\left(\Omega_{i}\right)} \rightarrow 0$ as $j \rightarrow \infty$. (When $|\beta|=k$, clearly there exists $h_{\beta} \in L_{w}^{p}(\mathcal{D})$ such that $\left\|D^{\beta} v_{j}-h_{\beta}\right\|_{L_{w}^{p}(\mathcal{D})} \rightarrow 0$ as $L_{w}^{p}(\mathcal{D})$ is complete.) Using subsequences, it is clear that $h_{i+1, \beta}=h_{i, \beta}$ a.e. on Ω_{i}. If we define h_{β} on \mathcal{D} by setting $h_{\beta}=h_{i, \beta}$ on Ω_{i}, it follows that for each compact set $K \subset \mathcal{D}$ we have $h_{\beta} \in L^{1}(K)$ and $D^{\beta} v_{j} \rightarrow h_{\beta}$ in $L^{1}(K)$ for all $|\beta| \leq k$ (for $|\beta|=k$, just use the Hölder inequality and the fact that $w^{-1 / p} \in L_{\mathrm{loc}}^{p^{\prime}}(\mathcal{D})$). Thus if $\varphi \in C_{0}^{\infty}(\mathcal{D})$, then (let us write h_{β} as h when $\beta=0$)

$$
\int_{\mathcal{D}} h D^{\beta} \varphi d x=\lim _{j \rightarrow \infty} \int_{\mathcal{D}} v_{j} D^{\beta} \varphi d x=\lim _{j \rightarrow \infty}(-1)^{|\beta|} \int_{\mathcal{D}}\left(D^{\beta} v_{j}\right) \varphi d x=(-1)^{|\beta|} \int_{\mathcal{D}} h_{\beta} \varphi d x .
$$

Hence $D^{\beta} h=h_{\beta}$ exists. Moreover $D^{\alpha} h=\lim D^{\alpha} u_{j}$ when $|\alpha|=k$ since $D^{\alpha} u_{j}=D^{\alpha} v_{j}$. This completes the proof of the theorem.

Corollary 2.3. Let \mathcal{D} be an open connected set, let $\left\{u_{j}\right\}$ be a Cauchy sequence in $E_{w, k}^{p}(\mathcal{D})$ and let u be a function in $E_{w, k}^{p}(\mathcal{D})$ such that

$$
\left\|\nabla^{k}\left(u_{j}-u\right)\right\|_{L_{w}^{p}(\mathcal{D})} \rightarrow 0
$$

Then there exists a sequence of polynomials $\left\{P_{j}\right\}$ of degree $<k$ with $u_{j}-P_{j} \rightarrow u$ in $L^{1}(K)$ for all compact sets K in \mathcal{D}.

Proof. By the previous proof, we know $v_{j}=u_{j}-P_{j} \rightarrow h$ in $L^{1}(K)$ for each compact set K in \mathcal{D}, and $\nabla^{k} u_{j} \rightarrow \nabla^{k} h$ in $L_{w}^{p}(\mathcal{D})$. Since also $\nabla^{k} u_{j} \rightarrow \nabla^{k} u$ in $L_{w}^{p}(\mathcal{D})$, we see that $\nabla^{k}(u-h)=0$, so $u-h=P$ for some polynomial P of degree $<k$. Thus $u_{j}-P_{j}+P \rightarrow h+P=u$ in $L^{1}(K)$.

Now we will state a well-known lemma; see for example, Theorem III. 2 in [31].
LEMMA 2.4. Let $k(x)$ be nonnegative and integrable on \mathbb{R}^{n} and suppose $k(x)$ depends only on $|x|$ and decreases as $|x|$ increases. Then for all non-negative measurablefunctions f,

$$
\sup _{t>0}\left|f * k_{t}(x)\right| \leq C\|k\|_{L^{\prime}\left(\mathbb{R}^{n}\right)} M f(x)
$$

with C independent of x, f and k. Here $k_{t}(y)=t^{-n} k(y / t)$ and $M f$ is the Hardy-Littlewood maximal function of f.

Similar to A_{p} weights [27], [18], we have the following results.
Lemma 2.5. Let $1<p<\infty$, and $w \in A_{p}^{\text {loc }}(\mathcal{D})$. Then

$$
\begin{equation*}
\left\|M\left(f \chi_{K}\right)\right\|_{L_{w}^{p}(K)} \leq C_{K}\|f\|_{L_{w}^{p}(K)} \tag{2.2}
\end{equation*}
$$

for all compact sets K in \mathcal{D}.
Proof. We will only prove it for the case when w is doubling. ${ }^{2}$ It suffices to show that (2.2) holds for $K=Q_{0}$ for all cubes Q_{0} in \mathcal{D} such that $3 Q_{0} \subset \mathcal{D}$.

Let $\mu=\chi_{3 Q_{0}}, v=\chi_{3 Q_{0}} w$ and $\tilde{w}=\chi_{Q_{0}} w$. Note that $\left(\frac{d \mu}{d \nu} p^{p^{\prime}-1}=\chi_{3 Q_{0}} w^{1-p^{\prime}}\right.$. Let $M_{\mu} h(x)=$ $\sup \int_{F} h(y) d \mu / \mu(F)$ where the supremum is taken over all cubes F containing x. Let Q be any cube. We will now show that v, \tilde{w} and M_{μ} satisfies the S_{p} condition [29]. Let $x \in Q_{0} \cap Q$, we now consider two cases:

CASE (i) $Q \subset 3 Q_{0}$. Then there exists a cube $F \subset Q$ and $x \in F$ such that $M_{\mu} \chi Q \cap 3 Q_{0} w^{1-p^{\prime}}(x) \leq C \int_{F} w^{1-p^{\prime}} d y /|F|$. Thus

$$
\left.\begin{array}{rl}
M_{\mu}\left(\chi_{Q \cap 3} Q_{0}\right. & \left.w^{1-p^{\prime}}\right)(x)
\end{array}\right)=C\left(\frac{1}{|F|} \int_{F} w d y\right)^{1-p^{\prime}} \text { since } w \in A_{p}^{\mathrm{loc}}(\mathcal{D}) .
$$

[^1]Hence

$$
\begin{align*}
\int_{Q}\left[M_{\mu}\left(\chi Q \cap 3 Q_{0} w^{1-p^{\prime}}\right)(x)\right]^{p} d \tilde{w}(x) & =\int_{Q \cap Q_{0}}\left[M_{\mu}\left(\chi Q \cap 3 Q_{0} w^{1-p^{\prime}}\right)(x)\right]^{p} w(x) d x \\
& \leq C \int_{Q \cap 3 Q_{0}}\left[M_{w}\left(\chi \cap \cap Q_{0} w^{-1}\right)(x)\right]^{p^{\prime}} w(x) d x \\
& \leq \int_{Q \cap 3 Q_{0}}\left(w^{-1}\right)^{p^{\prime}} w(x) d x \\
& =\int \chi Q\left(\frac{d \mu}{d v}\right)^{p^{\prime}-1} v(x) d x \tag{2.4}
\end{align*}
$$

since w is doubling ${ }^{3}$ on \mathbb{R}^{n}; see for example [21].
CASE (ii). Q is not contained in $3 Q_{0}$. Since there is nothing to prove when $Q \cap Q_{0}=\emptyset$, we may assume $3^{n}\left|Q \cap 3 Q_{0}\right| \geq\left|3 Q_{0}\right|$. Thus

$$
\begin{aligned}
\int_{Q}\left[M_{\mu}\left(\chi_{Q \cap 3} Q_{0} w^{1-p^{\prime}}\right)(x)\right]^{p} d \tilde{w}(x) & \leq \int_{Q_{0}}\left[M_{\mu}\left(\chi_{3 Q_{0}} w^{1-p^{\prime}}\right)(x)\right]^{p} w(x) d x \\
& \leq C \int_{3 Q_{0}} w^{1-p^{\prime}}(x) d x \leq \int_{Q \cap 3 Q_{0}} w^{1-p^{\prime}}(x) d x
\end{aligned}
$$

since $w \in A_{p}^{\text {loc }}(\mathcal{D})$. Hence by Theorem A of [29], we have

$$
\begin{aligned}
\left\|M\left(\chi_{Q_{0}} f\right)\right\|_{L_{w}^{p}\left(Q_{0}\right)} & =\left\|M_{\mu}\left(\chi_{Q_{0}} f\right)\right\|_{L_{w}^{p}\left(Q_{0}\right)}=\left\|M_{\mu}\left(\chi_{Q_{0}} f\right)\right\|_{L_{\dot{w}}^{p}\left(\mathbf{R}^{n}\right)} \\
& \leq\left\|\chi_{Q_{0}} f\right\|_{L_{v}^{p}\left(\mathbf{R}^{n}\right)}=C\|f\|_{L_{w}^{p}\left(Q_{0}\right)}
\end{aligned}
$$

and hence (2.2) holds for $K=Q_{0}$.
Lemma 2.6. Let $1 \leq p<\infty, w \in A_{p}^{\text {loc }}(\mathcal{D})$ and let $\xi \in C_{0}^{\infty}$ be a non-negative decreasing radial function with support in $\left\{x \in \mathbb{R}^{n}:|x| \leq 1\right\}$ and $\int \xi(x) d x=1$. Then for $f \in L_{w}^{p}(\mathcal{D}), f * \xi_{t} \rightarrow f$ in $L_{w}^{p}(K)$ as $t \rightarrow 0$ for all compact sets K in \mathcal{D}. Moreover, if $f \in L_{w, k}^{p}(\mathcal{D})$ then $f * \xi_{t} \rightarrow f$ in $L_{w, k}^{p}(K)$ for all compact sets K in \mathcal{D}.

Proof. When $1<p<\infty$, it follows from Lemmas 2.4 and 2.5 and the Lebesgue dominated convergence theorem. Now if $p=1$, given any compact set $K \subset \mathcal{D}$, let us first choose a continuous function g such that

$$
\begin{equation*}
\|f-g\|_{L_{w}^{1}\left(K^{s}\right)} \leq \eta \tag{2.5}
\end{equation*}
$$

where $K^{s}=\{x+y:|y| \leq s, x \in K\}$, and s is chosen so that $K^{s} \subset \mathcal{D}$. Next since g is continuous, there exists $L>0$ such that $|g(x)-g(y)|<\eta$ for $x, y \in K^{s}$ and $|x-y| \leq L$. Next if $s B=\left\{x \in \mathbb{R}^{n}:|x| \leq s\right\}$ and $0<t<s$,

$$
\begin{aligned}
\left\|f * \xi_{t}-f\right\|_{L_{w}^{\prime}(K)} \leq & \int_{K} \int_{s B}|f(x-y)-f(x)| \xi_{t}(y) d y w(x) d x \\
\leq & \int_{K} \int_{s B}|f(x-y)-g(x-y)| \xi_{t}(y) d y w(x) d x \\
& +\int_{K} \int_{s B}|g(x-y)-g(x)| \xi_{t}(y) d y w(x) d x \\
& \quad+\int_{K} \int_{s B}|g(x)-f(x)| \xi_{t}(y) d y w(x) d x \\
= & I+I I+I I I .
\end{aligned}
$$

[^2]However, $I I \leq w(K) \eta$ when $0<t<s \leq L$ and

$$
I I I=\int_{K}|g(x)-f(x)| w(x) d x \leq \eta
$$

by (2.5). Finally, note that

$$
\begin{aligned}
I & \leq \int_{K} \int_{K^{s}}|f(y)-g(y)| \xi_{t}(x-y) d y w(x) d x \\
& \leq \int_{K^{s}} \int_{K} \xi_{t}(x-y) w(x) d x|f(y)-g(y)| d y \\
& \leq C \int_{K^{s}} M\left(w \chi_{K}\right)(y)|f(y)-g(y)| d y \\
& \leq C \mid f-g \|_{L_{w}^{\prime}\left(K^{s}\right)} \leq C(K) \eta .
\end{aligned}
$$

Lemma 2.6 now follows from the fact that $D^{\alpha}\left(f * \xi_{t}\right)=\left(D^{\alpha} f\right) * \xi_{t} .{ }^{4}$
Theorem 2.7. Let $1 \leq p<\infty$ and $w \in A_{p}^{\mathrm{loc}}(\mathcal{D})$. Then for all compact sets K in \mathcal{D},

$$
\begin{equation*}
\|f-a(f, Q)\|_{L_{w}^{p}(Q)} \leq C(K) l(Q)\|\nabla f\|_{L_{w}^{p}(Q)} \tag{2.6}
\end{equation*}
$$

for all $f \in L_{w, 1, \mathrm{lc}}^{p}(\mathcal{D})$ and cube $Q \subset K$ where $a(f, Q)=\int_{Q} f d x /|Q|$ or $\int_{Q} f d w / w(Q)$.
Proof. Let K be any compact set in \mathcal{D}. First, note that it suffices to show that (2.6) holds with $a(f, Q)=f_{Q}=\int_{Q} f d x /|Q|$. However,

$$
\left|f(x)-f_{Q}\right| \leq \frac{1}{|Q|} \int_{Q}|f(x)-f(y)| d y \leq C \int_{Q} \frac{|\nabla f(y)|}{|x-y|^{n-1}} d y
$$

for $x \in Q, f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ (see [33, Proposition 4.2]). Hence if $f \in C^{\infty}\left(\mathbb{R}^{n}\right)$ it suffices to show that

$$
\begin{equation*}
\left\|\int_{Q} \frac{g(y)}{|\cdot-y|^{n-1}} d y\right\|_{L_{w}^{p}(Q)} \leq C(K) l(Q)\|g\|_{L_{w}^{p}(Q)} \tag{2.7}
\end{equation*}
$$

for all cubes $Q \subset K$. However, in the case $1<p<\infty$, (2.7) is just a consequence of Lemma 2.5. Moreover, the case $p=1$ follows immediately from the fact that $w \in A_{1}^{\mathrm{loc}}(\mathcal{D})$. Finally, with the help of Lemma 2.6, by similar argument as the proof of Theorem 4.3 in [9], our assertion follows.

Next we will state a theorem which is similar to [26, Theorem 1.1.2.1] and [9, Theorem 4.2]. Since it can be proved by very similar method as the proof of [9, Theorem 4.2] with the help of Lemma 2.6 and Theorem 2.7, we will omit the proof.

THEOREM 2.8. Let \mathcal{D} be any open set in \mathbb{R}^{n} and let $1 \leq p<\infty, w \in A_{p}^{\text {loc }}(\mathcal{D})$. If $f \in E_{w, k}^{p}(\mathcal{D})$, then

$$
\int_{K}\left|D^{\gamma} f\right|^{p} d w<\infty \quad \text { for all compact sets } K \subset \mathcal{D}, \forall 0 \leq|\gamma| \leq k
$$

[^3]3. Density theorems. Let \mathcal{D} be an (ε, δ) domain, we will decompose $\mathcal{D}=\cup \mathcal{D}_{\alpha}$ into connected components and define
$$
r=\operatorname{rad}(\mathcal{D})=\inf _{\alpha} \inf _{x \in \mathcal{D}_{\alpha}} \sup _{y \in \mathcal{D}_{\alpha}}|x-y|
$$

We will assume $r>0$ in most cases. Then for any $x \in \mathcal{D}$, there is a point y in the same component with $|x-y| \geq \frac{3 r}{4}$. Note that we always have $r>0$ when \mathcal{D} is an (ε, ∞) domain since \mathcal{D} is then connected.

Let us recall that two cubes touch if a face of one cube is contained in a face of the other. In particular, the union of two touching cubes of equal size is a rectangle. A collection of cubes $\left\{S_{i}\right\}_{i=0}^{m}$ is called a chain if S_{i} touches S_{i+1} for all i.

Next let us recall some properties of the cubes in the Whitney decomposition of an open set \mathcal{D} [31]. Since these properties are well-known, we will often make use of them without explicitly mentioning them.

$$
\begin{gathered}
l(Q)=2^{-k} \quad \text { for some } k \in \mathbb{Z}, \\
Q_{1}^{o} \cap Q_{2}^{o}=\emptyset \quad \text { if } Q_{1} \neq Q_{2}, \\
1 / 4 \leq \frac{l\left(Q_{1}\right)}{l\left(Q_{2}\right)} \leq 4 \quad \text { if } Q_{1} \cap Q_{2} \neq \emptyset, \\
1 \leq \frac{d(Q)}{l(Q)} \leq 4 \sqrt{n}
\end{gathered}
$$

The purpose of this section is to prove the density theorem.
Proof of Theorem 1.5. Our proof is similar to that of [22] and [9]. Let $\varrho=2^{-m}, m \in$ \mathbb{Z}_{+}. Let W_{1} be the Whitney decomposition of \mathcal{D}. Define
$\Re^{\prime}=\{$ dyadic cubes R with edgelength $\varrho, R \subset \mathcal{D}\}$ and
$\Re=\left\{R \in \Re^{\prime}: R \subset S\right.$ for some $\left.S \in W_{1}, l(S) \geq 32 n^{3} \varrho / \varepsilon\right\}$.
Moreover, for each $R \in \Re$ let $\tilde{R}, \tilde{\tilde{R}}$ be cubes concentric with R with sides parallel to the axes and $l(\tilde{R})=1281 n^{4} \varrho / \varepsilon^{2}$ and $l(\tilde{\tilde{R}})=2562 n^{4} \varrho / \varepsilon^{2}$. For $s>0$, let $\mathcal{D}_{s}=\{x \in \mathcal{D}$: $d(x) \geq s\}$. First, let us make the following two observations.
(I) $\mathcal{D} \subset \bigcup_{R \in \Re} \tilde{R}$ provided $\operatorname{rad}(\mathcal{D})>0$ and ϱ is small enough.
(II) Let \mathcal{D} be an (ε, δ) domain with $\operatorname{rad}(\mathcal{D})>0$ and let $s=3203 n^{5} \varrho / \varepsilon^{3}<\delta$. Then for all $R_{0}, R_{j} \in \Re$ with $\tilde{R}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset$ and $\tilde{R}_{0} \cap\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset$, there exists a chain $G_{0, j}=\left\{R_{0}=S_{1}, S_{2}, \ldots, S_{m}=R_{j}\right\}$ in \Re^{\prime} connecting R_{0}, R_{j} with $m \leq C$ that depends only on ε, δ and n, and $\cup G_{0, j} \subset \mathcal{D} \backslash \mathcal{D}_{3 s}, d\left(\cup G_{0, j}\right) \geq 20 n^{2} \rho$.
(I) is first stated in [22] without proof. Nevertheless, the reader can refer to the proof of Theorem 6.1 in [9]. A similar conclusion as (II) can indeed be found in [22, Lemma 4.1] or [9]. However, since (II) is slightly stronger than the conclusion in [22] or [9], we will prove it.

First note that since $d\left(R_{0}, R_{j}\right) \leq \sqrt{n}\left(2561 n^{4} \rho / \varepsilon^{2}\right)<\delta$, there exists γ connecting R_{0}, R_{j} which satisfies (1.1) and (1.2). Next if $z \in \gamma$, we will show that $d\left(z, \mathcal{D}_{3 s}\right)>\sqrt{n} \rho$.

First, we have

$$
\begin{gathered}
d\left(z, R_{0}\right) \leq l(\gamma)<d\left(R_{0}, R_{j}\right) / \varepsilon \leq 2561 n^{5} \rho / \varepsilon^{3}, \\
d\left(R_{0},\left(\mathcal{D}_{2 s}\right)^{c}\right) \leq \sqrt{n}\left(640 n^{4} \rho / \varepsilon^{2}\right) \leq 640 n^{5} \rho / \varepsilon^{2}
\end{gathered}
$$

as $\tilde{R}_{0} \cap\left(\mathcal{D}_{2 s}\right)^{c} \neq \emptyset$. Moreover,

$$
\begin{aligned}
d\left(R_{0}, \mathcal{D}_{3 s}\right) & \geq d\left(\left(\mathcal{D}_{2 s}\right)^{c}, \mathcal{D}_{3 s}\right)-d\left(R_{0},\left(\mathcal{D}_{2 s}\right)^{c}\right)-\sqrt{n} l\left(R_{0}\right) \\
& \geq 3203 n^{5} \rho / \varepsilon^{3}-640 n^{5} \rho / \varepsilon^{2}-\sqrt{n} \rho \\
& \geq 2562 n^{5} \rho / \varepsilon^{3}
\end{aligned}
$$

Next, without loss of generality, we may assume that $d\left(z, R_{0}\right) \leq d\left(z, R_{j}\right)$. We now consider two cases:

CASE (i). $d\left(z, R_{0}\right) \leq 42 n^{2} \varrho / \varepsilon$. Then $d(z) \geq 32 n^{3} \varrho / \varepsilon-42 n^{2} \varrho / \varepsilon \geq 22 n^{2} \varrho / \varepsilon$. (Note that we may restrict ourself to the case $n \geq 2$.)

CASE (ii). $d\left(z, R_{0}\right)>42 n^{2} \varrho / \varepsilon$. Then by (1.2),

$$
d(z) \geq \frac{\varepsilon d\left(z, R_{0}\right) d\left(z, R_{j}\right)}{d\left(R_{0}, R_{j}\right)} \geq 21 n^{2} \varrho
$$

Finally let us note that an appropriate subcollection of $\left\{R \in \Re^{\prime}: R \cap \gamma \neq \emptyset\right\}$ will provide us the required chain. Moreover, $m \leq C$ as $l(\gamma) \leq d\left(R_{0}, R_{j}\right) / \varepsilon$.

Now, given $f \in L_{w, k}^{p}(\mathcal{D})$, we will let $P_{j}=P\left(R_{j}\right)$ be the unique polynomial of degree $k-1$ such that

$$
\int_{R_{j}} D^{\alpha}\left(f-P\left(R_{j}\right)\right) d w=0, \quad 0 \leq|\alpha| \leq k-1 .
$$

Next let $R_{0}, R_{j} \in \Re, R_{0}, R_{j}$ be as in (II). Suppose that $G_{0, j}$ is the chain connecting R_{0}, R_{j} guaranteed by (II). If $P_{0}=P\left(R_{0}\right)$ and $P_{j}=P\left(R_{j}\right)$, similar to the proof of [9, Lemma 6.3], by the triangle inequality, (1.3), Lemma 2.2 and the fact that $\varepsilon^{3} d(R) / 10000 n^{5} \leq l(R) \leq$ $20 n^{2} d(R)$ for all $R \in \cup G_{0, j}$, we can show that

$$
\begin{equation*}
\left\|D^{\alpha}\left(P_{0}-P_{j}\right)\right\|_{L_{w}^{p}\left(R_{0}\right)} \leq C \varrho^{k-|\alpha|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\cup G_{0, j}\right)} \quad \forall 0 \leq|\alpha| \leq k \tag{3.1}
\end{equation*}
$$

where C is independent of f, R_{0}, R_{j} and ϱ.
Next given $\eta>0$, let us choose $s>0$ such that $\|f\|_{L_{w, k}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{3 s}\right)} \leq \eta$. We then choose $\psi \in C^{\infty}$ such that $\chi_{\mathcal{D}_{2 s}} \leq \psi \leq \chi_{\mathcal{D}_{s}}$ and $\left|D^{\alpha} \psi\right| \leq C(\alpha) s^{-|\alpha|}$.

Recall that by Lemma 2.6, there exists $\xi \in C_{0}^{\infty}$ such that $\int \xi d x=1$ and

$$
\left\|f-f * \xi_{t}\right\|_{L_{w, k}^{p}\left(\mathcal{D}_{s}\right)} \rightarrow 0 \quad \text { as } t \rightarrow 0 \text { for } f \in L_{w, k}^{p}(\mathcal{D}), \text { where } \xi_{t}(x)=t^{-n} \xi\left(\frac{x}{t}\right)
$$

Thus we can choose $0<t<s / 2$ such that
(3.2) $\left\|D^{\alpha}\left(f-f * \xi_{t}\right)\right\|_{L_{w}^{p}\left(\mathcal{D}_{s}\right)}=\left\|D^{\alpha} f-\left(D^{\alpha} f\right) * \xi_{t}\right\|_{L_{w}^{p}\left(\mathcal{D}_{s}\right)} \leq \eta s^{k-|\alpha|}, \quad 0 \leq|\alpha| \leq k$.

For each $R_{j} \in \Re$, let us choose $\varphi_{j} \in C^{\infty}$ with $0 \leq \varphi_{j} \leq \chi_{\tilde{R}_{j}}$ such that $\sum_{R_{j} \in \Re} \varphi_{j} \equiv 1$ on $\bigcup_{R_{j} \in \Re} \tilde{R}_{j}, 0 \leq \sum_{R_{j} \in \Re} \varphi_{j} \leq 1$ and $\left|D^{\alpha} \varphi_{j}\right| \leq C \varrho^{-|\alpha|}$.

Fixing t and s, let $g_{0}=\sum_{R_{j} \in \Re} P_{j} \varphi_{j}, g_{1}=g_{0}(1-\psi)$ and $g_{2}=\left(f * \xi_{t}\right) \psi$. Then clearly $g_{0}, g_{1}, g_{2} \in C^{\infty}\left(\mathbb{R}^{n}\right)$. We now show that $\left\|f-\left(g_{1}+g_{2}\right)\right\|_{L_{w, k}^{p}(\mathcal{D})} \leq C \eta$. First, we will show that $\left\|f-\left(g_{1}+g_{2}\right)\right\|_{L_{w, k}^{p}}\left(\mathcal{D}_{2 s}\right) \leq C \eta$. Let us note that since $g_{1} \equiv 0$ on $\mathcal{D}_{2 s}$ and $g_{2}=f * \xi_{t}$ on $\mathcal{D}_{2 s}$, for $|\alpha| \leq k$ we have

$$
\left\|D^{\alpha}\left(f-\left(g_{1}+g_{2}\right)\right)\right\|_{L_{w}^{p}\left(\mathcal{R}_{2 s}\right)}=\left\|D^{\alpha}\left(f-f * \xi_{t}\right)\right\|_{L_{w}^{p}\left(\mathcal{D}_{2 s}\right)} \leq C \eta \quad \text { by }(3.2) .
$$

Next write

$$
\begin{aligned}
D^{\alpha}\left(f-\left(g_{1}+g_{2}\right)\right) & =D^{\alpha}\left(\psi\left(f-f * \xi_{t}\right)\right)+D^{\alpha}\left((1-\psi)\left(f-g_{0}\right)\right) \\
& =\sum_{\beta \leq \alpha} C_{\alpha, \beta} D^{\alpha-\beta} \psi D^{\beta}\left(f-f * \xi_{t}\right)+\sum_{\beta \leq \alpha} C_{\alpha, \beta} D^{\alpha-\beta}(1-\psi) D^{\beta}\left(f-g_{0}\right) \\
& =A+B .
\end{aligned}
$$

Since $\left|D^{\alpha-\beta} \psi\right| \leq C s^{-|\alpha-\beta|}, 0 \leq \beta \leq \alpha$ and $\psi \equiv 0$ on $\left(\mathcal{D}_{s}\right)^{c}$, we have $\|A\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{z_{s}}\right.} \leq C \eta$ by (3.2).

To complete the proof, we need only to prove that $\|B\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{2_{s}}\right)} \leq C\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{3_{s}}\right)}$. To this end, first note that if $\tilde{R}_{0} \cap\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset, \tilde{\tilde{R}}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset$ then by the triangle inequality and (3.1),

$$
\begin{align*}
\sum_{R_{j} \in \Re}\left\|D^{\beta}\left(\left(P_{0}-P_{j}\right) \varphi_{j}\right)\right\|_{L_{w}^{p}\left(R_{0}\right)} & \leq C \sum_{\tilde{\tilde{R}}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset} \sum_{\gamma \leq \beta} l\left(R_{0}\right)^{-|\gamma|}\left\|D^{\beta-\gamma}\left(P_{0}-P_{j}\right)\right\|_{L_{w}^{p}\left(R_{0}\right)} \\
& \leq C \sum_{\tilde{R}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset} \varrho^{k-|\beta|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(U G_{0, j}\right)} . \tag{3.3}
\end{align*}
$$

Also, note that

$$
\begin{equation*}
\left|D^{\beta}\left(f-g_{0}\right)\right|=\left|D^{\beta}\left(f-\sum P_{j} \varphi_{j}\right)\right| \leq\left|D^{\beta}\left(f-P_{0}\right)\right|+\left|D^{\beta} \sum_{R_{j} \in \Re}\left(P_{0}-P_{j}\right) \varphi_{j}\right| \tag{3.4}
\end{equation*}
$$

We now consider two cases:
CASE (i). $\beta<\alpha$. Then $D^{\alpha-\beta}(1-\psi)=0$ on $\mathcal{D} \backslash \mathcal{D}_{s}$ and hence

$$
\begin{aligned}
& \left\|D^{\alpha-\beta}(1-\psi) D^{\beta}\left(f-g_{0}\right)\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{Z}_{2 s}\right)}^{p} \\
& \leq C s^{-|\alpha-\beta| p} \sum_{R_{0} \in \Re, R_{0} \cap\left(\mathcal{D}_{s} \backslash \mathcal{L}_{s}\right) \neq \neq \emptyset}\left[\varrho^{k-|\beta|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(R_{0}\right)} p^{p}\right. \\
& +C s^{-|\alpha-\beta| p} \sum_{R_{0} \in \Re, R_{0} \cap\left(\mathcal{D}_{s} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset \tilde{\tilde{R}}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset}\left[\varrho^{k-|\beta|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\cup G_{0, j}\right)} p^{p}\right.
\end{aligned}
$$

by (3.4) and (3.3) since $\mathcal{D}_{s} \backslash \mathcal{D}_{2 s} \subset \bigcup_{R_{0} \in \Re} R_{0}$. Next note that $\left\|\sum_{R_{0} \in \Re} \sum_{\tilde{R}_{j} \cap \tilde{R}_{0} \neq \emptyset} \chi \cup G_{0, j}\right\|_{L^{\infty}} \leq$ C where C is independent of ϱ. Moreover by (II), if $R_{0} \cap\left(\mathcal{D}_{s} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset, \tilde{\tilde{R}}_{j} \cap \tilde{\tilde{R}}_{0} \neq \emptyset$, then $\cup G_{0, j} \subset \mathcal{D} \backslash \mathcal{D}_{3 s}$, and in particular $R_{0} \subset \mathcal{D} \backslash \mathcal{D}_{3 s}$. Hence if $\alpha>\beta$ (then $|\beta|<k$),

$$
\left\|D^{\alpha-\beta}(1-\psi) D^{\beta}\left(f-g_{0}\right)\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right)} \leq C s^{-|\alpha-\beta|} \varrho^{k-|\beta|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{3 s}\right)} \leq C \eta
$$

CASE (ii). $\beta=\alpha$. First observe that for each $R_{0} \in \Re, \tilde{R}_{0} \cap\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset$, similar to (3.3) we have

$$
\sum_{R_{j} \in \Re}\left\|D^{\alpha}\left(\left(P_{0}-P_{j}\right) \varphi_{j}\right)\right\|_{L_{w}^{p}\left(\tilde{R}_{0}\right)} \leq C \sum_{R_{j} \in \Re, \tilde{\tilde{R}}_{0} \cap \tilde{R}_{j} \neq \emptyset} \varrho^{k-|\alpha|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\cup G_{0, j}\right)}
$$

by Lemma 2.1. Thus

$$
\begin{aligned}
&\left\|D^{\alpha} \sum P_{j} \varphi_{j}\right\|_{L_{w}^{p}\left(\tilde{R}_{0}\right)} \leq\left\|D^{\alpha} P_{0}\right\|_{L_{w}^{p}\left(\tilde{R}_{0}\right)}+\left\|D^{\alpha} \sum\left(P_{j}-P_{0}\right) \varphi_{j}\right\|_{L_{w}^{p}\left(\tilde{R}_{0}\right)} \\
& \leq C\left\|D^{\alpha} P_{0}\right\|_{L_{w}^{p}\left(R_{0}\right)}+C \sum_{R_{j} \in \Re, \tilde{\tilde{R}}_{0} \cap \tilde{R}_{j} \neq \emptyset} \varrho^{k-|\alpha|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(U G_{0, j}\right)} \\
& \leq C\left\|D^{\alpha} f\right\|_{L_{w}^{p}\left(R_{0}\right)}+C \varrho^{k-|\alpha|}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(R_{0}\right)} \\
& \quad+C \varrho^{k-|\alpha|} \sum_{R_{j} \in \Re, \tilde{\tilde{R}}_{0} \cap \tilde{R}_{j} \neq \emptyset}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(U G_{0, j}\right)} .
\end{aligned}
$$

Note that again by (II), if $\tilde{R}_{0} \cap\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right) \neq \emptyset$ and $\tilde{\tilde{R}}_{0} \cap \tilde{\tilde{R}}_{j} \neq \emptyset$ then $\cup G_{0, j} \subset \mathcal{D} \backslash \mathcal{D}_{3 s}$, and in particular $R_{0} \subset \mathcal{D} \backslash \mathcal{D}_{3 s}$. Hence by the previous estimate,

$$
\begin{aligned}
\left\|D^{\alpha}\left(f-g_{0}\right)\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{2 s}\right)}^{p} \leq & C\left\|D^{\alpha} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{2_{s}}\right)}^{p} \\
& +\sum_{R_{0} \in \Re, \tilde{R}_{0} \cap\left(\mathcal{D} \backslash \mathcal{D}_{2}\right) \neq \emptyset} C\left\|D^{\alpha} \sum_{R_{j} \in \Re} P_{j} \varphi_{j}\right\|_{L_{w}^{p}\left(\tilde{R}_{0}\right)}^{p} \\
\leq & C\left\|D^{\alpha} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{2_{s}}\right.}^{p}+C\left\|D^{\alpha} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{3 s}\right)}^{p} \\
& \quad+C \varrho^{(k-|\alpha|) p}\left\|\nabla^{k} f\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{D}_{3 s}\right)}^{p} \leq C \eta^{p}
\end{aligned}
$$

since $\left\|\sum_{R_{0} \in \Re} \sum_{\tilde{R}_{i} \cap \tilde{R}_{0} \neq \emptyset} \chi \cup G_{0, j}\right\|_{L^{\infty}}<C$. Thus $\left\|D^{\alpha}\left(f-\left(g_{1}+g_{2}\right)\right)\right\|_{L_{w}^{p}\left(\mathcal{D} \backslash \mathcal{R}_{2 s}\right)} \leq C \eta$.
Finally, if $f \in E_{w, k}^{p}(\mathcal{D})$, let us note that by Theorem 2.8, we have $f \in L_{w, k}^{p}\left(\mathcal{D}_{s}\right)$. We can then construct $g_{1}+g_{2}$ as before since (3.2) still hold. One can just check through the proof and see that $g_{1}+g_{2}$ satisfies our assertion.
4. Extension theorems. First, let us state an extension theorem from [11].

Theorem 4.1 ([11, Theorems 1.1 and 1.2]). Let \mathcal{D} be an (ε, δ) domain. Let $1 \leq$ $p<\infty$ and let w be a doubling weight such that

$$
\begin{equation*}
\left\|f-f_{Q, w}\right\|_{L_{w}^{p}(Q)} \leq C_{0} l(Q)\|\nabla f\|_{L_{w}^{p}(Q)} \quad \forall f \in \operatorname{Lip}_{\mathrm{loc}}\left(\mathbb{R}^{n}\right) \tag{4.1}
\end{equation*}
$$

for all cubes Q in \mathcal{D} where $f_{Q, w}=\int_{Q} f d w / w(Q)$. Then there exists an extension operator Λ on \mathcal{D} (i.e., $\Lambda f=f$ on \mathcal{D} a.e.) such that

$$
\|\Lambda f\|_{L_{w, k}^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L_{w, k}^{p}(\mathcal{D})}
$$

for all $f \in \operatorname{Lip}_{\text {loc }}^{k-1}\left(\mathbb{R}^{n}\right)\left(=\left\{f: D^{\alpha} f \in \operatorname{Lip}_{\text {loc }}\left(\mathbb{R}^{n}\right)\right.\right.$ for all $\left.\left.|\alpha|<k\right\}\right)$ where C depends only on $\varepsilon, \delta, \operatorname{rad}(\mathcal{D}), p, w, k, C_{0}$ and n. Moreover, if \mathcal{D} is an (ε, ∞) domain, then there exists another extension operator Λ^{\prime} on \mathcal{D} such that

$$
\left\|\nabla^{k} \Lambda^{\prime} f\right\|_{L_{w}^{p}\left(\mathbb{R}^{n}\right)} \leq C\left\|\nabla^{k} f\right\|_{L_{w}^{p}(\mathcal{D})}
$$

for all $f \in \operatorname{Lip}_{\mathrm{loc}}^{k-1}\left(\mathbb{R}^{n}\right)$ where C depends only on $\varepsilon, p, w, k, C_{0}$ and n.

Remark 4.2. Checking through the proof of Theorem 1.1 in [11], let us note that indeed we need only to assume (4.1) holds for all cubes Q near $\partial \mathcal{D}$ such that $l(Q)$ is comparable to $d(Q)$ for the first part. However, for the second part, we need to assume in addition that \mathcal{D} is bounded.

With the help of the preceding theorem and the density theorem in the previous section, we can now prove our extension theorem.

Proof of Theorem 1.6. First given $f \in L_{w, k}^{p}(\mathcal{D})$, by Theorem 1.5, there exists a sequence $\left\{f_{j}\right\} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $f_{j} \rightarrow f$ in $L_{w, k}^{p}(\mathcal{D})$. Next since $L_{w, k}^{p}\left(\mathbb{R}^{n}\right)$ is a Banach space, the first part of the theorem now follows from the preceding theorem (see Remark 4.2). Now let $f \in E_{w, k}^{p}(\mathcal{D})$. By Theorem 1.5 there exists $\left\{f_{j}\right\} \subset C^{\infty}\left(\mathbb{R}^{n}\right)$ such that $\left\|\nabla^{k} f_{j}-\nabla^{k} f\right\|_{L_{w}^{p}(\mathcal{D})} \rightarrow 0$. Then $\left\{\Lambda^{\prime} f_{j}\right\}$ is a Cauchy sequence in $E_{w, k}^{p}\left(\mathbb{R}^{n}\right)$ by the preceding theorem. Since $E_{w, k}^{p}\left(\mathbb{R}^{n}\right)$ is complete by Theorem 1.1, there exists $g \in E_{w, k}^{p}\left(\mathbb{R}^{n}\right)$ such that $\nabla^{k} \Lambda^{\prime} f_{j} \rightarrow \nabla^{k} g$ in $L_{w}^{p}\left(\mathbb{R}^{n}\right)$. Since $\Lambda^{\prime} f_{j}=f_{j}$ on \mathcal{D}, we obtain $\left\|\nabla^{k} g-\nabla^{k} f\right\|_{L_{w}^{p}(\mathcal{D})}=0$. Hence there exists a polynomial P of degree $<k$ such that $g=f+P$ a.e. on \mathcal{D}. Define $\Lambda^{\prime} f=g-P$. Then $\Lambda^{\prime} f=f$ a.e. on \mathcal{D}. Also, $\nabla^{k} \Lambda^{\prime} f=\nabla^{k} g$ and consequently $\nabla^{k} \Lambda^{\prime} f_{j} \rightarrow \nabla^{k} \Lambda^{\prime} f$ in $L_{w}^{p}\left(\mathbb{R}^{n}\right)$. The proof of the theorem is now complete by passing to the limit.

REMARK 4.3. (a) Let \mathcal{D} be a bounded (ε, ∞) domain with $r=\operatorname{rad}(\mathcal{D})$ and let Ω be a bounded open set containing \mathcal{D}. Let W_{2} be the collection of cubes in the Whitney decomposition of $\left(\mathcal{D}^{c}\right)^{o}$ and define

$$
W_{3}=\left\{Q \in W_{2}: l(Q) \leq \frac{\varepsilon r}{16 n L}\right\}, \quad L=2^{-m}, m \in \mathbb{Z}_{+}
$$

where L is chosen so that $\Omega \subset\left(\cup_{Q \in W_{3}} Q\right) \cup \mathcal{D}$. Finally, when the weights are of the form as in Remark 1.7(a), we have better extension theorems.

Theorem 4.4. Let $1 \leq p_{i}<\infty, w_{i}=\operatorname{dist}\left(x, M_{i}\right)^{\alpha_{i}}, \alpha_{i} \in \mathbb{R}, M_{i} \subset \partial \mathcal{D}$ such that w_{i} is doubling for $i=0,1, \ldots, N$. Let Ω be a bounded open set containing an (ε, ∞) domain \mathcal{D} and let L and r be defined as above. Suppose that $k_{i}=0$ for $0 \leq i \leq N_{1}, k_{i}=k>0$ for $N_{2}<i \leq N$ and $0<k_{i}<k$ otherwise. Then there exist extension operators Λ and Λ^{\prime} on \mathcal{D} such that

$$
\begin{gathered}
\|\Lambda f\|_{L_{w_{i}}^{p_{i}\left(R^{n}\right)}} \leq C_{i}\|f\|_{L_{w_{i}}^{p_{i}}(\mathcal{D})} \quad \text { for } 0 \leq i \leq N_{1} \\
\left\|\nabla^{k_{i}} \Lambda f\right\|_{L_{w_{i}}^{p_{i}}(\Omega)} \leq C_{i}\left\|\nabla^{k_{i}}\right\|_{L_{w_{i}}^{p_{i}}(\mathcal{D})} \quad \text { for } N_{1}<i \leq N \\
\left\|\nabla^{k_{i}} \Lambda^{\prime} f\right\|_{L_{w_{i}}^{p_{i}}(\Omega)} \leq C_{i}\left\|\nabla^{k_{i}}\right\|_{L_{w_{i}}^{p_{i}}(\mathcal{D})} \quad \text { for } 0 \leq i \leq N_{2} \\
\left\|\nabla^{k} \Lambda^{\prime} f\right\|_{L_{w_{i}}^{p_{i}}\left(\mathbb{R}^{n}\right)} \leq C_{i}\left\|\nabla^{k} f\right\|_{L_{w_{i}}^{p_{i}}(\mathcal{D})} \quad \text { for } N_{2}<i \leq N
\end{gathered}
$$

for all $f \in \operatorname{Lip}_{\text {loc }}^{k-1}\left(\mathbb{R}^{n}\right)$. Here C_{i} depends only on $\varepsilon, p_{i}, w_{i}, k_{i}, n, L$ and $\max _{i} k_{i}$. (Unfortunately L usually depends on r, but there are cases where L is independent of r and consequently C_{i} is independent of r.)

Theorem 4.5. Let $1 \leq p_{i}<\infty, w_{i}=\operatorname{dist}\left(x, M_{i}\right)^{\alpha_{i}}, \alpha_{i} \in \mathbb{R}, M_{i} \subset \partial \mathcal{D}$ such that w_{i} is doubling for $i=0,1, \ldots, N$. If \mathcal{D} is an unbounded (ε, ∞) domain, then there exists an extension operator on \mathcal{D} such that

$$
\left\|\nabla^{k_{i}} \Lambda f\right\|_{\left.L_{i, i}{ }_{i} \mathbb{R}^{n}\right)} \leq C_{i}\left\|\nabla^{k_{i}}\right\|_{L_{w_{i}}^{p}(\mathcal{D})}
$$

for all i and $f \in \operatorname{Lip}_{\operatorname{loc}}^{k-1}\left(\mathbb{R}^{n}\right)$. Here C_{i} depends only on $\varepsilon, w_{i}, p_{i}, k_{i} n$ and $\max _{i} k_{i}$.
Proof of Theorems 4.4 and 4.5. If $w(x)=\operatorname{dist}(x, M)^{\alpha}$ for $M \subset \mathcal{D}, \alpha \in \mathbb{R}$, let us make the following two observations:

$$
\begin{align*}
& \left\|f-f_{Q}\right\|_{L_{w}^{p}(Q)} \leq C(A) l(Q)\|\nabla f\|_{L_{w}^{p}(Q)} \tag{4.2}\\
& \frac{1}{|Q|}\|f\|_{L^{1}(Q)} \leq C(A) w(Q)^{-1 / p}\|f\|_{L_{w}^{p}(Q)} \tag{4.3}
\end{align*}
$$

for all cubes Q in \mathcal{D} such that $A l(Q) \leq d(Q) \leq l(Q) / A$ for $A>0$. We can now check through the proof of Theorems 1.4 and 1.5 in [9] using (4.2) and (4.3) as the substitute of the condition that $w \in A_{p}$ to obtain Theorems 4.4 and 4.5.
(b) In Theorem 4.4, if we assume in addition that $w^{-1 / p} \in L_{\text {loc }}^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, we can indeed replace $\operatorname{Lip}_{\text {loc }}^{k-1}\left(\mathbb{R}^{n}\right)$ by $\cap E_{w_{i}, k_{i}}^{p_{i}}(\mathcal{D})$ as $C^{\infty}\left(\mathbb{R}^{n}\right) \cap\left(\cap E_{w_{i}, k_{i}}^{p_{i}}(\mathcal{D})\right)$ is dense in $\cap E_{w_{i}, k_{i}}^{p_{i}}(\mathcal{D})$. For the details, check through the proof of Theorem 6.1 in [9].

References

1. Richard Adams, Sobolev Spaces, Academic Press, New York, 1975.
2. R. C. Brown and D. B. Hinton, Sufficient conditions for weighted inequalities of sum form, J. Math. Anal. Appl. 112(1985), 563-578.
3. \qquad Weighted interpolation inequalities of sum and product form in \mathbb{R}^{n}, Proc. London Math. Soc. (3) 56(1988), 261-280.
4. Weighted interpolation inequalities and embeddings in \mathbb{R}^{n}, Canad. J. Math. (6) 62(1990), 959-980.
5. Alberto P. Calderón, Lebesgue spaces of differentiable functions and distributions, Proc. Symp. Pure Math. IV(1961), 33-49.
6. Sagun Chanillo and Richard L. Wheeden, Poincaré inequalities for a class of non- A_{p} weights, Indiana Math. J. (3) 41(1992), 605-623.
7. Filippo Chiarenza and Michele Frasca, A note on a weighted Sobolev inequality, Proc. Amer. Math. Soc. (4) 93(1985), 703-704.
8. Michael Christ, The extension problem for certain function spaces involving fractional orders of differentiability, Ark. Mat. (1) 22(1984), 63-81.
9. Seng-Kee Chua, Extension theorems on weighted Sobolev spaces, Indiana Math. J. 41(1992), 1027-1076.
10. , Extension and restriction theorems on weighted Sobolev spaces, Ph.D. thesis, Rutgers University, 1991.
 95-126.
11. \longrightarrow Weighted Sobolev's inequalities on domains satisfying the chain condition, Proc. Amer. Math. Soc. 117(1993), 449-457.
12. \qquad Restriction theorems on weighted Sobolev spaces of mixed norm, Real Anal. Exchange (2) 17(1991/92), 633-651.
13. \longrightarrow On weighted Sobolev interpolation inequalities, Proc. Amer. Math. Soc. 121(1994), 441-449.
14. Weighted Sobolev interpolation inequalities on certain domains, J. London Math. Soc. (2) 51(1995), 532-544.
15. Ronald R. Coifman and Charles Fefferman, Weighted norm inequalities for maximal functions and singular integrals, Studia Math. 51(1974), 241-250.
16. D. E. Edmunds, Alois Kufner and Jiong Sun, Extension of functions in weighted Sobolev spaces, Rend. Accad. Naz. Sci. XL Mem. Mat. (5), 108° (17) 16(1990), 327-339.
17. Eugene B. Fabes, Carlos E. Kenig and Raul P. Serapioni, The local regularity of solutions of degenerate elliptic equations, Comm. Partial Differential Equations 7(1982), 77-116.
18. V. M. Gol'dshtein and Yu. G. Reshetnyak, Quasiconformal Mappings and Sobolev Spaces, Kluwer Academic Publishers, 1990.
19. Cristian E. Gutierrez and Richard L. Wheeden, Sobolev interpolation inequalities with weights, Trans. Amer. Math. Soc. 323(1991), 263-281.
20. R. A. Hunt, D. S. Kurtz and C. I. Neugebauer, A note on the equivalence of A_{p} and Sawyer's condition for equal weights, Conf. on Harm. Anal. in Honor of A. Zymund, Wadsworth, 1983, 156-158.
21. Peter Jones, Quasiconformal mappings and extendability of functions in Sobolev spaces, Acta Math. (1-2) 147(1981), 71-88.
22. Alois Kufner, Weighted Sobolev Spaces, John Wiley \& Sons Ltd, 1985.
23. How to define reasonable Sobolev spaces, Comment. Math. Univ. Carolin. (3) 25(1984), 537554.
24. Olli Martio and J. Sarvas, Injectivity theorems in plane and space, Ann. Acad. Sci. Fenn. Series A I Math. (2) 4(1979), 383-401.
25. Vladimir G. Maz'ja, Sobolev Spaces, Springer-Verlag, New York, 1985.
26. Benjamin Muckenhoupt, Weighted norm inequalities for the Hardy maximal function, Trans. Amer. Math. Soc. 165(1972), 207-226.
27. Benjamin Muckenhoupt and Richard Wheeden, On the dual of weighted H^{1} of the half-space, Studia Math. (1) 63(1978), 57-79.
28. Eric Sawyer, A characterization of a two-weighted norm inequality for maximal operators, Studia Math. 75(1982), 1-11.
29. Eric Sawyer and Richard L. Wheeden, Weighted inequalities for fractional integrals on Euclidean and homogeneous spaces, Amer. J. Math. (4) 114(1992), 813-874.
30. Elias M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, Princeton, 1970.
31. Jan-Olov Stromberg and Alberto Torchinsky, Weighted Hardy Spaces, Lecture Notes in Math. 1381, Springer, New York, 1989.
32. Alberto Torchinsky, Real-Variable Methods in Harmonic Analysis, Academic Press Inc., New York, 1986.
33. Richard L. Wheeden and Antoni Zygmund, Measure and Integral, Marcel Dekker Inc., New York, 1977.
34. Thomas H. Wolff, Restriction of A_{p} weights, preprint.

National University of Singapore
Department of Mathematics
10, Kent Ridge Crescent
Singapore 0511
e-mail:matcsk@math.nus.sg

[^0]: ${ }^{1}$ Note that $w \in A_{p}^{\text {loc }}(\mathcal{D}) \Rightarrow w \in A_{p}^{K}$ for all compact sets $K \subset \mathcal{D}$ in the notation of Wolff [35].

[^1]: ${ }^{2}$ The idea of this proof was provided by the referee.

[^2]: ${ }^{3}$ However, the theorem can be proved without assuming w is doubling i.e., assuming only $w \in A_{p}^{\text {loc }}(\mathcal{D})$.

[^3]: ${ }^{4}$ For the case $p=1$, indeed we just modify the proof of Lemma 8 in [28].

