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An optimum solution to a deconvolution problem has to fulfil three 
general criteria: (a) an explicit recognition of the smoothing nature 
of convolution; (b) a statistical treatment of noise, e.g., using the 
least-squares criterion; and (c) requiring the solution to conform to 
all our prior knowledge about it. In the usual least-squares method, one 
minimises a variance of 'residuals', or the departures of the observed 
data from the values expected according to the recovered solution. 
However, this condition does not lead to a stable solution in the case 
of deconvolution, since the only stable solutions are those conforming 
to a criterion of 'regularisation' or smoothness (see, e.g., Tikhonov 
and Arsenin 1977). In our method, the stability is achieved by minimising 
the variance of the second-differences of the solution simultaneously 
with the fulfilment of the least-squares criterion. Such a procedure was 
first used by Phillips(1962). However, the solution thus obtained is 
still unsatisfactory since it usually does not conform to our a_ priori 
information. When we seek the brightness distribution of an object, the 
most frequent violation of our prior knowledge is that of positiveness. 
This motivated us to develop an Optimum Deconvolution Method (ODM) which 
constrains the solution to satisfy prior knowledge while retaining the 
features of least-squares and smoothness criteria. 

If prior knowledge is in the form of equalities, e.g., when the 
total intensity (area under the solution) is specified, it can be easily 
incorporated by using the Lagrange multiplier method of constrained mini­
misation. However, this is not applicable for positiveness or any speci­
fication of bounds on the solution since this leads to constraints in the 
form of inequalities. Such constraints are imposed in ODM by a new 
iterative algorithm, which minimises a weighted sum of squares of the 
departures of the solution from the specified bounds, simultaneously with 
the fulfilment of the criteria of least-squares and smoothness. The 
weights chosen depend on the degree of such departures in the previous 
iterations. The algorithm is found to converge rapidly, within 5 itera­
tions in most of the several hundred applications tried by us for the 
Fresnel-diffraction curves produced by the lunar occultations of radio 
sources. 
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The method was extensively tested by using both the computer-
simulated occultations and those of actual sources observed with the 
Ooty radio telescope. Restored profiles from these data obtained by 
using ODM were compared with those obtained by using the conventional 
method which was suggested by Scheuer(1962). The tests reveal that ODM 
often leads to an improvement in the attainable resolution by about a 
factor of two over the conventional method. In addition, it also gives 
a 'clean' solution masking the effects of noise on the recovered solution 
and hence leads to a more objective interpretation. A detailed descrip­
tion of the method and its application to lunar occultations has been 
given elsewhere (Subrahmanya 1979). 

The usual purpose of seeking a nonclassical method like ODM is to 
improve our estimate of the size of a certain component of a source. 
For this, it is necessary to know the effective resolution with which 
the solution has been recovered. In a linear method, this effective 
resolution is always known independently of the solution to be recovered, 
e.g., as a property of the restoring function used. However, this is 
not the case in a nonlinear method like ODM or Maximum Entropy Method 
(MEM) which uses known properties of the solution before actually 
deriving it. In such a case, it becomes necessary to introduce an 
£ posteriori definition of resolution, say, based on the statistical 
properties of the residuals. For this, we suggest the use of the mean 
zero-crossing interval of the residuals. For instance, if one examines 
the noise resulting from an observation with a Gaussian beam, the mean 
zero-crossing interval is about 1.9 times the half-power-width of the 
Gaussian beam. 

We have seen that ODM can provide super-resolution and also a 
'clean' output as compared to a classical method. The solution is 
optimum since it agrees statistically with the observed data and also 
conforms to all our prior knowledge about it. The main source of improve­
ment over the conventional method is the incorporation of prior knowledge, 
just as in MEM. A few general remarks can be made by way of comparison 
of the two methods. Both are nonlinear methods. Both are able to use 
incomplete data like those with the absence of a few samples or the 
ignorance of phases of some Fourier components. They use the data as 
given and do not make any assumption on the unavailable data. The 
characteristics of 'super-resolution' and 'clean output' are also shared 
by both the methods. Since both are nonlinear methods, it may be worth­
while to compare their computational efficiencies. In our experience, 
ODM is particularly fast for a nonlinear method in lunar occultations, 
since the iterations generally converge within 3 to 5 iterations. On 
the contrary, an available figure for MEM is 8 to 40 iterations for the 
one-dimensional Fraunhofer diffraction problem studied by Frieden (1975). 
However, this cannot be used to make a categorical statement on the 
relative computational efficiency of the two methods, since they have 
only been used in different contexts. 

Thus any fundamental difference between the two methods is to be 
expected only if the 'entropy' as used in MEM has a special sanctity 
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apart from satisfying prior knowledge about the solution. Serious doubts 
have already been cast on this aspect and it is not clear at present 
whether the expressions being used for 'entropy' have the same signifi­
cance as in information theory or thermodynamics(cf. Kikuchi and 
Soffer 1977). An essential difference in the usage is the definition 
based on a. posteriori probability in MEM as opposed to that based on 
£ priori probability in information theory. It is also possible that 
the existing schemes of MEM can be alternately viewed as merely numerical 
algorithms for incorporating positiveness. In this context, it may be 
noted that there is a numerical scheme for constrained minimisation called 
the 'logarithmic penalty-function method' (Fiacco and McCormick 1970) 
which is strikingly similar to MEM as being used by one class of workers 
(e.g. Abies 1974). Further work is needed to understand whether a 
concept like entropy is indeed pertinent to the problem or whether an 
arbitrary numerical algorithm which can efficiently incorporate prior 
knowledge is all that is relevant. 
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DISCUSSION 

Comment U.J. SCHWARZ 
Is it really desirable to impose positiveness? This is not a question 

concerning this method only, but other methods too. The point is that 
statistically the estimate is not asymptotically equal to the true 
distribution, since the noise always gives a positive contribution via -
essentially - a detection process. 
Reply C.R. SUBRAHtlANYA 
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This is one of the reasons why I believe that it is desirable to in­
corporate prior knowledge explicity, with a provision to define the 
degree to which we know it. In ODM since an estimate of the uncertainty 
(a) in total intensity (area) is known, the iterations for positiveness 
are terminated when the total contribution to the intensity from the 
negative points becomes ^ 0.5 a. 
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