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THE CLASSICAL LIMIT OF DYNAMICS FOR
SPACES QUANTIZED BY AN ACTION OF Rd

MARC A. RIEFFEL

ABSTRACT. We have previously shown how to construct a deformation quantization
of any locally compact space on which a vector group acts. Within this framework we
show here that, for a natural class of Hamiltonians, the quantum evolutions will have
the classical evolution as their classical limit.

Introduction. Let M be a locally compact space, and let ã be an action of V ≥ Rd

on M. Let A ≥ C1(M), the CŁ-algebra of complex-valued continuous functions on M
which vanish at infinity, and let ã denote also the corresponding action of V on A. Let J
be a skew-symmetric operator on V. Then J determines a “Poisson bracket” on A, and in
[Rf] we have shown how to construct a strict deformation quantization of A into a one-
parameter family, Ah̄, of non-commutative CŁ-algebras, in “the direction of this Poisson
bracket”. The purpose of the present paper is to show that within this framework, the
quantum evolution of the system which is determined by any Hamiltonian from a natural
class, converges as h̄ ! 0 to the classical evolution for that Hamiltonian, as one would
expect.

Our aim here is not at all to obtain the strongest possible results—a more elaborate
and lengthy analysis could deal with a far wider class of Hamiltonians than the ones
we consider here. Rather our aim is to show how naturally this matter fits within the
framework of [Rf]. The main argument, given in Section 2, is relatively simple and brief
(though heavily dependent on the results in [Rf]).

The rest of this paper, contained in Sections 3 and 4, is concerned simply with showing
that the Hamiltonians which we consider do have classical flows (evolutions) which exist
for all time, and that these classical flows have the smoothness properties needed for our
analysis in Section 2. This is a matter of some independent interest, as indicated in [B],
and our situation permits us to remove the restriction to locally free actions which is
required in some of the relevant places in [B]. (I thank Alan Weinstein for a suggestion
which simplified my proof of the existence of the classical flow.) This gives a partial
answer to Question 2.4.29 in [B]. In the Appendix we sketch how to obtain the existence
of our classical flows as a consequence of a powerful Theorem of D. Robinson [Rs1]. (I
thank George Elliott and Ola Bratteli for comments which led me to look at this paper of
Robinson.) It is natural to carry this out in the more general context of an arbitrary Lie
group acting on a space. This gives a more substantial partial answer to Question 2.4.29
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THE CLASSICAL LIMIT OF DYNAMICS 161

of [B]. But I have not seen how to use this approach to conveniently give the smoothness
properties which we need for the proof of our main theorem (see Question 1 of [Rs1]), and
so I have found it best to include the much more elementary approach given in Section 3,
since it develops most of the tools needed for Section 4.

There is already an enormous literature concerned with the classical limit of quantum
evolutions, mostly on R2n, and we will not try to review it here. Many references can be
found by chasing back the references given in [E, Rr, W].

The construction of strict deformation quantizations developed in [Rf] works equally
well for non-commutative CŁ-algebras, and so one can ask whether the results of the
present paper extend to that case. The difficulty is that usually the Poisson bracket applied
to a Hamiltonian does not give a derivation of the non-commutative algebra, and so one
cannot expect it to generate a group of automorphisms analogous to the classical flow. In
other words, I don’t know how to even pose the question we consider here, for the more
general situation. (In the very special case where all is sufficiently related to the center
of the algebra one will obtain a derivation, and presumably the results of the present
paper can be extended to that case; but at present it is not clear to me that this is of any
particular interest and so I have not pursued it here.)

1. The classical flows. The purpose of this section is to describe the classical vec-
tor fields, and corresponding classical flows, which we will consider, and to state those
properties of these classical flows which we will need later. We will defer the proofs of
these properties until after our discussion of the classical limits of the quantum flows in
the next section (where we will also relate our classical vector fields to Hamiltonians).

Let M, V, A and ã be as in the introduction. It is the action ã which gives M its
“differential” structure. (It would certainly be of interest to consider actions of more
general Lie groups than V, but I don’t know how to construct deformation quantizations
in that generality.) Let Cb(M) denote the algebra of bounded continuous functions on
M, the multiplier algebra of A. The evident action ã of V on Cb(M) is not in general
strongly continuous. Let B (or B(M), or B(M,ã)) denote the subspace of elements of
Cb(M) on which ã is norm-continuous, so that B is the largest CŁ-subalgebra of Cb(M)
on which ã is strongly continuous. Note that B is a unital CŁ-algebra containing A as
an essential ideal. (We could now view B as the algebra of continuous functions on its
maximal ideal space, which is compact and on which ã gives an action, but this is not
technically advantageous at this point.)

Let A1 and B1 denote the dense Ł-subalgebras of A and B consisting of smooth (i.e.
infinitely differentiable) vectors [B] for ã. As in Chapter 9 of [Rf] we will distinguish
between V and its Lie algebra, denoting the latter by L. Thus for each X 2 L we have a
corresponding derivation, ãX, on A1 and B1, given by the infinitesimal generator of the
one-parameter group of operators corresponding to X. We will heuristically think of ãX

as a smooth tangent vector field on M, and think of the tangent space at each point m of
M as corresponding to L, by means of the ãX’s followed by a point evaluation at m. Then
we will think of a continuous real vector-field on M as being just a continuous L-valued
function on M.
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Fix for the rest of this paper an arbitrary positive-definite inner product on L. Heuristi-
cally this makes M into a Riemannian “manifold”. Let Cb(M, L) denote the Banach space
of continuous bounded L-valued functions on M, equipped with the supremum norm us-
ing the inner product on L. We have the evident action ã of V on Cb(M, L). Much as
above, denote by B(M, L) the largest subspace of Cb(M, L) on which ã is strongly con-
tinuous, and by B1(M, L) the subspace of smooth vectors for ã. We think of B1(M, L)
as the space of smooth bounded vector fields on M.

Let Φ 2 B1(M, L). For any f 2 B1 and any m 2 M the function x 7! f
�
ã�1

x (m)
�

is
smooth on V, and in particular it will have a finite total derivative, (Df )m, at x ≥ 0. This
is a linear functional on L. Thus we can define a map, éΦ, from B1 to itself by

(1. 1) (éΦf )(m) ≥ (Df )m

�
Φ(m)

�
.

Then éΦ is a Ł-derivation of B1, in accordance with our heuristic view that Φ is a smooth
vector field. To see this, note that the above is just a coordinate-free way of saying the
following. Let fEjg be a basis for L, and let fΦjg denote the corresponding components
of Φ. Note that Φj 2 B1 for each j. Let ∂j ≥ ãEj , a Ł-derivation of B1. Then

(1. 2) éΦf ≥ Σ Φj(∂j f )

for f 2 B1. It is now clear that éΦ is a Ł-derivation of B1, and that it carries A1 into
itself. (If A were non-commutative, we could not expect éΦ to be a derivation unless each
Φj were in the center of B.)

The main fact which we need is that each Φ 2 B1(M, L) determines a flow on M
which exists for all time, and which carries B into itself. We formulate this as:

THEOREM 1.3. Let M, ã and B be as above, and let Φ 2 B1(M, L). Then éΦ is a
pregenerator, that is, there is a (unique) strongly continuous one-parameter group, å, of
automorphisms of B whose generator is the closure of éΦ. Furthermore, å carries A into
itself, and so å comes from a flow on M (which we will also denote by å).

We will defer the proof of this theorem to Section 3.
We also need control over the higher derivatives associated with the flow å. For each

f 2 B1 we have the higher total derivatives, Dkf , of f . Thus each Dkf is a function on M
into the (symmetric) k-linear functionals from L to the complex numbers, defined by

(Dkf )m(X1, . . . , Xk) ≥ (ãX1 Ð Ð Ð ãXk f )(m)

for each m 2 M. Each Dkf is smooth and bounded, because of the definition of B1. Thus,
by using the inner product on L to define the norm of k-linear functionals on L, we can
define semi-norms k k(k) on B1 by

kfk(k) ≥ kDkfk1 ≥ supfk(Dkf )mk : m 2 Mg.

We will need:
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THEOREM 1.4. With notation as above, let å be the action on B1 for Φ 2 B1(M, L)
as in Theorem 1.3. Then the action å is strongly continuous for each of the semi-norms
k k(k) on B1. Furthermore, for any f 2 B1 the function t 7! åtf is smooth for these
semi-norms, and its first derivative is (éΦf ) Ž åt.

We remark that å will not usually be uniformly bounded for the above semi-norms.
We defer the proof of this theorem to Section 4.

2. The classical limit. As above, we let ã be an action of V on a locally compact
space M. Thus we have the algebras A and B, and their smooth versions A1 and B1. We
let J be a skew-symmetric operator on L, so that J determines a Poisson bracket, f , g,
on A1 and B1. It is defined, in terms of a basis fEjg for L, by

ff , gg ≥
X

JjkãEj (f )ãEk (g).

For each “Planck’s constant”h̄ we let Ah̄ and Bh̄ denote the corresponding deformed CŁ-
algebras, as constructed in [Rf]. Thus Ah̄ has A1 as dense subspace, with product given
there by

f ðh̄ g ≥
ZZ

ãh̄Ju(f )ãv(g)e(u Ð v) du dv

(an oscillatory integral, with e(t) ≥ e2ôit), and with corresponding CŁ-norm. The invo-
lution is still complex-conjugation. We define Bh̄ similarly. Then Ah̄ will be an essential
ideal in Bh̄ by Proposition 5.9 of [Rf]. Furthermore, ã gives an action of V on Ah̄ and Bh̄

by Proposition 5.11 of [Rf], and the corresponding subspaces of smooth vectors will be
exactly A1 and B1 as vector spaces, by Theorem 7.1 of [Rf].

The Hamiltonians which we will consider consist of the real-valued functions in B1.
So fix such a real-valued H 2 B1. The mapping f 7! fH, fg is a derivation of A1 and
B1. If for a basis fEjg for L we set

Φ(m) ≥
X

Jjk

�
ãEj (H)

�
(m)Ek,

we see that Φ is a function from M to L of the kind considered in the first section. In par-
ticular its coefficient functions are in B1 (and real) so that Φ 2 B1(M, L). Furthermore,
it is clear that fH, fg ≥ éΦ(f ) for each f 2 B1. Thus Φ is the “Hamiltonian vector field”
for H.

According to Theorem 1.3, éΦ determines a flow,å, on M, with corresponding strongly
continuous one-parameter action on A and B. This is the “Hamiltonian flow” for H.

For each h̄ we let [ , ]h̄ denote the ordinary commutator for the corresponding product
in B1, so that

[f , g]h̄ ≥ f ðh̄ g � g ðh̄ f .

Set Hh̄ ≥ (�ôÛh̄)H, viewed as a self-adjoint element of Bh̄. (The �ô comes from our
conventions in [Rf] for the definition ofðh̄, given above.) Then the map f 7! [iHh̄, f ]h̄ is
a Ł-derivation of Ah̄ and Bh̄ which is bounded (but with norms going to +1 as h̄ ! 0).
Thus Hh̄ determines a one-parameter group, åh̄, of Ł-automorphisms of Ah̄ and Bh̄, the
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corresponding quantum flow. This flow consists of inner automorphisms of Bh̄. For let
uh̄

t ≥ exph̄(itHh̄) for each t 2 R, where exph̄ denotes the exponential defined by the usual
power series, but using the product ðh̄ in Bh̄. Then uh̄

t is a unitary element of Bh̄. By the
usual calculations we will have

åh̄
t (f ) ≥ uh̄

t ðh̄ f ðh̄ uh̄
�t

for all f 2 Bh̄. Again it is clear that åh̄ carries the ideal Ah̄ into itself. But notice that åh̄ is
not only strongly continuous, but actually norm (i.e. uniformly) continuous (since Hh̄ is
bounded).

The main theorem of this paper is:

THEOREM 2.1. With notation as above, for any f 2 B1 we have

kåh̄
t f � åtfkh̄ ! 0 as h̄ ! 0

for each t 2 R, with the convergence being uniform in t over any finite interval.

It is in this sense that, within our framework, the quantum flow has the classical flow
as its classical limit.

We remark that in the proof we will see how to obtain specific estimates for the con-
vergence.

PROOF. Let I denote the interval [�1, 1]. We only need consider h̄’s in I. We will
denote by B(k) the space B1 equipped with the norm k kk which is the sum of k k1
with the semi-norms k k(j) (defined near the end of Section 1) for j � k. This norm is
equivalent to the norm used in [Rf], defined on p. 1 of [Rf]. We choose k large enough
that we can apply the little argument near the beginning of the Proof of Theorem 9.3 of
[Rf] which shows that there is a constant, c, independent of f 2 B1, such that

(2. 2) kfkh̄ � ckfkk

for all h̄ 2 I. Fix f 2 B1. From Theorem 1.4 we know that t 7! åtf can be viewed as a
smooth function on V with values in B(k), whose first derivative is fH,åtfg. From 2.2 it
follows that t 7! åf

t is smooth as a function with values in Bh̄, for each h̄ 2 I, with the
same first derivative.

Fix h̄ 2 I. Then the smooth function t 7! uh̄
t with values in Bh̄ clearly has as derivative

iHh̄ ðh̄ uh̄
t . We now adapt to our situation a device which is commonly used to compare

semigroups of operators. As an example quite close to our present situation, see the Proof
of Equation 16 of [E]. (Undoubtedly the full expansion of Equation 16 could be obtained
in our framework too.)

Fix t, and define û for this t by

û(s) ≥ uh̄
s ðh̄ (åt�sf ) ðh̄ uh̄

�s.

From the comments above,û is a differentiable function with values in Bh̄, whose deriva-
tive is given by

û0(s) ≥ uh̄
s ðh̄

�
(ôÛih̄)[H,åt�sf ]h̄ � fH,åt�sfg

�
ðh̄ uh̄

�s.
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Notice that û(0) ≥ åtf while û(t) ≥ åh̄
t f . Thus

kåh̄
t f � åtfkh̄ ≥






Z t

0
û0(s) ds






h̄

� jtj supfk(ôÛih̄)[H,åt�s f ]h̄ � fH,åt�sfgkh̄ : jsj � jtjg.

From 2.2 above it is clear that it now suffices to control the size of

k(ôÛih̄)[H, g]h̄ � fH, ggkk

where g ≥ åt�sf .
We now need to use the same arguments as in the Proof of Theorem 9.3 of [Rf], but

keeping track of åt�s so as to get an estimate which is uniform in s. For any multi-index
ñ let ∂ñ denote the corresponding (higher) partial derivative for the basis fEjg chosen
earlier. The norm k kk is equivalent to a finite linear combination of the semi-norms
f 7! k∂ñfk1 for various ñ’s. So it suffices to obtain suitable estimates for these semi-
norms. But, just as in the Proof of Theorem 9.3 of [Rf], repeated application of Leibniz’
rule shows that 


∂ñ�(ôÛih̄)[H, g]h̄ � fH, gg

�



1

is dominated by a finite linear combination of terms of form

k(ôÛih̄)[∂óH, ∂ïg]h̄ � f∂óH, ∂ïggk1,

where the coefficients of the linear combination do not depend on H, g or h̄. But H is
fixed throughout, and so for notational simplicity we can set F ≥ ∂óH for any given ó.
Then we see that it suffices to obtain for any given multi-index ï, a suitable estimate for
the size of

(ôÛih̄)[F, ∂ïg]h̄ � fF, ∂ïgg,

where we remember that g ≥ åt�sf .
To bring all this even closer to the Proof of Theorem 9.3 of [Rf], we use the commu-

tativity of B to write

[F, ∂ïg]h̄ ≥
�
F ðh̄ (∂ïg) � F(∂ïg)

�
�
�
(∂ïg) ðh̄ F � (∂ïg)F

�
.

Then we see that it suffices to obtain a suitable estimate for the size of

(2. 3) (2ôÛih̄)
�
F ðh̄ (∂ïg)� F(∂ïg)

�
� fF, ∂ïgg

and a similar term. But by the last displayed equation in the Proof of Theorem 9.3 of [Rf]
we find that (2.3) is equal to h̄2ôiR(h̄) where (after omitting an erroneous subscript J)

R(h̄) ≥ (2ôi)�2 X JpjJqk

Z 1

0

Z 1

0
(akj ðh̄rs bqp) ds r dr,

and where akj ≥ ãEkãEj (F) and bqp ≥ ãEqãEp(∂ïq). From Proposition 2.2 of [Rf] it then
follows that each summand of R(h̄) is dominated for the norm k kk by ckFkmk∂ïgkm for
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an integer m and constant c independent of F and g. Note further that k∂ïgkm � dkgkn

for a suitable integer n and constant d. But kgkn ≥ kåt�sfkn, which is uniformly bounded
for t � s ranging in any finite interval, because of the continuity given by Theorem 1.4.
It follows that kR(h̄)kn is uniformly bounded for h̄ 2 I, for our fixed f , and for t in any
fixed finite interval. Because our error term involved h̄R(h̄), we thus obtain the desired
convergence as h̄ ! 0.

We remark that one can follow the above analysis more carefully to obtain a specific
bound for kR(h̄)kn.

We also remark that with somewhat more care we could use the commutativity of
B and the symmetry of [H,åt�sf ] and fH,åt�sfg to obtain an error term of form h̄2R(h̄)
rather than h̄R(h̄), as is usually obtained in discussions of related situations in the liter-
ature, such as expansion 16 of [E]. This possibility was not discussed in [Rf] since it is
not available when A is not commutative.

The following comments were stimulated by conversations with A. Vershik. Consider
the ordinary 2-torus T2, and let L0 denote C1(T2) as Lie algebras with the standard
Poisson bracket. The process of associating to elements of L0 their Hamiltonian vector
fields is a Lie algebra homomorphism of L0 onto the Lie algebra of those smooth vector
fields which generate area-preserving diffeomorphisms of T2. (This homomorphism is
an isomorphism once one factors by the subspace of constant functions, the center of L0.)
As seen in Example 10.2 of [Rf], the deformation quantization of the symplectic space
T2 for the action of R2 gives the quantum 2-tori (the rotation algebras) Aí (where í ≥ h̄).
Let Lí denote Aí viewed just as a Lie algebra with its commutator bracket, forgetting
the associative algebra structure. It is remarked in example 3e of [V] (and in references
given there and in [S]) that Lí tends to L0 as í goes to 0 (with similar statements for
other crossed product algebras). We can view Theorem 9.3 of [Rf], applied to T2, as then
making this intuition rigorous. In the same way, Theorem 2.1 of the present paper, applied
to T2, goes in the direction of saying rigorously that the group of inner automorphisms of
Aí coming from unitaries in the connected component of the unitary group of Aí, tends
to the group of area-preserving diffeomorphisms of T2 as í goes to 0. (For information
on the structure of this unitary group of Aí see [Rf1].)

3. The Proof of Theorem 1.3. We remark that with suitable care the steps below
can be carried out with V replaced by a general connected Lie group. For simplicity of
exposition we treat only V here since this is all we need, but see the appendix for the
general case.

LEMMA 3.1. Let N be a locally compact space, let M ≥ VðN, and letã be the action
of V on M coming from the translation action of V on itself. Let Φ 2 B1(M, L), and view
éΦ as a derivation of A1 (not B1). Then éΦ is the pregeneratorof a one-parameter action
å on A, with corresponding flow å on M. Furthermore, å carries A1 into itself, and the
flow å on M carries each leaf V ð fng into itself.

PROOF. Because here the action ã of V on M is free, this lemma is essentially a spe-
cial case of Theorem 2.4.26 of [B] (which is closely related to results in [BD]). Its proof
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is basically just a matter of applying the usual existence theorem for flows generated by
Lipschitz vector fields on Rd to obtain a global flow on each leaf V ð fng. Then one
applies the theorem concerning the continuous dependence of such flows on their initial
conditions to show that, as n varies, the corresponding flows fit together continuously to
give a flow on M. From this approach we see that å carries each leaf of M into itself.
Theorem 2.4.26 of [B] also gives that A1 is a core for the generator of the action å, and
that for each f 2 A1 we have

(3. 2) (dÛdt)jt≥såt(f ) ≥ ås

�
éΦ(f )

�
.

Since in our case éΦ carries A1 into itself, a simple induction argument shows that å
carries A1 into itself.

LEMMA 3.3. Let N, M,ã, Φ and å be as in the previous lemma. Let å also denote the
corresponding one-parameter action on Cb(M). Then å carries B ≥ B(M,ã) into itself,
is strongly continuous on B, and carries B1 into itself. Let éΦ be the derivation of B1

defined earlier. Then éΦ is a pregenerator for å acting on B.

PROOF. Note that we cannot directly invoke Theorem 2.4.26 of [B] here because, in
general, the action ã on the maximal ideal space of B will not be locally free. In fact, the
most difficult part of the proof is to show that each åt actually carries B into itself.

Because of the special form of M, we can initially work on each leaf Vðfng separately.
For simplicity of notation we temporarily consider our n to be fixed, and omit it from the
notation, and thus work on V itself. But we must be careful to obtain estimates which are
uniform in n 2 N.

By restriction we view Φ as an element of B1(V, L). Thus it is smooth on V in the
usual sense. Now B ≥ B(V) will consist exactly of the uniformly continuous functions
on V. Thus to show that B is carried into itself by å it clearly suffices to obtain an estimate
of the form

kåt(x) � åt(y)k � Ktkx � yk

for all x, y 2 V, where Kt is a constant independent of x and y. Fix x, y 2 V with x Â≥ y,
and let w ≥ y � x. Let g be the V-valued function on R2 defined by

g(t, r) ≥ åt(x + rw).

From the usual facts about solutions of differential equations, g is smooth since Φ is.
Note that for fixed t the path g(t, r) goes from åt(x) to åt(y) as r goes from 0 to 1. We
consider the length, L(t), of this path. We use ideas from the first variational equation
for ordinary differential equations (e.g. p. 190 of [A]).

Let h ≥ ∂gÛ∂r, so that

L(t) ≥
Z 1

0
kh(t, r)k dr.
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Now, by the fact that partial derivatives commute, we have

∂hÛ∂t ≥ (∂Û∂r)(∂gÛ∂t)

≥ (∂Û∂r)(Φ Ž g)

≥
�
(DΦ) Ž g

�
Ž (∂gÛ∂r)

≥
�
(DΦ) Ž g

�
Ž h,

where DΦ is the usual total derivative of Φ. Note that since åt is a diffeomorphism and
w Â≥ 0, h never takes value 0, and so the function kh(t, r)k is smooth, as is then L. A little
calculation then shows that

j(dLÛdt)(t)j �
Z 1

0
k(∂hÛ∂t)(t, r)k dr � kDΦk1 L(t).

Consequently
L(t) � L(0) etkDΦk1 ≥ kx � yk etkDΦk1 .

Since L(t) is the length of some curve from åt(x) to åt(y), it follows that

kåt(x) � åt(y)k � kx � yk etkDΦk1 .

This is an estimate of the desired type, and so as indicated above, å carries B into itself.
Notice that we have used the hypotheses that Φ 2 B1(V, L) to ensure that kDΦk1 is
finite.

We return now to the general case in which M ≥ V ðN. As long as we now interpret
kDΦk1 as a supremum over all of M, which is still finite since Φ 2 B1(V, L), we see
that the above inequality is uniform over all the leaves. It follows easily that å carries B
into itself in this case also.

We must now show that the action å on B is strongly continuous. By multiplying
elements of B1 by elements of A1 which have value 1 on neighborhoods of various
points, we see that every element of B1 agrees locally with an element of A1. It follows
that for any f 2 B1 and any m 2 M we have

(dÛdt)
�

f
�
åt(m)

��
≥ (éΦf )

�
åt(m)

�
,

since this can be viewed as a local statement. In particular, the derivative on the left
exists. Consequently

(3. 4) f
�
åt(m)

�
≥ f (m) +

Z t

0
(éΦf )

�
ås(m)

�
ds,

so that
kåtf � fk1 � jtj kéΦfk1.

Thuså is strongly continuous on B1. Since å is isometric and B1 is dense in B, it follows
that å is strongly continuous on B.

We must now show that B1 is contained in the domain of the infinitesimal generator
of å, and that on B1 this generator agrees with éΦ. We argue much as in the Proof of

https://doi.org/10.4153/CJM-1997-008-8 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1997-008-8


THE CLASSICAL LIMIT OF DYNAMICS 169

Lemma 2.4.3 of [B]. Let f 2 B1, so that éΦf 2 B1. Because we now know that å
is strongly continuous on B, the integral

R t
0 ås(éΦf ) ds is well-defined for the supremum

norm on B. Now evaluation at any point m 2 M is continuous for this norm, and so can
be brought inside the integral. From (3.4) it then follows that

åtf � f ≥
Z t

0
ås(éΦf ) ds.

From this it follows immediately that

(dÛdt)jt≥0(åt f ) ≥ éΦf

for the norm on B, so that f is in the domain of the generator of å. Furthermore, we see
that on B1 this generator agrees with éΦ.

It follows readily that equation (3.2) holds for any f 2 B1. From this equation and
the fact that éΦ carries B1 into itself, it follows by a simple induction argument that å
carries B1 into itself. We can now apply Corollary 3.1.7 of [BR] to conclude that B1 is
a core for the generator of å, i.e. that this generator is the closure of éΦ.

CONCLUSION OF THE PROOF OF THEOREM 1.3. Let M, ã, A and B be as in the
statement of Theorem 1.3. Let P ≥ V ðM, and let ú denote the action of V on P coming
from translation on V. Let ë be the map from P to M defined by ë(x, m) ≥ ãx(m). Since
ë is surjective, it gives an isometric isomorphism, still denoted by ë, of B(M) onto a
subalgebra of B(P). When convenient we will simply identify B(M) with this subalgebra.
Note that ë is equivariant for ã and ú. Thus B(M) is a ú-invariant subalgebra of B(P).
Define (as suggested to me by Alan Weinstein) an action, ç, of V on P by çy(x, m) ≥�
x�y,ãy(m)

�
. Note that ëŽçy ≥ ë for any y 2 V, and that the ç-orbits of points in P are

exactly the ë-preimages of points in M. Let Φ 2 B1(M, L) be given, and set Φ̂ ≥ Φ Ž ë.
It is easily seen that Φ̂ 2 B1(P, L), and clearly Φ̂ Ž çy ≥ Φ̂ for all y 2 V. Let å̂ denote
the flow for Φ̂ on P, whose existence is assured by Lemma 3.1, and which carries B1(P)
into itself by Lemma 3.3. Fix m 2 M and y 2 V. Then çy gives a bijection of V ð fmg
onto Vðfãy(m)g, and under this bijection the restrictions of Φ̂ agree. By the uniqueness
theorem for ordinary differential equations, the corresponding flows must agree. But by
construction these flows are just given by å̂. Thus å̂ commutes with each çy. It follows
that for each t the homeomorphism å̂t carries each ç-orbit into exactly another ç-orbit,
and so determines a “flow”, å, on M. It is easily seen that ë is an open map (ç is a free
and proper action). From this and the continuity of å̂ it follows that å is continuous, so
that it really is a flow.

Note that by construction ë is equivariant for å and å̂. Since ë carries B(M) isometri-
cally into B(P) and å̂ carries B(P) into itself and is strongly continuous on B(P), it follows
that å carries B(M) into itself and is strongly continuous there. (Note that ë does not carry
A(M) into A(P).) For the same reasons,åwill carry B1(M) into itself. A straight-forward
calculation using the equivariance of ë for ú and ã shows that for f 2 B1(M) we have

éΦ̂(f Ž ë) ≥ (éΦf ) Ž ë.
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Now for fixed m 2 M we have (åtf )(m) ≥
�
å̂t(f Ž ë)

�
(0, m), and so

(dÛdt)jt≥0(åtf )(m) ≥ (dÛdt)jt≥0

�
å̂t(f Ž ë)

�
(0, m) ≥ (éΦf )(m).

We can now argue as in the last parts of the Proof of Lemma 3.3 to conclude that B1(M)
is in the domain of the generator of å, that on B1(M) this generator agrees with éΦ, and
that B1(M) is a core for this generator.

4. The proof of Theorem 1.4. Exactly as in the conclusion of the Proof of Theo-
rem 1.3, let P ≥ V ð M with action ú of V, so that B(M) is identified via ó with a CŁ-
subalgebra of B(P), and å on B(M) is just the restriction of å̂ on B(P). Since the action ã
of V on B(M) is just the restriction of the action ú on B(P), the semi-norms defined earlier
in terms of ã will just be the restrictions to B(M) of the corresponding semi-norms for ú
on B(P). Thus we see that it suffices to prove Theorem 1.4 for the setting of Lemma 3.3.
This means that it suffices to prove the theorem on each leaf V ðfmg, as long as we ob-
tain uniform estimates in m. Thus we consider first the case M ≥ V with ã the action ú of
translation, and we consider Φ and å as being on V. Then å can be viewed as a function
from R ð V to V which is smooth. We will let Dk denote k-th derivative for variables in
V. We identify L and V in the usual way. Then for each fixed (t, x) 2 RðV the expression
(Dkå)(t, x) is a symmetric k-linear map from V to V. We use the inner product on V to
define the norm of this map. The proof of the following lemma is of a type familiar in
the theory of ODE’s.

LEMMA 4.1. For any k Ù 0 and any finite interval I about 0 there is a constant K
such that

k(Dkå)(t, x)k � K

for all x 2 V and t 2 I.

PROOF. We argue by induction on k. Let ∂ denote derivatives with respect to t. Thus
∂å ≥ ΦŽå, where here and in the following we work pointwise. Now D commutes with
∂, so

∂(Då) ≥ D(∂å) ≥ D(Φ Ž å) ≥
�
(DΦ) Ž å

�
Ž Då

by the chain rule. Thus

(Då)(t, x) ≥ (Då)(0, x) +
Z t

0

�
DΦ

�
ås(x)

��
Ž
�
(Då)(s, x)

�
ds,

and so, since å0(y) ≥ y for all y,

kDå(t, x)k � 1 + kDΦk1
Z t

0
k(Då)(s, x)k ds.

By Gronwall’s inequality (Lemma 4.1.7 of [A]) we obtain

kDå(t, x)k � exp(tkDΦk1),
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with the right-hand side independent of x. Thus the Proof of Lemma 4.1 is complete for
k ≥ 1.

In the proof for higher k we argue by induction. Thus assume that there is a constant
Kk such that for each j � k� 1 we have k(Djå)(t, x)k � Kk for t 2 I and x 2 V. Much as
above, we have

∂(Dkå) ≥ Dk(∂å) ≥ Dk(Φ Ž å).

We now invoke the chain rule for higher derivatives, as given for example on p. 92 of
[A]. Suppressing some of the notation given there, we obtain

∂(Dkå) ≥
�
(DΦ) Ž å

�
Ž (Dkå) + Gk,

where

Gk ≥
kX

m≥2

X�
(DmΦ) Ž å

�
Ž
�
f(D‡må)g

�
,

with each ‡m � k � 1. By the induction hypothesis, k(D‡må)(t, x)k � Kk for each t 2 I
and x 2 V. By our hypothesis on Φ each k(DmΦ)(x)k is uniformly bounded over V. It
follows that there is a constant, Lk, such that

kGk(t, x)k � Lk

for all t 2 I and x 2 V. Now

(Dkå)(t, x) ≥ (Dkå)(0, x) +
Z t

0

�
Dk(Φ Ž å)

�
(s, x) ds.

But for k ½ 2 we have (Dkå)(0, x) ≥ 0. Thus

k(Dkå)(t, x)k �
Z t

0

�


(DΦ)
�
ås(x)

�


 k(Dkå)(s, x)k + kGk(s, x)k
�

ds

� kDΦk1
Z t

0
k(Dkå)(s, x)k ds + cLk,

where c is the length of the interval I. Thus again by Gronwall’s inequality we find that

k(Dkå)(t, x)k � cLk exp(tkDΦk1).

PROOF OF THEOREM 1.4. We deal first with the case M ≥ V. So for f 2 B1 we
view Dkf as a function from V into the normed space of k-linear maps from V into the
complex numbers. Let I be a finite interval about 0 in R. As in the above lemma, we let
∂ denote derivatives in t. Then, working pointwise, we have for any f 2 B1

∂
�
Dk(f Ž å)

�
≥ Dk

�
∂(f Ž å)

�
≥ Dk

�
(éΦf ) Ž å

�
.

Set g ≥ éΦf , so that g 2 B1. Then if we apply the chain rule to Dk(gŽå), much as in the
Proof of Lemma 4.1, and if we apply the conclusion of Lemma 4.1, we find that there is
a constant, K, independent of g and x 2 V, such that

k
�
Dk(g Ž å)

�
(t, x)k � K

�X
j�k

kDjgk1
�
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for all t 2 I. Application of the chain rule to Djg ≥ Dj(éΦf ) shows that there is a constant
L, depending only on Φ and k, such that

X
j�k

kDjgk1 � L
X

j�k+1
kDjfk1.

Since �
Dk(f Ž å)

�
(t, x) � (Dkf )(x) ≥

Z t

0
Dk(g Ž å)(s, x) ds,

it follows that
k
�
Dk(f Ž åt � f )

�
(x)k � tKL

X
j�k+1

kDjfk1

for all t 2 I and x 2 V. But the right-hand side is independent of x, so we obtain the
desired strong continuity in this case.

Now consider the case where M ≥ V ðN as in Lemma 3.3. On each leaf V ðfng we
will have the above inequality, and the constant KL depends only on Φ and its derivatives
on that leaf. But by examining a bit more carefully the origin of KL and by using the
fact that Φ and its derivatives are assumed to be uniformly bounded over all of M, we
see that we can find finite KL which works uniformly over all of M. The comments at
the beginning of this section complete the proof of strong continuity. The proof of the
remaining facts in the statement of Theorem 1.4 is then essentially the same as the proof
of the similar facts in Lemma 3.3.

Appendix.
Lipschitz Flow. We sketch here how to use a powerful theorem of Derek Robinson [Rs1]
to prove Theorem 1.3. We carry this out in the more general setting of an action of an
arbitrary (connected) Lie group G, with Lie algebra ª. Let ã be an action of G on a
locally compact space M, with corresponding action ã on A ≥ C1(M), and on B, the
largest algebra of bounded continuous functions on M on whichã is strongly continuous.
In the same way, we define B(M, ª), a generalization of our earlier B(M, L). We have the
corresponding spaces of smooth vectors A1, B1, and B1(M, ª). Much as earlier, we
view elements of B1(M, ª) as “smooth bounded vector fields” on M.

Let Φ 2 B1(M, ª). Then, much as done earlier, Φ determines a derivation, éΦ, on A1

and B1.

THEOREM A1. The derivation éΦ is the pregenerator of a one-parameter group, å,
of automorphisms of B, which carries A into itself, and so determines a flow, å, on M.

PROOF. Robinson’s theorem tells us that to show that éΦ is a pregenerator it suffices
to verify two conditions. The first is the usual condition that éΦ be conservative. The
second and crucial condition is that éΦ be Lipschitz for the action ã. We recall here
briefly what this means.

As we did earlier for L, choose an arbitrary inner product on ª. This can be translated
around G to define a left-invariant Riemannian metric on G. We denote the corresponding
length function [Rs2] by jxj. Let ç be an action of G on a Banach space U. Let U1
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denote the smooth vectors for ç. For u 2 U1 let Du denote the linear map from ª to U
defined by (Du)(X) ≥ çX(u). We use the inner product on ª to define kDuk, and we set
kuk1 ≥ kuk + kDuk.

DEFINITION A2 [RS1]. With notation as above, an operator T: U1 ! U is said to
be Lipschitz if there are constants é Ù 0 and K such that

k adçx (T)uk � Kjxjkuk1

for all u 2 U1 and all x 2 G with jxj Ú é. (Here adçx (T) ≥ çx Ž T � T Ž çx.)

We will need the following fact, whose proof is a straightforward argument using the
lengths of curves in G.

PROPOSITION A3. With notation as above, each operator çX for X 2 ª is a Lipschitz
operator for ç.

We now check that éΦ and ã satisfy Robinson’s conditions. That éΦ is conservative
is seen in the usual way by considering, for any f 2 B1, the functional consisting of
evaluation at a point of the maximal ideal space of B at which f takes its maximal absolute
value. We now sketch the verification that éΦ is a Lipschitz operator for ã. It is clear
from the definition that sums of Lipschitz operators are again Lipschitz operators. Thus
it suffices to show that any operator of the form hãX for h 2 B1 and X 2 ª is Lipschitz.
But such an operator is the composition of the operators corresponding to (multiplication
by) h and ãX . It is now convenient for us to make:

DEFINITION A4. With notation as earlier, we say that u 2 U is a Lipschitz vector for
the action ç if there are constants é Ù 0 and K such that

kçx(u)� uk � Kjxj

for jxj Ú é.

Then a straightforward argument again using the length of curves in G yields the first
part of the following proposition. The second part then follows easily from the first.

PROPOSITION A5. With notation as earlier, any h 2 B1 is a Lipschitz vector for ã.
The operator, Mh, of multiplication on B1 by h is a Lipschitz vector for Adã and the
operator norm.

We will say that an operator T on U1 is of order 1 if there is an inequality of the form

kTuk � Kkuk1

for u 2 U1. We remark that the operators ãX for X 2 ª are clearly of order 1. By a
straightforward argument we then obtain:
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PROPOSITION A6. Let ç be an action of G on a Banach space U. Let T be a Lipschitz
operator on U1 for ç, of order 1. Let S be a bounded operator on U which is an operator-
norm Lipschitz vector for Adç, and carries U1 into itself. Then ST is a Lipschitz operator
on U1 for ç.

From Propositions A3, A5 and A6 it follows that éΦ is a Lipschitz operator for ã. We
phrased the above discussion for B, but all holds equally well for A. We can thus apply
Robinson’s theorem to obtain a one-parameter action on B which carries A into itself,
and so gives a flow on M.
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