3

Spacetime spinors

The notion of spinors arises naturally in the construction of a relativistic first-
order equation for a quantum wave function — the so-called Dirac equation.
Spinors are the most basic objects to which one can apply a Lorentz transfor-
mation. The seminal work in Penrose (1960) has shown that spinors constitute
a powerful tool to analyse the structure of the Einstein field equations and their
solutions. Most applications of spinors in general relativity make use not of the
Dirac spinors but of the so-called 2-spinors. The latter are more elementary
objects, and indeed, the whole theory of the Dirac equation can be reformulated
in terms of 2-spinors. In the sequel, 2-spinors will be very often simply called
SpInors.

The purpose of this chapter is to develop the basic formalism of spinors in a
spacetime. Accordingly, one speaks of spacetime spinors, sometimes also called
SL(2,C) spinors; see, for example, Ashtekar (1991). A discussion of spinors in the
presence of a singled-out timelike direction, the so-called space spinor formalism,
is given in Chapter 4. One of the motivations for the use of spinors in general
relativity is that they provide a simple representation of null vectors and of
several tensorial operations. Although spinors will be used systematically in this
book, they are not essential for the analysis. All the key arguments could be
carried out in a tensorial way at the expense of lengthier and less transparent
computations.

The presentation in this chapter differs sligthly in focus and content from
that given in other texts; see, for example, Penrose and Rindler (1984); Stewart
(1991); O’Donnell (2003). For reasons to be discussed in the main text, a
systematic use of the so-called Newman-Penrose formalism will be avoided —
although the basic notational conventions of Penrose and Rindler (1984), the
authoritative work on the subject, are retained.
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3.1 Algebra of 2-spinors

In what follows let (M,g) be a spacetime. The present discussion begins by
analysing spinorial structures at a given point p of the spacetime manifold M.
The concept of a spinor is closely related to the representation theory of the
group SL(2,C). This group has two inequivalent representations in terms of
two-dimensional complex vector spaces which are complex conjugates of each
other; for a discussion of this aspect of the theory, see, for example, Carmeli
(1977); Sexl and Urbantke (2000). Thus, the discussion of this chapter starts
with a brief discussion of complex vector spaces.

3.1.1 Complex vector spaces

By a complex vector space it will be understood a vector space over the field
of the complex numbers, C. In what follows let & denote a complex vector space,
and let G* denote its dual, that is, the complex vector space of all linear maps
from & to C. As in the case of real vector spaces, given ¢ € & and ¢ € &*, the
application of ¢ on ¢ will be denoted by (¢, ¢). Notice, however, that in this case
(¢,s) eC.

Given &, it is natural to define an operation of complex conjugation over &:
given ¢ € 6, its complex conjugate < is defined via

(€.¢)=(s), (€6
The operation of complex conjugation from & to &* can be defined in an
analogous way: given ¢ € G*, its complex conjugate ¢ satisfies

€,s)=({(5s), <€6.

Given &, ¢ € 6 and z € C, the complex conjugate of the linear combination
£€+2¢ is €+ 2¢. Thus, the operation of complex conjugation is not an isomorphism
between & and itself, but an anti-isomorphism between & and the vector space
&, the complex conjugate of &. Similarly, the complex conjugation defines an
anti-isomorphism between &* and the space, G*, the complex conjugate of G*.
If one considers the complex conjugate of the spaces & and &*, one recovers
the spaces & and &%, respectively. Moreover, because of the way the complex
conjugate operation has been defined, one has that &* = &*, so that & and &*

are duals of each other.

The vector spaces &, *, & and &* will be regarded as the elementary building
blocks in the construction of a spinorial formalism. As in the case of real vector
spaces one can construct higher rank objects by considering arbitrary tensor
products of these vector spaces. This will be discussed later in the chapter once
further structure and an abstract index notation for spinors has been introduced.

3.1.2 Simplectic vector spaces

Key to the notion of spinors is the definition of a symplectic vector space.
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Definition 3.1 (simplectic vector space) A simplectic vector space
consists of an even-dimensional vector space & endowed with a function [[-,-]] :
G x 6 — C which is:

(i) antisymmetric (skew); that is, given &, n € &
(ii) bilinear; that is,

[&+2¢nl] =[&n]] +=[¢nl],  [[&n+=C]] =& nl] +=2[[€.<]]
(iii) non-degenerate; that is, if [[€,m]] =0 for all n then € = 0.

The antisymmetric product [[-,-]] defines in a canonical way an isomorphism
between & and &*: to £ € & one associates & = [[€,]] € &*. A transfor-
mation Q : & — & satisfying [[Q&,Qn]] = [[€,m]] is called a symplectic
transformation.

Remark. The rest of this book will be concerned only with the case where the
dimension of & is 2.

3.1.3 Spin bases

From the definition of a symplectic vector space it follows directly that given
non-zero &, n € & such that [[€,7]] = 0, there exists z € C, z # 0 such that
& = zn. Alternatively, given €, n € G, they are linearly independent if and only
if [[€,7n]] # 0. This observation leads to the idea of a spin basis.

Definition 3.2 (spin basis) Given non-zero o, ¢ € &, the pair {o,t} is said
to be a spin basis for & if [[o,t]] = 1.

Now, given £ € &, the components of £ with respect to the basis {o,t} are
defined by the equation

§=c%0+¢h,
where

=g, &=-[¢oall

3.1.4 Abstract index notation for spinors

The discussion of spinors in this book makes use of a combination of index-free
and abstract index notations. Following the general discussion on abstract index
notation given in Penrose and Rindler (1984), an element & € & will also be
denoted by &4, where the abstract superindex 4 provides information about the
vector space to which the object belongs — in this case &. Similarly given n € &*,
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it will often be written as 174. This notation of abstract sub- and superindices will
also be extended to the vector spaces themselves; thus, the symbols G4 and &4
will be used, respectively, instead of & and &*. Furthermore, given ¢4 € &4,
then &4 will denote £b7 the dual of & under the antisymmetric product in &.
Following this notation, the product [[n,£]] = (n,€) will be written as na&4.
In order to extend the formalism, one introduces an infinite number of copies
(realisations) of the spaces & and &*: &4, &GP ... and &4, Gp, .... The
different realisations are connected to each other by a sameness map such that
€4 and €P correspond to two different copies of the same object & belonging to
different realisations of &, that is, &4 and G”. A peculiarity of the abstract
index notation is that although ¢4 and ¢” describe the same object, expressions
like ¢4 = £B are not allowed — the indices in an equation must be balanced.
Objects like €4 and np are called wvalence 1 spinors. Following the
terminology used for tensors, 4 is said to be contravariant, while 7, is
said to be covariant. Higher valence spinors can be introduced using the
tensorial product ® of the basic vector spaces G and &*. The use of the abstract
index notation simplifies the underlying discussion of these tensorial products.
For example, a valence 3 spinor x4z is defined through a multilinear map
X : 64 x 68 x 8¢ — C. As a consequence of the G-linearity of this mapping,
there exists a spinor xag® € G45°. The space G 45 is a vector space. This
procedure extends in a natural way to higher valence spinors with arbitrary
combinations of covariant and contravariant indices. The collection of all the
spaces of the form & 4..cP ¥ is called the spin algebra and is denoted by &°.
The spin algebra ensures that the multiplication of spinors renders a spinor. The
operation of addition in &* is defined only between spinors of the same type, that
is, the same rank and same combination of covariant and contravariant indices.

3.1.5 The spinor ep

As the antisymmetric 2-form [[-, -] is a function from & ® & to C, it follows that
there exists a valence 2 spinor eap € & 4p such that

[1€. 7] = eap&n”.

The spinor e4p is called the e-spinor. Now, as [[€,7]] = —[[n, £]], it follows
that eap = —€pa; that is, eap is antisymmetric. It has already been shown that
[[€,n]] can be written as £4n*; thus, it follows that

&g = eaptt = eap. (3.1)

That is, e4p can be regarded as an index lowering object. In other words, the
spinor €4 p provides a convenient way to express the duality between the spaces
G and &*. This duality is a bijection, so that it follows that there must exist a
(e1)AB

further spinor, € G648 by means of which one can raise back the index
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of the spinor &4; that is, ¢4 = (e71)9“4¢c. In order to simplify the appearance

of the above expressions it is convenient to define a further spinor €48 ¢ GAB
via

AP = _(e7H)AB, (3.2)
so that one obtains

€A = O, (3.3)
Combining Equations (3.1) and (3.3) one obtains ég = —eape®4€c, which

AB

together with the requirement that eap and (e=1)4P represent inverse opera-

tions, implies

65 = —eape?,
with 05 the two-dimensional Kronecker’s delta. The spinor €4 is also
antisymmetric. This can be seen from
[l&.m)] = ¢8n” = €B0c "0 = —Eplepce”P)n”
= e"Pegleapn®) = ®Pépnp.
A similar computation shows that [[,&]] = ePBnpép. Finally, as [[§,n]] =

—[[n, €]] one concludes that eA? = —eB4 as claimed.
If e and €4€ denote the spinors in G® obtained by raising the first and
second index of €4, respectively, it follows from the above calculations that

ECA = —eAC = 5CA, EABEAB = EAA = 2.

The above formulae lead to the so-called see-saw rule. Given a spinor @4
one has that
PQA _ AB\PQ _ _

Q

P.”QBGBA — XP.“QBGBAa (343)

P-QpeB,  (3.4b

X
X

X

pP...
—€ABX

X

B P..QB

PWQA = €BA = —X

Comparing the above expressions one concludes that

P A P-OA
QA _\PQA

X X

3.1.6 The Jacobi identity and decompositions
in irreducible components

As G is a vector space of dimension 2, it follows that any antisymmetrisation over
a set of three or more spinorial indices must vanish. In particular, one obtains
what is known as the Jacobi identity:

€A[BECD] = €ABECD + €acepB + €apepc = 0. (3.5)

A direct consequence of the Jacobi identity is the following lemma:
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Lemma 3.1 (érreducible decomposition of a pair of indices) Consider
the spinor C...ap.... Then

1
CAB-. = C..(aB)... T+ §€AB<~~-CC--~

Proof Consider the Jacobi identity rewritten in the form

C_ D Cc_ D CD
€A €EB —€EB €4 = €ABE T,

and multiply it by (...¢p.... One readily obtains
2C...(aB)- = €aBC..c ...
Finally, combining the latter with the identity
GAB-. = C(aB)... T C[AB]s
one obtains the required result. O

The previous result can be used to interchange the order of two spinorial
indices. In this case Lemma 3.1 directly yields

C...BA... = C...AB... — EABC...pP.... (3.6)

The above lemma leads to the following result:

Proposition 3.1 (irreducible decomposition of spinors) Any spinor (4..p
can be decomposed as the sum of the spinor ( a...py and products of e-spinors with
symmetrised contractions of Ca...p.

Proof Assume (spc..p to have valence n. In the following argument, the
symbol ~ between two spinors indicates that their difference is a linear
combination of the outer product of e-spinors and spinors of lower valence. The
key idea of the decomposition is to show that

CaBC.-EF ~ ((ABC...EF)-

To this end, one first notices that

n{aBc...er) = CaBc-..eF) +CBac.-EF) +CoaB..EF) +* +CraB..B)- (3.7)

Now, one looks at the terms in the right-hand side of the above equation and
considers the difference between the first and the second term, the first and the
third term and so on. Using Lemma 3.1, these differences can be rewritten as

CaoEF) — CB(ACEF) = —C (XC-EF)€AB,
CageEF) — Co(aBEF) = —C (XBoEF)EAC)
CageEF) — CRABC-B) = —C (XBO-E)EAF -
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The above expressions can be used in Equation (3.7) to eliminate the terms

CB(AC.--EF); CB(AC.--EF); e CF(ABC.--E)-

One obtains
I x L x
CaBc.-EF) = CA(BC--EF) T EC (XC--EF)EAB T+ -+ + EC (XBC.--E)€AF-
That is,

C(aBc.--EF) ~ CA(BC.--EF)-

The procedure described above can be repeated for each of the terms

<X(XC~~EF)a CX(XB~~E)7

to obtain

CaBc.--EF) ~ CA(BC---EF) ~ CAB(C--EF) ~ *** ~ CABC..-(EF) ~ CABC.--EF-
O]

Remark. If one has a spinor with a set of contravariant indices, these can be
lowered so that Proposition 3.1 applies.

The type of decompositions of spinors provided by Proposition 3.1 will be used
systematically in the rest of the book. A particularly useful example is given by

QGABECD

1
XABCD = X(ABCcD) + §X(AB)PP€CD + §XPP(CD)€AB + ZXPPQ
1 1 1
+ 5C€A(CXD)B + 56B(CXD)A — 3EA(CED)BX: (3.8)
with

XAB = XQ(AB)Q7 X = XPQPQ~

A decomposition like the one given in Equation (3.8) will be called a decom-
position in irreducible components. The spinors x(4pcp), X(AB)pP7 ey X
are independent in the sense that xapcp = 0 if and only if

Xgep) =0, xwapp =0, -+ x=0.

The latter fact will be used repeatedly in the following. Finally, it is observed
that the number of independent components an arbitrary symmetric spinor can
have is given by the following proposition; see Penrose and Rindler (1984).

Proposition 3.2 (number of independent components) If (a..c = (a...c)
is of valence p, then it has (p + 1) independent components.

In conjunction with Proposition 3.1 the latter result can be used to count the
total number of independent components of an arbitrary spinor.
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3.1.7 Components with respect to a basis

As in the case of tensors, it is often convenient to discuss spinors in terms of
a specific basis. To express this idea, it is convenient to introduce bold indices
A, B,... ranging over 0 and 1. Thus, £4 and 14 represent the components of
¢4 and np with respect to a specific basis. This idea extends in a natural way
to higher valence spinors.

Given a spin basis {o,¢}, one often requires a notation to describe the basis
in a more systematic manner. This will be done by means of the symbol €44
where

€0 = 04, at =4 (3.9)

Similarly, the dual cobasis of €4 will be denoted collectively by e 4. By
definition one has that

ea’eB =048,
It follows from Equation (3.9) and the previous condition that
Q4= —14, ela=o4.

Using this notation and given two spinors €4 and np, one can write

§A = §A€AA: ns =npe®p,
where

¢4 = ¢tet nB = npep”
Hence

[n,€]] = naé™ = (npe® 4) (€%eq?) = npe”.

The components eap of the antisymmetric spinor €45 with respect to the
basis €4 are given by

A A
_ A__ B\ _ [ 040" o4l . 0 1
(eaB) = (eapea’ep”’) = ( Lot iah ) = ( 1 0 > (3.10)

Now, a direct computation shows that
1

0 1\ _ /0 -1
-1 0 S\l 0 )
Hence, consistent with Equation (3.2) one has that

(AB) = (ABeA 4P ) = < —01 é )

An alternative way of rewriting the previous discussion is

B A B A B AB AB A B
047 =€aTea”, €AB = €ABCEA  €B", €7 =e¢"PeaeB
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From the latter it follows that

648 =o0at® — 140", (3.11a)
€AB = 0ALB — LAORB, (3.11b)
AB = oM B — 1 A0B, (3.11¢)

3.1.8 Complex conjugation of spinors

In order to relate spinors with tensors one has to consider the operation of
complex conjugation discussed in Section 3.1.1. The convention to denote the
operation of complex conjugation in the abstract index notation is to add a bar
to the kernel symbol and a prime to each of the indices. For example, one has that

A=Y es?.

The operation of complex conjugation is idempotent — given ¢ € &, then Z’ =<(.
Using abstract index notation one writes the latter as (4" = (4.

’ ’ . . . . .
gACS UL | pwe.yr with, say, p unprimed contravariant indices,

A spinor
r primed contravariant indices, g unprimed covariant indices and s primed
covariant indices describes the most general type of spinors. It is obtained from

the &-linear map

E:GA><--~><GC><65/><--~><6U/><6D><--~><6E><6W/><~-~><6Y,—>(C.

p times r times q times s times

The algebra &° is then extended to accommodate this more general type of
spinors with unprimed and primed indices.

An important consequence of the fact that the spaces & and & are not
isomorphic is that it is not possible to single out 2-spinors which are intrinsically
real or imaginary unless one assumes further structure on &°. From a notational
point of view, as & and & are not isomorphic, the relative position of primed and
unprimed indices is irrelevant. Thus, one can write expressions like (44’ = Car 4.
Notice, in contrast, that the reordering of groups of primed indices or groups of
unprimed indices is not allowed unless the spinor possesses special symmetries.

The rules for the raising and lowering of indices of valence 1 spinors are
extended to higher valence spinors in a natural way. Primed indices are raised and
A'B ¢ gA'B'

lowered using the spinors € and €4/ € ©4/p which are related,

respectively, to e4” and e 45 by complex conjugation. That is,

7Y —_—
EA/B/ = €AB, EAB = GAB.

It is conventional to write € 41, ¢A'B" instead of €arpr and eA'B’

Finally, note that the discussion of Section 3.1.6 concerning the decompo-
sition of spinors in irreducible components, and in particular Lemma 3.1 and
Proposition 3.1, can be directly extended to the case of spinors containing primed
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indices or combinations of primed or unprimed indices. In particular, one has the
following decomposition of a spinor with two unprimed and two primed indices:

1 1 /
NAA’BB’ = M(AB)(A'B") + inPP(A’B')GAB + 577(AB)Q’Q €A'p

1 /
+ EEABGA/BW?QQQ/Q . (3.12)

A particular case of the above decomposition is when (44/pp’ is the spinorial
counterpart of an antisymmetric rank-2 tensor (,;, = —(p,- In this case one has
that

Caapp = Capean + Capreas, (3.13)

where (4p = %CAP/BP/, and one has that (ap = (aB)-

3.1.9 The relation between spinors and tensors

Spinors provide a simple representation of several tensorial operations. Although
every four-dimensional tensor (world tensor) can be represented in terms of
spinors, the converse is not true. There are spinors which admit no discussion in
terms of tensors. This observation is based on the fact that 2-spinors are related
to representations of the group of (2x2) complex matrices with unit determinant,
SL(2,C), while tensors are related to the Lorentz group. These groups are not
isomorphic to each other. The group SL(2,C) covers the Lorentz group in a
2 : 1 way; see, for example, Carmeli (1977); Sex] and Urbantke (2000) for further
discussions on this issue.

Hermitian spinors

The key property to relate 2-spinors to world tensors is hermicity. A spinor
£ € &° is said to be Hermitian if and only if £ = £, that is, if the spinor is
equal to its complex conjugate. For this to be the case, £ needs to have the same
number of unprimed and primed indices. By raising and lowering the indices as
necessary one can, without loss of generality, assume that the spinor has the same
number of unprimed and primed contravariant indices and the same number of
unprimed and primed covariant indices, for example, §AA/...DD/EE/”'HH,. In this
case the hermicity condition reads

EE'---HH'

EE--HH _ 7
=&a4'...DD ,

SAA’ DD’

where on the right-hand side it has been used that the position of primed and
unprimed indices can be interchanged.

Consider now 44" € 44" If {0,1} and {0,%} are, respectively, spin bases of
S and &, one can write

§AA/ = ao?o? + b AT + cott + dbA@Al7 (3.14)
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’ . . . .
AAT of indices is associated to

for some a, b, ¢, d € C. In other words, a pair
four complex components. If one assumes, in addition, fAA/ to be Hermitian,
then it follows that a, b € R and ¢ = d. Thus, the hermicity condition reduces
the number of independent components to four real ones. Consequently, one can
think of the Hermitian spinor fAA/ € 644 as describing a four-dimensional
vector (world-vector) £*.

The argument described in the previous paragraph can be extended in a

. . o, . . /,H /
natural fashion to higher valence Hermitian spinors, £4ar...pp- ZF "HH 50 that

one can regard each pair of unprimed-primed indices (i.e. g4, EE/,---) as
associated to a tensorial index (i.e. 4, ¢, --).
In what follows let
JAA'BB' = €ABEA/B. (3.15)

A computation then shows that gaa B’ = gaa pp’ and, in addition, that

’ ’ ’ ’
AA'BB' _ AB_A'B

g s
BB'CC’ cc' _ s Cs C
JAA'BB'Y =gaa =0404",
AA'BB’
JAA'BB'Y =4,

JAA'BB’ = gBB'AA’-
Furthermore, given vq 4 € G 44/ it can be readily verified that
UAA/QAAlBB/ = WBB’7 UAA/QAA’BB’ = UBB’-
Hence, the spinor g4 4 gp- has all the properties of a spinorial counterpart of the
metric tensor. These ideas will now be put in more precise terms.

The Infeld-van der Waerden symbols

In order to describe explicitly the correspondence between spinors and tensors at
a point p € M, consider a basis {eq} C T'|,(M) and let gop = g(€q,ep) denote
the components of the metric g with respect to this basis. Let also {w®} C
T*|,(M) denote the dual basis to {eq} so that (w®, eq) = 54°. It is conventional
to assume that the basis is g-orthogonal; that is, gap = Nab- Finally, let {ea} C &
denote a spin basis, and let e 4g denote the components of the spinor €45 with
respect to the latter basis. The scalars gqp and €4 can be put in correspondence
with each other via an equation of the form

b
€ABEA'B’ = 0% AA4'0° BB Nab, (3.16)

where 0% 4 4 are the so-called Infeld-van der Waerden symbols. These can
be regarded as the entries of four (2 X 2) matrices (6®44/), @ = 0,...,3.

Unprimed indices denote the rows and the primed indices the columns of the

BB’

matrix. Given 0@ 4 4/, one defines the inverse symbol oy via the relations

’ ’ ’
UaAA O‘bAAf :(5ab, UaAA UaBB/ :5BA531A . (317)
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From these expressions it follows that the correspondence (3.16) can be inverted
to yield

AA' _ BB’
TNab = Oq Ob €EABEA'B’- (3.18)

Using Equation (3.18) and observing that 1gp = Tab, it follows that

02N = 5 AN (3.19)
Hence, (0,44") and (6% 44/) describe Hermitian matrices. An explicit compu-
tation shows that the matrices

/ 1 1 0 / 1 0 1
AA'N _ AAN —

aay _ L aa _ L
(0277) = 2(1 0)’ (0377) = 2(0 1)’

and

(UZAA'):\}§<? _li)» (U3AA/)512((1) _01>,

satisfy the relations (3.16), (3.17), (3.18) and (3.19). The above matrices
correspond, up to a normalisation factor, to the so-called Pauli matrices.
Now, consider arbitrary v € T|,(M) and o € T*|,(M). In terms of the bases

{ea} and {w?}, v and « can be written as

v =1%,, v = (w?, v),

o= qqw?, aq = (o eq).
The components v* and a, can be put in correspondence with Hermitian spinors
using the Infeld-van der Waerden symbols via the rules
A= g, AN (3.20a)

Qg — XpapA = OzaO'aAA/. (320b)

v® 02

In terms of arrays of explicit components and matrices one has

0 3 1, :.2
(W0, 0L, 02, 13 s 1 vl 4v® v+
R V2 ot —iw? 00 -3 )7

1 Qg + asg (e5] 7i0[2
(a07a17a27a3) — . .
o1 + 1l g — Qg

V2

A quick computation shows that

AA’

(a,v) = v%aq = v apar
/7 ’ ’ 7
= 00 oo’ + v0! o1 + 10 o190’ + o1t o117
0 1 2 3

=V Qg —V 1 —V Q2 —V Q3.
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Thus, one has that the assignments defined in (3.20a) and (3.20b) are consistent
with the inner product defined on T'|,(M) by the metric g.

The assignment given by (3.20a) and (3.20b) can be extended to tensors of
arbitrary rank. For example, given the tensor T,;¢, denote its components with
respect to {eq} and {wb} by T,°. One then has the assignment

cc’ _ b cc’
Tap® — Taa BB =0%240"BB0c" " Tap®.

C

The object Taa' BB’ €’ will be called the spinorial counterpart of the tensor

components Tgp€.

3.1.10 The spinorial representation of null vectors

As already mentioned in the introduction to this chapter, one of the key
advantages of the use of spinors is the convenient representation of null vectors
they provide. More precisely, one has the following result:

Proposition 3.3 (spinorial counterpart of null vectors) The spinorial
counterpart of a non-vanishing real null vector k* can be written as

A = £p4RA (3.21)
for some valence 1 spinor k2.
Proof A direct computation shows that kA4 as given by Equation (3.21) is
indeed the spinorial counterpart of a null vector. Conversely, a computation
yields

g(k, k) = eapen g kA kPP

= 2(KO kM — KOV = det(k44).

Thus, the requirement g(k, k) = 0 implies that k44" regarded as a (2x2) matrix,
has rows/columns which are linearly dependent. Accordingly, there exist valence
1 spinors k4 and AP such that EAA = gANAT As, k is non-zero, it follows that
kA, A # 0. From the reality of k, it follows that its spinor counterpart kA
must be Hermitian; that is, kAA = gAA Hence, kAN = gA A, Contracting
the latter with x4 one has that kaA* = 0, so that x4 and A\* must be
proportional to each other. The proportionality factor can be absorbed into x4
by means of a redefinition of the spinor. The sign in Equation (3.21) is that of

the proportionality constant. O

Remark. A null vector constructed using the positive sign in Equation (3.21)
will be said to be future pointing, while one using the negative sign will be
called past pointing.

From Proposition 3.3 it follows that every valence 1 spinor x“ defines a null
vector k. However, this is not a one-to-one correspondence. More precisely, a
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spinor differing from x“ by a complex phase, that is, e’ x4, with ¢ € R will give
rise to the same null vector. The phase change is said to be right-handed if
1 > 0. This phase does not affect the construction of the vector k. Nevertheless,
it contains some geometric information. To see this, consider a further spinor
p such that kapu? = 1 so that {x, u} constitute a spin basis. Now, one can
readily verify that

AA 1 ( A-A ARA/), tAA’ _

1 ’
kA0 _|_,u (HA—A A

it - ptEY)

V2 V2

are the spinorial counterparts of two unit spacelike vectors s and t and that they
are both orthogonal to k. At each point p € M, s and t span a subspace of
T|,(M) which is orthogonal to k. This subspace is called the flag of the spinor
k“; the pole of the flag is the vector k.

Now, suppose x4

S

)

is subject to a phase change such that
kA ek, (3.22)

In order to retain the normalisation x4u? = 1, the transformation (3.22) implies
the transformation p? — e~ uA. Furthermore, one has that

S > cos 21s + sin 20t t — —sin 29s + cos 29t,

so that a phase change of ¥ in x implies a change of 2¢ in its flag; the flagpole,
however, remains unchanged.

3.1.11 Null tetrads

Inspection of Equation (3.14) shows that every spin basis {o,t} gives rise to
an associated vector basis consisting of null vectors. This null tetrad has
the peculiarity of consisting of two real null vectors and two compler null
vectors which are the complex conjugates of each other. In order to analyse
this further, let

! ! ’ ’ ’ ! ’ 7
144" = o454 , nAA = A4 , mA4 = o414 , mA = 454,

a

Furthermore, let 1%, n% m® and m® (or I, n, m, m) denote the tensorial

counterparts of the above spinors. Using the above definitions one can verify
that

lgn® = —mem® =1, (3.23)

while all the other remaining contractions vanish. Using relations (3.11a)—(3.11c)
it can be readily shown that

Gab = 2l(qnp) — 2m gy, g% = 21lepb) — omlamb),
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An orthonormal tetrad {e,} can be readily obtained from the null tetrad
{l, n, m, m}. Namely, let

eo = %(l +n), (3.240)
er — \%(m +m), (3.24b)
es = \%(m _m), (3.24¢)
es = %(z _n). (3.24d)

Using the relations in (3.23) it can be verified that the latter vectors indeed
constitute an orthonormal tetrad. Furthermore, it can be readily checked that
eo is timelike while e1, es and es are spacelike. The vector eq is said to be
future pointing as both I and n are future pointing in the sense of Section 3.1.10.
Moreover, a right-handed phase change (i.e. ¢ > 0) in the spin basis of the form

o = eot 1A — e A leads to the right-handed rotations

e — cos2eq + sin 2deq, es — —sin 2¥eq + cos 29eq,

while at the same time leaving eg and es unchanged. Accordingly, the triad
of spacelike vectors {ey, ez, ez} defined by (3.24b)—(3.24d) is said to be right-
handed. The inverse relations to (3.24a)—(3.24d) are given by

1 1
l=—(eo+e3), n=—(ep — e3),

V2 2
i 2 L e; +1ie
miﬁ(e‘l*lez), m = \/i( 1+ 2).

The spinorial counterpart of the volume form

The spinorial counterpart of the volume 4-form €yp.q is given by
€AA'BB'CC'DD' = 1(€ABECDEAIC'€B/ D! — €ACEBDEABI€C D! )- (3.25)

Using the Jacobi identity (3.5) it can be verified that the above expression is
indeed totally antisymmetric under interchange of the pairs 44/, gp/, ccr and
pp’. Moreover, one has

AA’BB'CC' DD’
€AA'BB'CC'DD'€ =24,

and

AA' __BB' _ CC'_ DD .
00" 0177 0277 037" eaa'BB'cc’'DD’ = 1;

compare Section 2.5.3. The expression (3.25) can be deduced applying a
decomposition in irreducible components to €44 pp'cc'pp’ and exploiting its
antisymmetry properties.
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3.1.12 Changes of basis and SL(2,C) transformations

Let {ea?} and {€4"} denote two spin bases for &. The spinors of one basis can
be expressed as linear combinations of the spinors of the other basis. This can
be conveniently be written as

éat = AaPep?, (3.26)

where (Ao T) denotes an invertible (2 x 2) matrix. The associated spinor cobases
{eA 4} and {é2 4} are related in a similar way:

A4 =Apel 4, (3.27)
where (A4 p) is another invertible (2 x 2) matrix. Now, one has that
5aP —ea"Ep — (A4Pen) (AP geg) = (AaPAPg) en@ey
=AaPABGIp? = AaPABR.
Hence, the matrices (Aa¥) and (A p) are inverses of each other.

Now, given a contravariant valence 1 spinor £, one can expand it in terms of
the bases {4} and {€4"} as

kA = HAGAA = /%AéAA.

As a consequence of the change of basis (3.26), the coefficients k4 and k4 are
related to each other via

I~€A = AAPF.:P.

Similarly, from the transformation rule (3.27), the components pa and fia of a
valence 1 covariant spinor p4 with respect to the spin cobasis {44} and {é44}
can be found to be related via

fia=AaFup.

The transformation rules given in the previous paragraph can be extended
in a natural way to higher valence spinors and to spinors with primed indices.
For example, if vA4" and 544" denote the components of the spinor v with
respect to the two different sets of bases, one has that

FAA" _ AAP]\A’P/UPP"
A case of special importance is that of the antisymmetric spinor €4 p for which
the transformation rule between bases is given by
éap = AT AB%pq. (3.28)

Earlier in the chapter, the notion of simplectic transformations was intro-
duced. The properties of these transformations can be investigated from
Equation (3.28). As a consequence of the discussion of Section 3.1.7 the matrices
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(eap) and (€ap) both have the form given by Equation (3.10). It follows from
Equation (3.28) that

det (€ap) = (det (AAB))2det(eAB).

Furthermore as det (€45) = det(eap) = 1, one concludes that det (A4 B) = +1.
Hence, if one restricts attention to the transformations with positive determinant,
one finds that the set of transformations that preserve the antisymmetric product
[[-,-]] is given by the group SL(2,C).

Relation to the Lorentz transformations
Following the discussion of the previous paragraphs, the components g4 a’gp’ of
the spinorial counterpart of the metric transform under a change of spin basis as
JaaBp =éapéan =AaPAaT Ag9ApQepoepq
Using the Infeld-van der Waerden symbols, the latter can be rewritten as
ﬁab = AacAbdncda
with
Aac = JaAA/Ucpp/AAP/_\A/P,.

The above expression provides the relation between SL(2,C) and Lorentz
transformations; see, for example, Sexl and Urbantke (2000) for more details.

3.1.13 Soldering forms

The connection between spinors and world tensors has been implemented in

terms of the components with respect to some vector and spin bases. There is a

different perspective of this translation in terms of so-called soldering forms.
The metric tensor g can be written in terms of the orthonormal cobasis {w®} as

g = Napw?® ® w?.
This last expression can be rewritten, using the correspondence (3.18), as

7 !’ ’ ’
g = EABGA/B/O'GAA UbBB w*® wb = EABGA/B/wAA ® wBEB R (3.29)

where wA4" = 5,44 w* The four covectors {wAA'} are called the soldering
forms . In terms of abstract index notation one writes the soldering form as
wA4A’ A similar discussion can be made with the contravariant metric g". From
g* = n%e, @ ey, together with (3.16), one can write

gt = eABeAIB/eAA/ ®epn, (3.30)
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where egar = 0%a4a/€4. In abstract index notation one would write eqa/®
instead of e 4-. In view of the above, given a vector v € T|,(M) and a covector
o € T*|,(M), one can write

! ’
'UZ’UAAGAAI, ()é:OzAAIwAA.

As a final remark concerning the connection between spinors and world tensors,
it is observed that eq = 642ep. Thus, d,° can be interpreted as the components
eq? of the frame vector e, with respect to the frame {eq}. Contracting eq? with

’
opBB one finds

’ ’ 7
ca BB = ¢,%0,BB = 5,BE .

3.2 Calculus of spacetime spinors

The discussion of the previous section has been restricted to spinors at a given
point of the spacetime manifold M. It is now assumed that a spinorial structure
can be constructed in a consistent way on the whole of M — the conditions
ensuring this are discussed in Section 3.3, and essentially amount to requiring
the spacetime to be orientable. The spinorial structure over M (also called a
spin bundle) will be denoted by &(M). Consistent with this notation, the
spinorial structure at a point p € M will be denoted by &|,(M).

As is the case with tensors, the idea of relating spinors defined at different
points of the spacetime manifold requires the use of the notion of a connection
and its associated covariant derivative. Thus, it is necessary to extend the
notion of a connection in such a way that it applies to spinor fields. In what
follows, by a spinor field it is understood a smooth assignment of a spinor,
say, SAA..CD/...F/G”'LP/'”N/, to each point of the spacetime manifold. The sets
of spinorial fields over M will be denoted in a similar manner to the sets of
spinors at a point, that is, &*(M), & 4(M), EA(M), & 44 Z(M), and so on.

3.2.1 The spinorial covariant derivative

A spinor covariant derivative V 44/ is a map
Vaar: CLAN D (M) — CLR AD- A B (M).

Given an arbitrary spinor ¢3¢ ..., its spinorial covariant derivative will be
denoted by VAA/(B“'CID...E/. The mapping defined by V 4 4+ is required to satisfy
the following properties:

(i) Linearity. Given CB“'C/D,,,E/, nB“'C'D.,,E, € GB'“C/D...E/(M),

B...C’ B...C’ B.C’ B’
Vaa (B pom+0P Y pp) =VaalP Y b +Vaan® b p
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(ii) Leibnitz rule. Given fields CB"'C/D.A.E/ € GB"'C/D...E/(M) and
Gy €85Gy (M),

Vaa (B ey )=y 1 Van P p
+ B pVan Ty
(iii) Hermicity. Given (B Cp g e6B 0 b (M),

ol =B..C
Vaa (B p. g =Vaa( D' E

(iv) Action on scalars. Given a scalar ¢, then Va/¢ is the spinorial
counterpart of V,¢.

(v) Representation of derivations. Given a derivation D on spinor fields,
there exists a spinor fAA/ such that

’ ’7 !
DB g =V Au (B p s,

for all ¢(B~C' . g € &*(M).

Remark. The above list of properties is more general than the ones given in, say,
Penrose and Rindler (1984) and Stewart (1991), as the present discussion does
not assume that the spinor covariant derivative is compatible with the e-spinor;
that is, Vaaege = 0.

For completeness, the following result proved in Penrose and Rindler (1984)
is recalled:

Theorem 3.1 (existence of the spinorial covariant derivative) FEvery
covariant derivative V over M has a spinorial counterpart V 4.

3.2.2 Spin connection coefficients

In specific computations, given a spin basis {e AA}, it is convenient to introduce
the notion of the spin connection coefficients associated to a certain
connection. The direct spinorial counterparts of the connection coefficients I'g
are given after suitable contraction with the Infeld-van der Waerden symbols by
the spinor components

’ ! ’
IF'aaPP cor =wPP ppVasece?, (3.31)

’ . . . . .
where Vaa = eaa? Vaa denotes the directional covariant derivative
in the direction of e 4. Now, using that

!’ !’ ’ ’
wBB pp = BpeP p, ecc®Y =ecc”,

it follows that

’ I ! ’ I
TaaB8 co = BpeP pecP Vanec? + P pe® pec®Vaaec”

/

’ ’
BpocBVanec? +&8 pécPVanic?
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Hence, defining the spin connection coefficients
Taa®c=e?pVancec?, (3.32)
one obtains
TaaBP8 co =TaaPoic® +Tan® cdcb. (3.33)
Using ¢ B = eCQeBQ, the definition of I'4 4B and requiring that
Vaadc® =0
one also has that

B B
TaaBo=—ec9VaacPq.

The spin connection coefficients provide a way of computing the covariant

derivative of spinors without a tensorial counterpart. Given Ky = raea? €

S 4(M) one has that
Vaaks =eg“Vaakg
= GBQVAA/(KPGPQ)
= EBQ (eAA/ (Iﬁ)p)EPQ + K)PVAA/GPQ)

=eaa (k) —TaaFprp.
Similar computations show, for example, that

VaalP =ean((P)+TaaPpc”,
Vaalp©C =ean(ép ) —Taa? pégcc
+Taa%eép % +Tan gt 9.
The generalisation to spinors of arbitrary valence and number of primed indices

can be readily obtained from the above examples.

Metric and Levi-Civita spin connection coefficients

So far, the discussion of the spin connection coefficients has been completely
general. In the present section it is assumed that the connection is metric.

The spinorial counterpart of the metric compatibility condition V,gp. = 0 is
given by

Vaa(epcepc) = €pcVanepc +epcVaaepc =0.

Regarding the second equality as a (partial) decomposition in irreducible terms,
one has that

Vaaepe =0, Vaaepc =0.
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In order to investigate the implications of a metric connection on its associated
spin connection coeflicients, it is convenient to compute

Q Q

Vaasepec =ean(eBc) —Taa“Bege —Taa“ceqg

= —TaacB+Taasc=0

as eaa (epc) = 0; again, the components egc are constants. Hence, one
concludes that

Faa'Bc =Taa(Bo)-

3.2.3 Spinorial curvature

The spinorial counterpart of the curvature tensors can be introduced in a natural
way by looking at the commutator of spinorial covariant derivatives. More
precisely, one can write

’

[Vaa,Vep € = R ppraappet? (3.34)
with

[Vaa,Ves] =VaaVes — VepVar —Saa’" 55 Vep,
consistent with the notation of Section 2.4.3 and with X449 g represent-
ing the spinorial counterpart of the torsion tensor of V. The spinor
ROC bpiaapp is the spinorial counterpart of the Riemann curvature
tensor R€4.p. In the following discussion it is assumed that the connection V
is completely general — in particular, it could have torsion and be non-metric,
so that Vaaepe # 0. As a consequence, the curvature spinor has only the
symmetry

/

cc cc’
R~ ppraaBpr = —R”" pp'BBraa-

The curvature spinor in terms of the spin connection coefficients

In order to obtain a simpler representation of the curvature spinor it is convenient
to look first at its expression in terms of spin connection coefficients. To this
end, one can consider the frame expression (2.31) for the Riemann tensor, and
contract it with the Infeld-van der Waerden symbols. One readily obtains

cc’ cc’ cc’
R*® pp'aaB =eaaTsp ™" pp) —ep (Taa”" pp)
cc’ FF' cc’ FF'
+I'rr~" Do I'BB" " Aa’ —Trr™" DD Taa™ " BB
FF' cc’ FF' cc’
+I'e” " pplaa™" rrr—Taa” " ppl'BB ™" FF
4

FF’ cc
—Xaa" " BB'I'FrrFr~" DD
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Now, making use of the decomposition (3.32) for the spin connection coefficients,
one obtains after a lengthy, but straightforward calculation that

’

cc c c |, pC c
R ppaa'Be' = R”paaBpdp~ +R” paaBpdp, (3.35)

where

R°paass =eaa(Tspp)—esn(Taa’p)
TrpSplaafs —TrCplaat B +TraCplep’a
+Tar ol 4 +TaaCrTee 0 - T Crlaa’p
S anFF gpTrrCp.

This last expression can be regarded as the spinorial counterpart of the first
Cartan structure equation; see Equation (2.31).

The commutator of covariant derivatives on arbitrary spinors

The commutator expression (3.34) applies only to spinors arising from a tensorial
counterpart. In this section this commutator expression is applied to arbitrary
valence spinors. In order to do this, observe that Equation (3.35) also holds if
expressed in terms of abstract spinorial indices. More precisely, one has that

cc c ¢ | pC c
R*" ppraaBp = R paaspdp~ +R” paaspip”, (3.36)

where, in general Ropaasp # RcpyaaBp-
Applying the commutator (3.34) to the particular case when £¢¢" = ep©ep/©
one obtains, after taking into account the split (3.36), that

’

e [Vaa,Veslen® +ep®[Vaar, Veplen ©

' pC D c BC’
=¢ep'~ R paaBpep” +ep R” praaBpep

’

From the latter one can conclude that

[Vaa,Veslen® = REgaappen?,

[Vaa,Veplen® = R granppen@ .
Now, using that ep“eQc = 6p?Q, and that [Vaa/, Vg ]6p? = 0, one finds that
6PC[[VAA/, VBB/]]eQC = —GQc[[VAA/, VBB/]]EPC (3.37&)

= —%cRpaappep”. (3.37b)

Multiplying the previous expression by eP p and using that eP pep® = 6p° one
obtains

6p°[Vaa,Vep]eQc = —€QcRgan 5B 6p°.
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Finally, using that [V g4/, VBB/]}(;DC = 0, one concludes that
[[VAAHVBB/]]CQD = —RCDAA/BB/EQ(;. (3.38)
A similar argument applied to primed basis spinors yields

[[VAA/, VBB/HGQ/D/ = —RC/D’AA’BB/EQIC“ (3~39)

Now, using that [Vaa/,Vpp] applied to a scalar is zero, one has that
Equations (3.37a), (3.37b), (3.38) and (3.39) render the following formulae for
arbitrary valence 1 spinors:

[Vaa,Vepu© = REqan e u®, (3.40a)
[Vaa, Vep]A? = RC'Q’AA’BB/S\Q/, (3.40b)
[Vaa, Vplkc = —R%canpp kg, (3.40¢)
[[VAA’,VBB’]]ﬁC’ = _RQ/C’AA'BB’EQ“ (340d)

The extension to higher valence spinors follows from the Leibnitz rule. For
example, one has that

’

[Vaa,Veplécn® =R annpéop” — R9pannpéco”

+R¥ granppécop?.
3.2.4 Decomposition of a general curvature spinor

Expression (3.36) is a convenient starting point to analyse the decomposition of
the curvature spinor in terms of irreducible components. Lowering the index pair
ccr using the e-spinor one obtains:
Rec'ppraasp = Ropaaspép e + RorpraaBpeépc
= —Rcpaaspecp — Ropraaspecn. (3.41)
For the curvature spinor of a general connection one has that Rcpaapp #
R(cpyaapp - However, one still has that

Rcpaappr = —RcpBpraar.

This antisymmetry can be exploited using the split (3.13) in such a way that the
indices ¢p are not touched. Accordingly, one obtains

Repaaep = Xcepapearp +Yopap€an, (3.42)
where
1 o’
Xcpas = Xepap) = iRCDAQ’B ;
! Q
Yopas =Yeparpy = §RCDA’QB’ :
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To complete the decomposition of the curvature spinor in irreducible components
one can apply the decomposition formulae (3.8) and (3.12) for valence 4 spinors
to Xepap and Yo parpr. This idea will not be pursued any further here. However,
it will be convenient to single out certain components of the decomposition in
irreducible terms of Xcpap. It is conventional to set

PQ

Vapcp = X(aBcD), A= —-Xpq

1
6

Let Coc'ppraa s denote the spinor obtained from the split (3.41) of the
curvature spinor by setting X4apcp = X(apcp) and Yoparpr = 0. One has that

Ccc'ppraaBp = —VYapepeapecp — Y aB /D' €EABECD- (3.43)

As a consequence of the total symmetry of ¥ 2pcp it can be readily verified that
Cecc'ppraa pp s the spinorial counterpart of a trace-free tensor. Following the
discussion in Section 2.5.2; it must be the spinorial counterpart of the Weyl
tensor Ceqqp.

Decomposition of the curvature spinor of a torsion-free connection

The decomposition of the curvature spinor is now particularised to the case
of a torsion-free connection. In this case, the Riemann curvature tensor has
the cyclic symmetry of the Bianchi identity. The latter is best exploited using
the alternative expression of the identity given by Equation (2.23) involving the
right-dual of the Riemann tensor. Using the spinorial counterpart of the volume
form given by Equation (3.25) one has that

i / / ’ /
Es Fs F's E Fs Es Es F
Riappccopp = 5(50 Oop"dct 6p” —dc"opT o™ 0p" )RaA BB EE FF

=iRaaBB CD'DC
so that the spinorial counterpart of Equation (2.23) is given by

RCC/QQ'AQ/QA' =0.
A direct evaluation of the above condition using the splits (3.41) and (3.42)
shows that

Q Q

Xcoa®ecrar — Xergrar® eca+Yoacra — Yorarac =0,
so that
Xpo'? = Xpa"?, Yorarac = Yoacrar.

Hence, one has that XPQPQ (i.e. A) is areal scalar, while Y4 g4/ 5/ is a Hermitian
tensor, and, thus, it is the spinorial counterpart of a rank 2 tensor.
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Decomposition on the curvature spinor of a metric connection

As already seen, a connection which is compatible with a metric g satisfies
Vaaecp = 0. It follows then that [Vaa, Vep]ecp = 0. However, one also
has that

[Vaa,Veslecp = —R9caappeop + Repaapsecq,
from which one concludes that
Ropaaee = RicpyaaBp-

The latter can be reexpressed in terms of the following symmetries of the spinors
Xapep and Yaparp:

Xaep = XaByep; Yapap =Yapyap-

Decomposition of the curvature spinor of a Levi-Civita connection

Finally, one can collect the results of the previous subsections to obtain the well-
known irreducible decomposition of the spinorial counterpart of the Riemann
tensor of a Levi-Civita connection. As the Levi-Civita connection associated to
the metric g is both torsion-free and metric, it follows then that

Xapep = X(aB)y(cD) Xcga® =0.
It follows from (3.8) that Xapcp = Xcpap and that

1
Xapcp = XaBep) — geA(CGD)BXPQPQ

=Wapcp + Aleppeca + €cpepa).

Similarly, for Yaparp: one has that
Yapa g =Yy B,

so that according to the general split (3.12) Yapasp: corresponds to a trace-free
rank 2 tensor.

To conclude the analysis, it is convenient to compute the Ricci tensor and
scalar in terms of the spinors X spcp and Yaparp/. From Equations (3.41) and
(3.42) it follows directly that

Raapp = —Xoa®pean — Xga? preap +2Yaparp
R=—4XpoT¥,

where Ra4/pp: denotes the spinorial counterpart of the Ricci tensor R
and it has been used that for a Levi-Civita connection Yaga g = Yap ap and
XPQPQ = )_(p/Q/P/Q,. In particular, one has that

R = —24A.
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As Yapa g is trace-free, it has to be related to ®,,, the symmetric trace-free
part of the Ricci tensor. Indeed, a calculation for its spinorial counterpart shows
that

1
Q(bABA’B’ = RAA'BB' — EREABGA/B/
=2Yapap-
It can be verified that ® 454/’ satisfies the symmetries

Daparpr = Ppaap = Pappa = Ppaprar. (3.44)

Putting together the discussion of this section, one finds that the spinor
counterpart of the Riemann curvature tensor of a Levi-Civita connection can
be decomposed as

RaaBp'cc'ppr = —€arprec'p/(Yapep + 2MeqcepyB)
—eapecp(Yarporpr +2Meq(créprypr)

+eapecpPapcp + eapecpPeparp-
Working back from this expression one can recover the decomposition of
the Riemann tensor in terms of the Weyl and Schouten tensor given in
Equations (2.21a) and (2.21Db).
3.2.5 The Usp-operator

In some applications it is convenient to have a more explicit expression for the
commutator of spinorial covariant derivatives. In the remainder of this section it
is assumed that V g4/ is the spinorial counterpart of a Levi-Civita connection.

Exploiting the antisymmetry of Equation (3.40a) with respect to the pairs 44
and gps one can rewrite it as

(eanOap +eapOap)n® = REganppu, (3.45)
where
Uap = VQ’(AVB)Q,a Oap = Vo V.

It can be verified that both Oap and (4. are linear and satisfy the Leibnitz
rule — one has, for example, that

Oap(ucA?) = (Dappc) NP + po(DapAP).

Defining the D’Alembertian operator as O = Vpp' VPP’ one obtains the
decomposition

/ 1
VagVs? = §€ABD +0uB.
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Now, contracting indices suitably in Equation (3.45) one readily obtains

Oapu® = X%qanu@, OappC =YCqupuC.
Using the explicit expressions for the curvature spinors X agcp and Yaparps for
a Levi-Civita connection, as given in Section 3.2.4 one concludes that

Oaspc = Yapepp” — 2Apaep)c, Oapic =Pcpapp?.  (3.46)

The above expressions can be extended to higher order valence spinors by means
of the Leibnitz rule.

The expressions in (3.46) can be extended to the case of connections with
torsion; see Penrose (1983) for the general theory and Gasperin and Valiente
Kroon (2015) for explicit expressions and applications.

3.3 Global considerations

The discussion on null vectors and their flagpoles in Section 3.1.10 makes a
natural connection with the notion of orientability and the assumptions needed
to ensure the existence of spinorial structures on a region of spacetime.

As seen in Proposition 3.3, every non-vanishing null vector is either future
pointing or past pointing, in accordance with the choice of sign made in
Equation (3.21). Thus, the existence of spinors on a region of spacetime provides
a way to define a time orientation. In a similar way, the idea of a right-handed
phase change of a triad of orthonormal vectors {e1, ez, es}, as discussed in
Section 3.1.10, can be used to define a notion of space orientation. Thus, at least
at an intuitive level, the existence of a spinorial structure over a spacetime seems
to imply that the spacetime is time orientable and space orientable. It turns out
that the converse is also true: time and space orientability ensure the existence
of a spinorial structure. More precisely, one has the following result proved in
Geroch (1968):

Theorem 3.2 (orientability and the existence of a spinor structure) A
non-compact spacetime (M, g) has a spinor structure if and only if there exists
on M a global system of orthonormal tetrads.

Part IV of this book will be concerned with the construction of spacetimes from
suitably posed initial value problems. Thus, it is convenient to have a criterion
to encode the existence of a spinorial structure in an initial value problem.

An example of this is the following result in Geroch (1970c):

Proposition 3.4 (global hyperbolicity and the existence of a spinor
structure) FEvery globally hyperbolic spacetime has a spinor structure.

The notion of global hyperbolicity is discussed in Section 14.1.
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An orientable spacetime may have several spinorial structures. One can ensure
uniqueness of the spinorial structure if one restricts further the topology of the
spacetime. More precisely, one has that (see Geroch (1968)):

Proposition 3.5 (uniqueness of the spinorial structure) The spinorial
structure of a spacetime is unique if and only if M is simply connected.

3.4 Further reading

Further details on the various topics covered in the present chapter can be
found in Penrose and Rindler (1984), Stewart (1991) and O’Donnell (2003). The
discussion in these references leads, in a natural way, to the Newman-Penrose
formalism and applications like the Petrov algebraic classification of the Weyl
tensor. Some discussion on the use of spinors in the construction and analysis
of exact solutions to the Einstein field equations can be found in Stephani et al.
(2003) and Griffiths and Podolsky (2009). The relation between Dirac spinors
and 2-spinors is presented in Penrose and Rindler (1984) and Stewart (1991).
A pure mathematics perspective can be found, for example, in Petersen (1991);
see also Choquet-Bruhat et al. (1982).

A more general perspective of the discussion of the present chapter can be
obtained by making use of the notion of fibre bundles; see, for example, Ashtekar
et al. (1982). In terms of this language, the spinorial structure arises as a principal
fibre bundle over the spacetime manifold M with structure group SL(2,C).
This point of view is convenient for computer algebra implementations; see,
for example, Martin-Garcfa (2014). The fibre bundles are useful in analyses that
require the blowing up of particular points of spacetime — as in the analysis
of caustics in Friedrich and Stewart (1983) or the so-called problem of spatial
infinity of Friedrich (1998c).

Appendix: the Newman-Penrose formalism

The idea of a spinor-based null tetrad formalism was introduced in the seminal
article by Newman and Penrose (1962); see also Newman and Penrose (1963).
This so-called Newman-Penrose (NP) formalism was first used as a way
of analysing the asymptotics of gravitational radiation. The potential of the
formalism to obtain exact solutions to the Einstein field equations, in particular,
ones having an algebraically special Weyl tensor, was quickly realised; see,
for example, Stephani et al. (2003) for an entry point to the literature of
exact solutions. Refinements of the formalism which are adapted to specific
configurations or types of problems are available in the literature, most noticeably
Geroch et al. (1973); see also Machado and Vickers (1995, 1996).

The key aspects of a generic spinor-based null tetrad formalism have already
been covered in this book. One of the peculiarities of the formalism, as introduced
in Newman and Penrose (1962), is the use of specific symbols to denote
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directional derivatives and the spin coefficients. This notation will not be used
in this book as the Newman-Penrose (NP) formalism assumes, from the onset, a
Levi-Civita connection. However, the discussion in this book will very often use
more general connections. Hence, one has more independent spin coefficients.
Moreover, the labelling of spin coefficients through indices lends itself better
for a systematic analysis of the properties of the relevant equations. Additional
difficulties with the NP formalism arise with the space spinor formalism; see the
next chapter.

The purpose of this appendix is to provide a guide to the translation, whenever
possible, between NP objects and the ones used in this book.

The directional derivatives

Let {o, ¢} denote, as usual, a spin basis. Also, let {l,n, m,m} denote the null
tetrad constructed from the spin basis, as described in Section 3.1.9. The NP
convention for the directional derivatives along the directions given by the null
tetrad is

The spin coefficients

In what follows, it is assumed that the connection V is Levi-Civita so that
Vaaepe = 0. The NP convention for the spin coefficients of V is given by:

€ =T00'% = —Too'1 = Too10
a=T10% = -T10'1 =T10/10;
B=T01% = —Tor'1 =Tor10,
V= 1% =-T11t = 11710,
7™ =T00"1 =Too11, k= —Too'0 = o000,
A=T10% =T1011, p=-T10" =T1000,
B = I‘01'01 =To111, 0= —P01'10 = T'01/00,
v=T11" =T1111, 7 =-T11" =T1100.

The above spin coefficients can be expressed entirely in terms of the directional
derivatives D, A, 6, § applied to the null frame vectors or, alternatively, applied to
the spin basis {0, ¢t}. See O’Donnell (2003) and Stewart (1991) for details on this.
Explicit expressions of the spin coefficients in terms of curls (antisymmetrised
derivatives) have been worked out in Cocke (1989).
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The Ricci and Weyl tensors

The NP conventions to denote the components of the Weyl spinor ¥ 4gcp with
respect to {o, ¢} are:

Uy = \IIABCDOAOBOCOD, U, = \I/ABCDOAOBOCLD, U, = \IJABcDOAoBLCLD,

Vs = UapopotBlCP, Uy =TUspept®BlCP.

The conventions for the components of the trace-free Ricci spinor ® 4 4-gp: are:

_ A’ _ ’
CI)OQ = (I)AA/BB/OAOBOA OB s

’ ’
AOBZA ZB ,

_ ! _ !
D1 = PaarppotoPot P

’ !’
19 = ®aappo’iPot o7,

Al !
ALBLA LB ,

Doz = Paarppo
_ /7 ’
ALBOA LB y (1)12 = (I)AA’BB’O
Al _pt
ALBOA LB ,

‘I)ll E¢AA’BB’0
Al !

A, BgA of, Doy =Pyappt
_ /_ ’

ALBLA LB .

@20 = q)AA’BB’L
@22 = (I)AA’BB’L

Notice that in both lists of definitions the value of the index denotes the number
of contractions with the spinor ¢.

The NP formalism makes use of the symbol A to denote a multiple of the trace
of the Ricci tensor. The relation to the Ricci scalar is

R = —24A.

The Newman-Penrose field equations

Newman and Penrose (1962) provided explicit expressions of the Ricci and the
Bianchi identities in terms of their notation for the spin connection coefficients
and the components of ¥ gcp and ®44-pp/. These equations are collectively
called the Newman-Penrose field equations. Explicit expressions are available
in O’Donnell (2003), Penrose and Rindler (1986) and Stewart (1991). Besides
the NP field equations, the formalism consists also of explicit expressions for the
commutators of the directional derivatives D, A, §, §. Expressions for the source-
free Maxwell equations are available in the literature as well; see, for example,
the appendix in Stewart (1991).
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