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THE CLASSICAL LIMIT OF DYNAMICS FOR
SPACES QUANTIZED BY AN ACTION OF R

MARC A. RIEFFEL

AsstrRACT.  Wehave previously shown how to construct a deformation quantization
of any locally compact space on which a vector group acts. Within this framework we
show here that, for a natural class of Hamiltonians, the quantum evolutions will have
the classical evolution astheir classical limit.

Introduction. Let M be alocally compact space, and let o be an action of V = R?
on M. Let A = C, (M), the C*-algebra of complex-valued continuous functions on M
which vanish at infinity, and let o denote also the corresponding action of V on A. Let J
be a skew-symmetric operator on V. Then J determines a“ Poisson bracket” on A, andin
[Rf] we have shown how to construct a strict deformation quantization of A into a one-
parameter family, Ar, of non-commutative C*-algebras, in “the direction of this Poisson
bracket”. The purpose of the present paper is to show that within this framework, the
guantum evolution of the systemwhich is determined by any Hamiltonian from anatural
class, converges ash — 0 to the classical evolution for that Hamiltonian, as one would
expect.

Our aim hereis not at all to obtain the strongest possible results—a more elaborate
and lengthy analysis could deal with a far wider class of Hamiltonians than the ones
we consider here. Rather our aim is to show how naturally this matter fits within the
framework of [Rf]. The main argument, given in Section 2, isrelatively simple and brief
(though heavily dependent on the resultsin [Rf]).

Therest of this paper, contained in Sections 3 and 4, isconcerned simply with showing
that the Hamiltonians which we consider do have classical flows (evolutions) which exist
for all time, and that these classical flows have the smoothness properties needed for our
analysisin Section 2. Thisis a matter of some independent interest, asindicated in [B],
and our situation permits us to remove the restriction to locally free actions which is
required in some of the relevant placesin [B]. (I thank Alan Weinstein for a suggestion
which simplified my proof of the existence of the classical flow.) This gives a partial
answer to Question 2.4.29in [B]. In the Appendix we sketch how to obtain the existence
of our classical flows as a consequence of a powerful Theorem of D. Robinson [Rs1]. (1
thank George Elliott and Ola Bratteli for commentswhich led meto look at this paper of
Robinson.) It is natural to carry this out in the more general context of an arbitrary Lie
group acting on a space. This gives amore substantial partial answer to Question 2.4.29
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of [B]. But | have not seen how to usethis approach to conveniently give the smoothness
propertieswhichwe need for the proof of our main theorem (see Question 1 of [Rs1]), and
so | havefound it best to include the much more elementary approach given in Section 3,
since it develops most of the tools needed for Section 4.

Thereis already an enormous literature concerned with the classical limit of quantum
evolutions, mostly on R?", and we will not try to review it here. Many references can be
found by chasing back the references givenin [E, Rr, W].

The construction of strict deformation quantizations developed in [Rf] works equally
well for non-commutative C*-algebras, and so one can ask whether the results of the
present paper extend to that case. Thedifficulty isthat usually the Poisson bracket applied
to aHamiltonian does not give a derivation of the non-commutative algebra, and so one
cannot expect it to generate a group of automorphisms analogousto the classical flow. In
other words, | don’t know how to even pose the question we consider here, for the more
general situation. (In the very special case where all is sufficiently related to the center
of the algebra one will obtain a derivation, and presumably the results of the present
paper can be extended to that case; but at present it is not clear to me that thisis of any
particular interest and so | have not pursued it here.)

1. Theclassical flows. The purpose of this section isto describe the classical vec-
tor fields, and corresponding classical flows, which we will consider, and to state those
properties of these classical flows which we will need later. We will defer the proofs of
these properties until after our discussion of the classical limits of the quantum flowsin
the next section (where we will also relate our classical vector fieldsto Hamiltonians).

Let M, V, A and o be as in the introduction. It is the action o which gives M its
“differential” structure. (It would certainly be of interest to consider actions of more
general Lie groupsthan V, but | don’t know how to construct deformation quantizations
in that generality.) Let Cy(M) denote the algebra of bounded continuous functions on
M, the multiplier algebra of A. The evident action « of V on C,(M) is not in general
strongly continuous. Let B (or B(M), or B(M, «)) denote the subspace of elements of
Cp(M) on which « is norm-continuous, so that B is the largest C*-subalgebra of C,(M)
on which « is strongly continuous. Note that B is a unital C*-algebra containing A as
an essential ideal. (We could now view B as the algebra of continuous functions on its
maximal ideal space, which is compact and on which o gives an action, but thisis not
technically advantageousat this point.)

Let A~ and B> denote the dense x-subalgebras of A and B consisting of smooth (i.e.
infinitely differentiable) vectors [B] for «. Asin Chapter 9 of [Rf] we will distinguish
between V and its Lie algebra, denoting the latter by L. Thusfor each X € L we have a
corresponding derivation, ax, on A> and B>, given by the infinitesimal generator of the
one-parameter group of operators corresponding to X. We will heuristically think of oy
as a smooth tangent vector field on M, and think of the tangent space at each point m of
M as corresponding to L, by meansof the ax’s followed by a point evaluation at m. Then
we will think of a continuous real vector-field on M as being just a continuous L-valued
function on M.

https://doi.org/10.4153/CJM-1997-008-8 Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1997-008-8

162 MARC A. RIEFFEL

Fix for therest of this paper an arbitrary positive-definiteinner product on L. Heuristi-
cally thismakes M into a Riemannian “manifold”. Let C,(M, L) denotethe Banach space
of continuous bounded L-valued functions on M, equipped with the supremum norm us-
ing the inner product on L. We have the evident action « of V on Cy(M, L). Much as
above, denote by B(M, L) the largest subspace of Cy(M, L) on which « is strongly con-
tinuous, and by B>(M, L) the subspace of smooth vectors for «. We think of B*(M, L)
as the space of smooth bounded vector fieldson M.

Let ® € B*(M,L). For any f € B> and any m € M the function X — f(a;l(m)) is
smooth on 'V, and in particular it will have afinite total derivative, (Df )y, at X = 0. This
isalinear functional on L. Thuswe can defineamap, 64, from B> toitself by

(1.1) (Gof)(M) = (Df )m(P(M)).

Thendg isax-derivation of B, in accordancewith our heuristic view that ® isasmooth
vector field. To see this, note that the above is just a coordinate-free way of saying the
following. Let {E;} beabasisfor L, and let {®;} denote the corresponding components
of ®. Notethat ®; € B> for eachj. Let 9; = ag, ax*-derivation of B*. Then

(1.2) Sof = Zy(8;f)

for f € B*. It isnow clear that ¢ is a x-derivation of B>, and that it carries A* into
itself. (If A were non-commutative, we could not expect 6 to beaderivation unless each
®; werein the center of B.)

The main fact which we need is that each @ € B>*(M, L) determines a flow on M
which existsfor al time, and which carries B into itself. We formulate this as:

THEOREM 1.3. Let M, « and B be as above, and let @ € B*(M,L). Thenéy isa
pregenerator, that is, thereis a (unique) strongly continuous one-parameter group, 3, of
automor phisms of B whose generator isthe closure of 6. Furthermore, 3 carriesA into
itself, and so 3 comes from a flow on M (which we will also denote by 3).

We will defer the proof of this theorem to Section 3.

We also need control over the higher derivatives associated with the flow 3. For each
f € B> we havethe higher total derivatives, D*f, of f. Thus each D¥f isafunction on M
into the (symmetric) k-linear functionals from L to the complex numbers, defined by

(D" )m(X4, . .., Xi) = (ax, - - - ax F)(m)

for eachm € M. Each DXf is smooth and bounded, because of the definition of B*. Thus,
by using the inner product on L to define the norm of k-linear functionalson L, we can
define semi-norms || || on B> by

Ifllgg = D[l = sup{||(D*)m|| : m € M}.

We will need:
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THEOREM 1.4. With notation as above, let 3 be the action on B for ® € B>*(M, L)
asin Theorem 1.3. Then the action 3 is strongly continuous for each of the semi-norms
| Il on B>. Furthermore, for any f € B> the functiont — 3f is smooth for these
semi-norms, and its first derivativeis (0of) o 5.

We remark that 3 will not usually be uniformly bounded for the above semi-norms.
We defer the proof of this theorem to Section 4.

2. Theclassical limit. Asabove, we let o be an action of V on alocally compact
space M. Thuswe have the algebras A and B, and their smooth versions A~ and B>. We
let J be a skew-symmetric operator on L, so that J determines a Poisson bracket, {, },
on A* and B™. It is defined, in terms of abasis {E;} for L, by

{f.9} = > Jikag (Fae, (9).

For each “Planck’s constant” h we let Ay and By denote the corresponding deformed C*-
algebras, as constructed in [Rf]. Thus Ay has A as dense subspace, with product given
there by

fxrg = [[ omu)en(@e(u-v)dudv

(an oscillatory integral, with e(t) = €?'t), and with corresponding C*-norm. The invo-
lution is still complex-conjugation. We define By similarly. Then Ag will be an essential
ideal in By by Proposition 5.9 of [Rf]. Furthermore, o gives an action of V on Ay and By
by Proposition 5.11 of [Rf], and the corresponding subspaces of smooth vectorswill be
exactly A>* and B> as vector spaces, by Theorem 7.1 of [Rf].

The Hamiltonians which we will consider consist of the real-valued functionsin B>.
So fix such areal-valued H € B>*. The mapping f — {H,f} isaderivation of A~ and
B>. If for abasis {E;} for L we set

() = 3 Ji( g (H)) (MEs,

we seethat ® isafunction from M to L of the kind considered in the first section. In par-
ticular its coefficient functions arein B> (and real) so that @ € B>°(M, L). Furthermore,
itisclear that {H,f} = 6o (f) for eachf € B*. Thus ® isthe “Hamiltonian vector field”
for H.

Accordingto Theorem 1.3, 6¢ determinesaflow, 3, on M, with corresponding strongly
continuous one-parameter action on A and B. This isthe “Hamiltonian flow” for H.

For eachhwelet [, ] denote the ordinary commutator for the corresponding product
in B>, so that

[f.dln=f xrg— g xrf.

Set H' = (—m/R)H, viewed as a self-adjoint element of B. (The —r comes from our
conventionsin [Rf] for the definition of xg, given above.) Thenthe map f — [iH", f]ris

a x-derivation of Ay and By which is bounded (but with norms going to +oco ash — 0).
Thus H" determines a one-parameter group, 3", of *-automorphisms of Ay and B, the
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corresponding quantum flow. This flow consists of inner automorphisms of By. For let
U = expy(itH") for eacht € R, where exp; denotes the exponential defined by the usual
power series, but using the product xg in By. Then U] is a unitary element of Bs. By the
usual calculationswe will have

A(F) = U xpf xg U,

for al f € By. Againitisclear that 3 carriestheideal Ay into itself. But noticethat 37 is
not only strongly continuous, but actually norm (i.e. uniformly) continuous (since H" is
bounded).

The main theorem of this paper is:

THEOREM 2.1. Wth notation as above, for any f € B> we have
187 — Bif|lg—0 as A—0
for eacht € R, with the convergencebeing uniformint over any finite interval.

It isin this sensethat, within our framework, the quantum flow has the classical flow
asitsclassical limit.

We remark that in the proof we will see how to obtain specific estimates for the con-
vergence.

ProoOF. Let | denote the interval [—1, 1]. We only need consider h’siin I. We will
denote by B® the space B* equipped with the norm || || which is the sum of || ||
with the semi-norms || ||y (defined near the end of Section 1) for j < k. This normis
equivalent to the norm used in [Rf], defined on p. 1 of [Rf]. We choosek large enough
that we can apply the little argument near the beginning of the Proof of Theorem 9.3 of
[Rf] which showsthat there is a constant, ¢, independent of f € B>, such that

(2.2 [f]l7 < cl|f[|x

for allh € I. Fix f € B*. From Theorem 1.4 we know that t — 3;f can beviewed asa
smooth function on V with valuesin B®, whosefirst derivativeis {H, 3f }. From 2.2 it
follows that t — 3 is smooth as a function with values in B, for eachf € I, with the
samefirst derivative.

Fixh e I. Then the smooth functiont — dfwith valuesin By clearly has asderivative
iH" xg U]. We now adapt to our situation a device which is commonly used to compare
semigroups of operators. Asan example quite closeto our present situation, seethe Proof
of Equation 16 of [E]. (Undoubtedly the full expansion of Equation 16 could be obtained
in our framework t00.)

Fix t, and define ¢ for thist by

#(S) = Ul x5 (Bisf) xp U

From the commentsabove, ¢ isadifferentiable function with valuesin By, whose deriva-
tiveisgiven by

¢'(8) = Ul xu ((m/I)[H, Biof | — {H, B-sf }) xm UL,
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Notice that ¢(0) = g¢f while 4(t) = &f. Thus

165 — il = | [ '@ ds]
< [t sup{ |G /M, of T — {H, Bt i 19| < ).

From 2.2 aboveit is clear that it now sufficesto control the size of

|G /iR)[H, s — {H, g}l

whereg = Bi_sf .

We now need to use the same arguments as in the Proof of Theorem 9.3 of [Rf], but
keeping track of 3;_s so asto get an estimate which isuniformin s. For any multi-index
1 let 0" denote the corresponding (higher) partial derivative for the basis {E;} chosen
earlier. The norm || ||k is equivalent to a finite linear combination of the semi-norms
f +— ||0"f || for various pu’s. So it sufficesto obtain suitable estimates for these semi-
norms. But, just as in the Proof of Theorem 9.3 of [Rf], repeated application of Leibniz’

rule shows that
Jor (¢r/POIH, gl — {H. 9},

is dominated by afinite linear combination of terms of form

1 /)[9"H, 0l — {9"H, 09} |,

where the coefficients of the linear combination do not depend on H, g or h. But H is
fixed throughout, and so for notational simplicity we can set F = 0”H for any givenv.
Then we seethat it sufficesto obtain for any given multi-index A, asuitable estimate for
the size of

(m/iR)[F, & dlr — {F,0"g},

where we remember that g = §isf .
To bring all this even closer to the Proof of Theorem 9.3 of [Rf], we use the commu-
tativity of B to write

[F.0"glr = (F xn (9"9) — F(9*0)) — ((0"0) xw F — (0" g)F).
Then we see that it suffices to obtain a suitable estimate for the size of

(2.3) (2r/i)(F x5 (0°0) — F@0)) — {F.0"g}

and asimilar term. But by the last displayed equation in the Proof of Theorem 9.3 of [Rf]
we find that (2.3) is equal toh27iR() where (after omitting an erroneous subscript J)

o 1 01
REA) = (2ri) ZJijqk‘/O /0 (a4 X bp) dsr

and where a; = ag, g (F) and b, = aEanp(akq). From Proposition 2.2 of [Rf] it then
follows that each summand of R) is dominated for the norm || || by c||F||m||0*g||m for
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an integer m and constant ¢ independent of F and g. Note further that ||0*g||m < d||gl|n
for asuitableinteger nand constantd. But ||g||n = || Bt—sf ||, whichisuniformly bounded
for t — sranging in any finite interval, because of the continuity given by Theorem 1.4.
It follows that ||RM)||» is uniformly bounded forh € I, for our fixed f, and for t in any
fixed finite interval. Because our error term involved hR(h), we thus obtain the desired
convergenceash — 0. n

We remark that one can follow the above analysis more carefully to obtain a specific
bound for ||RM)]|n.

We also remark that with somewhat more care we could use the commutativity of
B and the symmetry of [H, 3;_sf] and {H, 3;_<f } to obtain an error term of form h?R)
rather thanhR(M), as is usually obtained in discussions of related situations in the liter-
ature, such as expansion 16 of [E]. This possibility was not discussed in [Rf] sinceit is
not available when A is not commutative.

Thefollowing commentswere stimulated by conversationswith A. Vershik. Consider
the ordinary 2-torus T2, and let Ly denote C*(T?) as Lie algebras with the standard
Poisson bracket. The process of associating to elements of Lo their Hamiltonian vector
fieldsis aLie algebra homomorphism of Lo onto the Lie algebra of those smooth vector
fields which generate area-preserving diffeomorphisms of T2. (This homomorphism is
an isomorphism once onefactors by the subspaceof constant functions, the center of Lo.)
As seen in Example 10.2 of [Rf], the deformation quantization of the symplectic space
T2 for the action of R? gives the quantum 2-tori (the rotation algebras) Ay (where § = h).
Let Ly denote Ay viewed just as a Lie algebra with its commutator bracket, forgetting
the associative algebra structure. It is remarked in example 3e of [V] (and in references
given there and in [S]) that L, tends to Lo as § goes to O (with similar statements for
other crossed product algebras). We can view Theorem 9.3 of [Rf], appliedto T2, asthen
making thisintuition rigorous. Inthe sasmeway, Theorem 2.1 of the present paper, applied
to T2, goesin the direction of saying rigorously that the group of inner automorphisms of
Ay coming from unitaries in the connected component of the unitary group of Ay, tends
to the group of area-preserving diffeomorphisms of T2 as # goesto 0. (For information
on the structure of this unitary group of Ay see[Rf1].)

3. The Proof of Theorem 1.3. We remark that with suitable care the steps below
can be carried out with V replaced by a general connected Lie group. For simplicity of
exposition we treat only V here since this is all we need, but see the appendix for the
general case.

LEmMmA 3.1. LetN bealocally compact space, letM = V xN, andlet o betheaction
of V on M coming fromthetrandlation action of V on itself. Let @ € B*°(M, L), and view
bo asaderivation of A~ (not B>). Thendq isthe pregenerator of a one-parameter action
3 on A, with corresponding flow 5 on M. Furthermore, 3 carries A* into itself, and the
flow 3 on M carrieseach leaf V x {n} into itself.

PrROOF. Because herethe action « of V on M isfree, thislemmais essentially a spe-
cial case of Theorem 2.4.26 of [B] (which is closely related to resultsin [BD]). Its proof
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is basically just amatter of applying the usual existence theorem for flows generated by
Lipschitz vector fields on RY to obtain a global flow on each leaf V x {n}. Then one
applies the theorem concerning the continuous dependence of such flows on their initial
conditionsto show that, as n varies, the corresponding flows fit together continuously to
give aflow on M. From this approach we see that 3 carries each leaf of M into itself.
Theorem 2.4.26 of [B] aso givesthat A is a core for the generator of the action 3, and
that for eachf € A* we have

3.2 (d/dt)i=sBe(f) = Bs (60 (F)).

Since in our case ¢ carries A* into itself, a simple induction argument shows that 3
carries A® into itself. n

LEMMA 3.3. LetN,M, o, ® and 3 beasin the previouslemma. Let 3 also denotethe
corresponding one-parameter action on Cp(M). Then 3 carriesB = B(M, «) into itself,
is strongly continuous on B, and carries B> into itself. Let 6 be the derivation of B>
defined earlier. Then ¢ isa pregenerator for 5 acting on B.

ProOF. Note that we cannot directly invoke Theorem 2.4.26 of [B] here because, in
general, the action o on the maximal ideal space of B will not belocally free. In fact, the
most difficult part of the proof isto show that each 3; actually carries B into itself.

Becauseof the specia form of M, wecaninitially work oneachleaf V x {n} separately.
For simplicity of notation we temporarily consider our n to befixed, and omit it from the
notation, and thuswork on V itself. But we must be careful to obtain estimates which are
uniforminn € N.

By restriction we view @ as an element of B*°(V, L). Thus it is smooth on V in the
usual sense. Now B = B(V) will consist exactly of the uniformly continuous functions
onV. Thusto show that Biscarried into itself by 3 it clearly sufficesto obtain an estimate
of theform

[16:(¥) — B < Kel[x =yl

for al x,y € V, whereK; is a constant independent of x andy. Fix x,y € V withx # vy,
and let w = y — x. Let g be the V-valued function on R? defined by

a(t,r) = Bu(x+rw).

From the usual facts about solutions of differential equations, g is smooth since @ is.
Note that for fixed t the path g(t, r) goes from g;(x) to Si(y) asr goes from 0 to 1. We
consider the length, L (t), of this path. We use ideas from the first variational equation
for ordinary differential equations (e.g. p. 190 of [A]).

Leth = dg/or, so that

L© = [ @)
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Now, by the fact that partial derivatives commute, we have
oh/at = (a/ar)(og/ot)
= (@/or)(®oQ)
= ((D®) o g) o (0g/ar)
= ((D®)og)oh,

where D® isthe usual total derivative of ®. Note that since 3; is a diffeomorphism and
w # 0, hnever takesvalue 0, and so the function || h(t, r)|| issmooth, asisthen L. A little
calculation then shows that

L /o] < [ [1@h/a0(. 0] dr < [[D®] L.

Conseguently
L(t) < L(0)&P®l= = ||x — y|| e/lD@l.

Since L.(t) is the length of some curve from 3,(X) to 5 (y), it follows that

18:9 — B:)|| < [Ix— y]| 1P,

Thisis an estimate of the desired type, and so asindicated above, 3 carries B into itself.
Notice that we have used the hypothesesthat @ € B>(V, L) to ensure that ||DP|| is
finite.

We return now to the general casein whichM = V x N. Aslong as we now interpret
||IDP||~ asasupremum over al of M, which is still finite since ® € B>(V, L), we see
that the above inequality is uniform over all the leaves. It follows easily that 3 carries B
into itself in this case also.

We must how show that the action 3 on B is strongly continuous. By multiplying
elements of B> by elements of A~ which have value 1 on neighborhoods of various
points, we seethat every element of B> agreeslocally with an element of A>. It follows
that for any f € B> and any m € M we have

(@/ ) (5(m) ) = Eoh)(B(m),

since this can be viewed as a local statement. In particular, the derivative on the left
exists. Consequently

(3.4) f((m) = 1) + [ (Gof)(s(m) ds

so that
18 — flloo < [t} [60f [|o-

Thus g isstrongly continuouson B=. Since 8 isisometric and B> isdensein B, it follows
that 3 is strongly continuous on B.

We must now show that B> is contained in the domain of the infinitesimal generator
of 3, and that on B> this generator agrees with 4. We argue much as in the Proof of
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Lemma 2.4.3 of [B]. Let f € B>, so that 6of € B*>. Because we now know that 3
is strongly continuous on B, theintegral J§ fs(éof) ds is well-defined for the supremum
norm on B. Now evaluation at any point m € M is continuous for this norm, and so can
be brought inside the integral. From (3.4) it then follows that

B 1 = [ fbol) ds

From thisit follows immediately that

(d/dt)|t=o(Btf) = dof

for the norm on B, so that f isin the domain of the generator of 3. Furthermore, we see
that on B> this generator agrees with 0.

It follows readily that equation (3.2) holds for any f € B*>. From this equation and
the fact that 64 carries B> into itself, it follows by a simple induction argument that 3
carries B> into itself. We can now apply Corollary 3.1.7 of [BR] to conclude that B is
acore for the generator of 3, i.e. that this generator is the closure of 6. ]

CONCLUSION OF THE PROOF OF THEOREM 1.3. Let M, «, A and B be as in the
statement of Theorem 1.3. Let P = V x M, and let r denote the action of V on P coming
from translation on V. Let i be the map from P to M defined by 1(x, m) = ax(m). Since
7 IS surjective, it gives an isometric isomorphism, still denoted by #, of B(M) onto a
subalgebraof B(P). When convenient we will simply identify B(M) with this subalgebra.
Note that » is equivariant for « and 7. Thus B(M) is a r-invariant subalgebra of B(P).
Define (as suggested to me by Alan Weinstein) an action, v, of V on P by vy(x,m) =
(x—y, ay(m)). Notethat 1y oy, = 1 forany y € V, and that they-orbits of pointsin P are
exactly the 1j-preimages of pointsin M. Let ® € B>(M, L) be given, and set d=Ddo.
It |seaslyseenthat e B>°(P, L), and clearly o) oYy = @ for all yeV. Letﬁ denote
the flow for ® on P, whose existenceis assured by Lemma 3.1, and which carries B (P)
into itself by Lemma3.3. Fixme M andy € V. Then 7y givesabijection of V x {m}
onto V x {ay(m) }, and under this bijection the restrictions of ® agree. By the unigqueness
theorem for ordinary differential equations, the corresponding flows must agree. But by
construction these flows are just given by B Thus B commutes with each 7y. It follows
that for each t the homeomorphism Bt carries each y-orbit into exactly another y-orhit,
and so determines a“flow”, 3, on M. It is easily seen that 1 is an open map (7 is afree
and proper action). From this and the continuity of B it follows that 3 is continuous, so
that it really isaflow.

Note that by construction 7 is equivariant for 3 and B Since n carries B(M) isometri-
cally into B(P) and fg’ carriesB(P) intoitself and is strongly continuouson B(P), it follows
that 3 carries B(M) into itself and is strongly continuousthere. (Note that  doesnot carry
A(M) into A(P).) For the samereasons, 3 will carry B*(M) intoitself. A straight-forward
calculation using the equivariance of 1 for 7 and o showsthat for f € B*(M) we have

6(f on) = (0of) on.
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Now for fixed m € M we have (3f)(m) = (f}t(f o n))(0,m), and so

(d/dt)|—o(BcF)(M) = (d/dt)lt:O(Bt(f ° 77))(0, m) = (Oof)(m).

We can now argue asin thelast parts of the Proof of Lemma 3.3 to conclude that B> (M)
isin the domain of the generator of 3, that on B> (M) this generator agreeswith 64, and
that B>(M) is acore for this generator. ]

4, Theproof of Theorem 1.4. Exactly asin the conclusion of the Proof of Theo-
rem 1.3, let P = V x M with action 7 of V, so that B(M) is identified viar with a C*-
subalgebraof B(P), and 3 on B(M) isjust the restriction of B on B(P). Sincethe action o
of V on B(M) isjust the restriction of the action r on B(P), the semi-norms defined earlier
interms of o will just be the restrictions to B(M) of the corresponding semi-norms for 7
on B(P). Thuswe seethat it sufficesto prove Theorem 1.4 for the setting of Lemma3.3.
Thismeansthat it sufficesto prove the theorem on each leaf V x {m}, aslong aswe ob-
tain uniform estimatesin m. Thuswe consider first the caseM = V with « the action 7 of
translation, and we consider ® and 8 as being on V. Then 3 can be viewed as afunction
from R x V to V which is smooth. We will let D denote k-th derivative for variablesin
V. Weidentify L and V inthe usual way. Then for eachfixed (t, x) € R x V theexpression
(D*3)(t, x) is a symmetric k-linear map from V to V. We use the inner product on V to
define the norm of this map. The proof of the following lemma is of atype familiar in
the theory of ODE's.

LEmMMA 4.1. For any k > 0 and any finite interval | about O thereis a constant K
such that
I(D*B)E )] < K

for all x e Vandt e I.

PrROOF. We argue by induction on k. Let 0 denote derivativeswith respect tot. Thus
08 = ®o 3, where here and in thefollowing wework pointwise. Now D commuteswith
0, so

3(DB) = D(@8) = D(® 0 §) = ((DP) 0 3) 0 DY
by the chain rule. Thus
B)(tX) = (DA)0,%) + [ (DD(3:69) ) o (DB ) s,
and so, since Bo(y) = yfor dly,
1259 < 1+ D], [/ [DA)s X ds
By Gronwall’sinequality (Lemma4.1.7 of [A]) we obtain
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with the right-hand side independent of x. Thus the Proof of Lemma4.1 is complete for
k=1
In the proof for higher k we argue by induction. Thus assume that there is a constant
Ky such that for eachj < k— 1 wehave ||(D'8)(t, X)|| < Ky fort € | andx € V. Much as
above, we have
9(D*B) = DX(@B) = D@ o B).

We now invoke the chain rule for higher derivatives, as given for example on p. 92 of
[A]. Suppressing some of the notation given there, we obtain

d(D*B) = ((DP) o B) o (D*B) + G,
where

Gy = izz((DmCD) o) ({(D™B)}),

with each ¢, < k — 1. By the induction hypothesis, ||(Dm3)(t, X)|| < K for eacht € |
and x € V. By our hypothesis on ® each ||(D™®)(x)|| is uniformly bounded over V. It
follows that thereis a constant, Ly, such that

1Gk(t. 9| < Li
foraltelandx € V. Now
(DB)t%) = (D)X + [ (DK@ 0 ) (s, %) ds.
But for k > 2 we have (D*3)(0,x) = 0. Thus

1R < [ (|O@)(8:09)] 1) 9l + 1 Guls 9 ) s
< [1D®]-. [ 1O*3)(s 9| ds+ el
where c is the length of theinterval 1. Thus again by Gronwall’s inequality we find that
IEB)(t. %) < cLicexp(t|DP]|). .

PrROOF OF THEOREM 1.4. We dedl first with the caseM = V. Sofor f € B> we
view DXf as a function from V into the normed space of k-linear maps from V into the
complex numbers. Let | be afinite interval about 0 in R. Asin the abovelemma, we let
0 denote derivativesin t. Then, working pointwise, we havefor any f € B®

d(DX(f 0 3)) = D(a(f 0 B)) = D*((daf) 0 3).

Set g = dof, S0 that g € B™. Thenif we apply the chain ruleto D¥(go 8), much asin the
Proof of Lemma4.1, and if we apply the conclusion of Lemma4.1, we find that thereis
aconstant, K, independent of g and x € V, such that

1(P 9o M) €1 < K(X ID'g])
j<k
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forallt € 1. Application of the chainruleto Dig = D! (§of) showsthat thereis aconstant
L, depending only on ® and k, such that

>0l <L 3 (1D .
j<k j<k+1
Since

(DK 0 )t — (D)) = [ DK(go )s X ds

it follows that _
I(DM(F o B — ) W)I| < tKL 3 1Dl
j<k+

foralt € | and x € V. But the right-hand side is independent of x, so we obtain the
desired strong continuity in this case.

Now consider the casewhereM = V x N asin Lemma3.3. On each leaf V x {n} we
will havethe aboveinequality, and the constant KL dependsonly on @ and itsderivatives
on that leaf. But by examining a bit more carefully the origin of KL and by using the
fact that ® and its derivatives are assumed to be uniformly bounded over al of M, we
see that we can find finite KL which works uniformly over all of M. The comments at
the beginning of this section complete the proof of strong continuity. The proof of the
remaining factsin the statement of Theorem 1.4 isthen essentially the same as the proof
of the similar factsin Lemma3.3. ]

Appendix.
LipschitzFlow. We sketch herehow to use apowerful theorem of Derek Robinson[Rs1]
to prove Theorem 1.3. We carry this out in the more general setting of an action of an
arbitrary (connected) Lie group G, with Lie algebra g. Let o be an action of G on a
locally compact space M, with corresponding action o on A = C,,(M), and on B, the
largest algebraof bounded continuousfunctions on M onwhich « isstrongly continuous.
In the sameway, we define B(M, g), ageneralization of our earlier B(M, L). We havethe
corresponding spaces of smooth vectors A*, B>, and B>*(M, g). Much as earlier, we
view elements of B*°(M, g) as “smooth bounded vector fields” on M.

Let ® € B*(M, g). Then, much asdoneearlier, ® determinesaderivation, ¢, on A>®
and B>.

THEOREM Al. Thederivation é¢ is the pregenerator of a one-parameter group, 3,
of automor phisms of B, which carries A into itself, and so determines a flow, 3, on M.

PrROOF.  Robinson’stheorem tells us that to show that ¢4 is a pregenerator it suffices
to verify two conditions. The first is the usual condition that 64 be conservative. The
second and crucial condition is that 0¢ be Lipschitz for the action «. We recall here
briefly what this means.

Aswedid earlier for L, choosean arbitrary inner product on g. This can be translated
around G to definealeft-invariant Riemannian metric on G. We denotethe corresponding
length function [Rs2] by |x|. Let v be an action of G on a Banach space U. Let U~
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denote the smooth vectors for 7. For u € U* let Du denote the linear map from g to U
defined by (Du)(X) = vx(u). We use the inner product on g to define ||Dul|, and we set
[[ullx = [[ul] + [[Dul.

DEFINITION A2 [Rs1]. With notation as above, an operator T: U* — U is said to
be Lipschitz if there are constantsé > 0 and K such that

[l ads, (Tul] < K|x|[ull2

foral ue U* andall x € Gwith |x| < 4. (Heread, (T) = Yxo T —Tox.)
We will need the following fact, whose proof is a straightforward argument using the
lengths of curvesin G.

ProPOSITION A3.  With notation as above, each operator vy for X € g isa Lipschitz
operator for 7.

We now check that 6 and o satisfy Robinson’s conditions. That 64 iS conservative
is seen in the usual way by considering, for any f € B>, the functional consisting of
evaluation at apoint of the maximal ideal spaceof B at whichf takesits maximal absolute
value. We now sketch the verification that é¢ is a Lipschitz operator for «. It is clear
from the definition that sums of Lipschitz operators are again Lipschitz operators. Thus
it sufficesto show that any operator of the form hay for h € B> and X € g is Lipschitz.
But such an operator isthe composition of the operators corresponding to (multiplication
by) hand ax. It is now convenient for usto make:

DEerINITION A4.  With notation as earlier, we say that u € U isaLipschitz vector for
the action v if there are constantsé > 0 and K such that

[7%(U) = ull <KX

for |x| < é.
Then astraightforward argument again using the length of curvesin G yieldsthefirst
part of the following proposition. The second part then follows easily from the first.

ProPOSITION A5.  With notation as earlier, any h € B> isa Lipschitz vector for o.
The operator, My, of multiplication on B> by h is a Lipschitz vector for Ad, and the
operator norm.

We will say that an operator T on U* is of order 1 if thereis aninequality of the form
ITull < K]ull2

for u € U>. We remark that the operators ax for X € g are clearly of order 1. By a
straightforward argument we then obtain:
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PrROPOSITION AB. Lety bean action of G on aBanach spaceU. Let T bea Lipschitz
operator on U for v, of order 1. Let Sbeabounded operator on U whichisan operator-
normLipschitzvector for Ady, and carriesU* intoitself. Then ST isa Lipschitz operator
on U for 7.

From Propositions A3, A5 and A6 it followsthat 6 isaLipschitz operator for or. We
phrased the above discussion for B, but all holds equally well for A. We can thus apply
Robinson’s theorem to obtain a one-parameter action on B which carries A into itself,
and so givesa flow on M. n
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