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Abstract

The near-ring distributively generated by the semigroup of all endomorphisms of Sn, the symmetric group
of degree n, for n > 5, is close to being the near-ring of all mappings from Sn to itself respecting the identity.
In this paper, the structure of these near-rings is studied in detail. In particular, addition and
multiplication rules for the elements given in canonical form are determined. A complete list of all right
ideals, left ideals, right invariant and left invariant subgroups is given.

1980 Mathematics subject classification (Amer. Math. Soc.): 16 A 76.

1. Introduction

A near-ring is a set R with two operations + and •, such that (R, +) is a group, (R, •) is
a semigroup and the left distributive law is satisfied : x(y + z) = xy + xz for all
x,y,ze R. In general the extra axiom Ox = 0 for all x e R is imposed to give a zero-
symmetric near-ring. An element s e R is called distributive if (x + y) s = xs + ys for
all x, y e R. The set of distributive elements forms a multiplicative semigroup. If there
exists a multiplicative semigroup of distributive elements S such that R = Gp<S>,
we say that R is a distributively generated (d.g.) near-ring, often denoted
(R,S). The typical example of a near-ring is M(G), the set of all mappings from a
group G to itself with pointwise addition and composition of mappings.
M0(G) = {aeM(G); 0Ga = 0G} is the typical example of a zero-symmetric near- ring.
The distributive elements of M(G) are End G, the semigroup of endomorphisms of G.
(£(G), End G), the d.g. near-ring generated by End G is of special interest, as are
(/(G), Inn G), (A(G), Aut G), the d.g. near-rings generated by Inn G, the inner
automorphisms of G, and Aut G, all the automorphisms of G.
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The structure of E(G), A(G) and I(G) has been studied for many groups or classes of
groups (see the list of references at the end of this paper). This paper presents an
extension of some of the results of Fong (1979), namely the detailed structure of £(G)
for G — Sn, n ^ 5, the symmetric group of degree at least 5. This extends
considerably the work in Meldrum (1978). The interest in such detailed work is in
providing d.g. near-rings whose structure is known in great detail, in comparing the
structure with that of M0(G) for an arbitrary group G, and in providing the necessary
details of the addition and multiplication tables for anyone wishing to study such
d.g. near-rings further. For general results and ideas we refer to Pilz (1977). The main
difference is that we use left rather than right near-rings. The notation has been
changed from Fong (1979) to make it more self-consistent.

The first author would like to acknowledge financial support from the University
of Edinburgh in the form of a Postgraduate Studentship awarded for the year
1978-79.

2. Addition and multiplication tables

For the rest of the paper, we write G for Sm the symmetric group of degree n, n > 5,
H for An, the alternating group of degree n, S for End G, R for E(G). We now quote
the following result from Meldrum (1978), Theorem 4.11, using our notation.

THEOREM 2.1. Let n ^ 5. Then

1(G) = A(G) = E(G) = R

and R has an ideal N such that

N2 = {0},

R/N s M0(H) © Z2,

N = {oceMo(G); Got. £ # } .

© indicates direct sum, Z2 the ring of integers modulo 2. We will enumerate the
elements of G as follows :

H = {0 = go,...,gm}, G-H = {gm+l,...,g2m+l},

where

= n!/2, fifm + I + i =0,-

Using the results of Heatherly (1972) or Pilz (1977), we can write M0{H) as a direct
sum of right ideals as follows :

(2.1) M0(H)= ^
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where e, maps gt to itself and H — {#,} to zero. Then (et M0(H), +) s (H, +) and
£; M0(H) = Ann (H — {3,}) is the annihilator of H — {gt}. Using a similar method it is
obvious that we have a decomposition for N as a sum of right ideals,

(2.2) N="x5iM^H),

where St maps gi+m to gx and G — {gi+m} to zero. Then

(^M0(H),+)s (//,+) and StM0(H) = Nn Ann(G-{gi+m}).

We will use another notation for £, M0(H):

(2.3) <51.M0(H) = { ^ ; 0 < 7 ^ » I } ,

where t](j maps gm+i to </,. We have been tacitly assuming that M0(H) £ R. We now
show that this is the case up to isomorphism.

LEMMA 2.2. R contains a subnear-ring which is isomorphic to M0(H), and acts in the
natural way on H, annihilating G — H.

PROOF. Let <xeM0(H). By Theorem 2.1, we can choose aeR such that a has the

same effect as a on H, and Go. £ H . Let gm + i a = gj(i), l ^ i ^ m + 1. Then

n = £r=V nijd) satisfies the following :

gi(a-r)) = gict, 0 ^ i < m.

This suffices to prove the result.
So we can without loss of generality assume that M0(H) £ R, by identifying it with

its isomorphic copy. We can now write R as a sum of three subgroups.

(2.4) R = N + M0(H) + Z2,

where N is an ideal, M0{H) and Z2 are subnear-rings, R/N s M0(H) © Z2, and
Z2 = {0,0}, where 0eEndG maps G - / J to (12) and H to zero. M0(H) and Z2

together generate M0(H) © Z2 and R is a split extension of N by M0{H) © Z2, that
is, R = (M0(H) ®Z2) + N,Nn (M0(H) © Z2) = 0 and N is a normal subgroup of R.
From (2.4) we can represent an arbitrary element of R as n + f} + <x where n e N,
/? e M0(H) and a 6 Z2, or (>/, /?, a). From (2.2), we can write r\ in the form 27T=Y ̂ > £i>
where £f e M0(H). From (2.3), we can write fy = 2T7=V fyw We will use either form as
appropriate.

LEMMA 2.3. For each i, 1 ̂  i < m + 1 ,

Gp<<5,
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where the isomorphism is given by nti -* g^ 0 -<• (12).

This result can be proved by routine checks. We can now give the addition and
multiplication rules for R.

THEOREM 2.4.

(a) (nj,a) + (r,',P',a) = (rj + tf",fi + ?,a + a')

(m+l \ (m+1

_! ,5,^/?,0j(,?',/?',a') = (
(c) ( £ mmP,

PROOF, (a) f/'a = — a + ^' + a is an element of N as can easily be checked. The proof
is easy, particularly if it is separated into two cases : the action on H and the action
on G-H.

(b) is straightforward, again using the two cases as in (a) and remembering that

(c) is straightforward, except possibly for the action on G - H. So let gm +k e G - H.
Then

/m+l \

gm+k( T. r,m,P,e) =

/m+l

= 9m+k[

This is enough to prove the result.
Note that in t]^ we have 0 =% j(i) < m. So 1 < ^(i) +1 ^ m + 1, which shows that no

problem of definition can occur in (c).

3. The right ideals of R

We first obtain some results about normal subgroups which narrow down
possibilities quite considerably. From a standard result in group theory (Scott
(1964)) the normal subgroups of Sn for n ^ 5 are 0, An, Sn. The following result is an
easy corollary of this.

LEMMA 3.1. Let K be a normal subgroup of(R, +). IfOeK, then N^K.
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PROOF. By Lemma 2.3, OeK implies St M0{H) £ X , 1 < i ^ m+ 1, since the only
normal subgroups of Sn, n ^ 5, are 0, An and Sn.

LEMMA 3.2. Let K be a normal subgroup of N + M0(H). Then

T . j o ( ) Z i o ( )
jeJ iel

for some subsets J o/{l,2, ...,m + 1} and I of {l,...,m}.

PROOF. This result follows easily from the following facts, Sj M0(H) and et M0(H)
are both isomorphic to H as groups and H is a simple nonabelian group. So
N + M0(H) is a direct sum of simple nonabelian groups, and any normal subgroup of
it is simply a direct sum of a suitable collection of the factors (Scott (1964)). This
proves the result.

THEOREM 3.3. The following is a complete list of right ideals of R :

X Sj M0(H) + X £i M0(H), £ 6j M0(H) + N + Z2,
jeJ iel iel

where J £{1,2,...,m+ 1}, / £{l,.. . ,m}.

PROOF. By Lemmas 3.1 and 3.2, the above is a complete list of normal subgroups
of (R, +). A right ideal of a d.g. near-ring is a normal subgroup closed under right
multiplication. So the rest follows from Theorem 2.4 and a description of the right
ideals of M0(H) obtainable from Heatherly (1972) or Pilz (1977).

COROLLARY 3.4. All right ideals ofR are annihilators of suitable subsets ofG except
for N + K, X£M0(H).

PROOF. If J <= {l,...,m+ 1} then

I . j 0 ( ) Z l 0 ( ) ({[)gm+j)
jeJ iel JeJ

But if X £ / / , then 6eAnn(X). This proves the result, as A n n ^ ; iel'},
I' £{l,...,m} is N + Z2 + Y.iE/£tM0(H) where / u / ' = {l,...,m}, In I' = (J).

Note that this corrects a result falsely stated in Fong (1979).

4. The left ideals of R

We start by quoting the result due to Heatherly (1972).
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LEMMA 4.1. The only left ideals of M0(H) are {0} and M0(H).

This enables us to obtain a complete list of left ideals of R.

THEOREM 4.2. The following is a complete list of left ideals of R :

{0}, JV, N + Z2, M0(H) + N and R.

PROOF. From the description of/? given in Section 2, it is known that these are all
ideals of R, hence left ideals.

Suppose K is a left ideal of R. Then KnM0(H) > {0} forces M0(H) £ K by
Lemma 4.1. By Lemma 3.1, if Oe K, then JV £ K, as K is a normal subgroup of R.
From the list given in Theorem 3.3, which is also a list of all normal subgroups of R,
the only possibilities left are

I Sj M0(H), I 8j M0(H) + M0(H),
jeJ jeJ

where J c {l,2,...,m + 1}. From Theorem 2.4(c), it is obvious that if J # Q) then
N £ K. So we have the possibilities N,N + M0(H) and M0(H). To finish the proof we
need to show that M0{H) is not a left ideal. But this follows immediately from
Theorem 2.4(b).

COROLLARY 4.3. All left ideals ofR are two-sided ideals. Hence the list in Theorem
4.2 is a complete list of all ideals of R.

5. The right K-subgroups of R

There is not an easy description of all right /^-subgroups of R, that is subgroups K
of R such that KR £ K. But there is a reasonably nice classification of monogenic
(one-generator) right R-subgroups. If reR then rR is the right /^-subgroup
generated by r. We look at the different forms the element r can take.

Consider an element of the form n + fi. Using (2.1) and (2.2) we write it in the form

(5.1) f / Z , i Z
ie/ j e J

Here one of/, J may be empty, but we assume that / u J > (J) to avoid trivialities.
This means that n + f} acts nontrivially precisely on {gj,yi + n;jeJ, iel} = X say.
We now divide X into q equivalence classes as follows : gksCt if and only if
yk(n + P) = g' and g' is determined uniquely by C,. So C, consists of all elements in X
which get mapped by n + P into a given element of G. It is easy to check that this
determines a partition of A" which we denote C,,..., Cq. Denote the corresponding
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images by hu..., hq where hk corresponds to Ck. By post-multiplication by elements of
M0(H), it is obvious that we can map hu..., hq to any q elements of//. Note hu...,hq

all lie in H by definition of N and M0(H). Let s'k denote the element of M0(H) which
maps hk -> hk and H — {hk} to 0. Then (n + p)s'k maps Ck to hk and the rest to zero. It is
easy to check that ((n + P) dk M0(H), +) is isomorphic to H in the natural way, and
(n + P)M0(H) is isomorphic as a group to q copies of//, namely

(5.2)
i= I

We put this together in the following result.

THEOREM 5.1. Let n + fieR. Then the right R-subgroup generated by tj + p is
isomorphic to a direct sum of q copies of H as given in (5.2), and q is defined above.

COROLLARY 5.2. The right R-subgroup {n + P)M0{H) is a right ideal if and only if
each Ck is a singleton.

PROOF. Most of Theorem 5.1 has been proved already. The result follows from the
observation that (n + P) N = (n + P) 9 = 0, and so (n + )3) R = (r\ + P) M0{H).
Corollary 5.2 follows from the argument above and Lemma 3.2.

The next case is the R-subgroup 6R.

THEOREM 5.3. The right R-subgroup OR is isomorphic to G as a group and can be
given as {9X; xeG} where (G-H)0x = x, H6x = 0 and 8x + 6y = 6x + y, 6x6y = Qy if
x<?H, 6x9y = 0ifxeH.

PROOF. (G - H) 0 = (12), Hd = 0 by definition of 9. Given x e G, there exists <px e R
such that (12) cpx = x, as can easily be seen from Theorem 2.1. Then put 9X = 9tpx and
the rest follows easily.

The final case is the R-subgroup (ij + P + 9)R where n + p ^ 0. We use the formula
(5.1) for rj + p and write X = {g},gi+m;jeJ, iel} again. But we need a different
equivalence relation to that used for Theorem 5.1. We partition X n / / = {g};jeJ}
into Dl u . . . u Du where Dk consists of all elements of X n H which get mapped by
t\+P to a given element hko(H. Similarly we partition G — H into D , t l u . . . u f l , + [

where Du+l consists of all elements of G — H which are mapped by n + P + 9 to
a given element g\ of G — H. Note that v ^ 1 whether or not / is empty. From the
fact that p and n + 9 act on mutually disjoint subsets, it follows that
(n + P + 9)R = PR+(n + 9)R. The structure of PR is given as a special case of
Theorem 5.1. So consider

(n + 9) R = (n + 9) (M0(H) + JV + Z2) = (q + 9) N + (v + 9) Z2
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since G(n + 6) S G - H and (G-H)Mo(H) = 0. Define <5J by #;<5; = #; and
(G - {<?;}) (5J = 0. Then ((?; + 0) <5J N, +) s tf and

is the sum of v copies ofH. (n + 9)Z2 = (n + 0)6 = 0 and so {n + 0) Z2 is a cyclic group
of order 2. Finally if we consider (n + 6) £| N + (rj + 6) Z2, it is isomorphic to G as an
additive group, the proof of this being similar to that of Lemma 2.3. This gives us our
final case.

THEOREM 5.4. The right R-subgroup (ri + P + 8)R is isomorphic to the direct sum ofu
copies ofH together with the sum ofv copies ofH extended by a cyclic group of order 2 :

(n + p + 0) R = £ 4 M0(H) © I I X S't N I + Z2

and S'lN + Z2 is isomorphic to Gfor each I, 1 < / ^ v. If ft = 0 then u = 0, but v ^ 1 in
all cases.

COROLLARY 5.5. The right R-subgroup described in Theorem 5.4 is a right ideal only
if v = m + 1 and each Dk, 1 < k ^ u, is a singleton.

PROOF. This follows easily from Lemmas 3.1 and 3.2.
The structure of general right R-subgroups is not so easy. Perhaps the best

description is to say that it is the set theoretic union of all the monogenic right R-
subgroups which it contains. We give here another description.

THEOREM 5.6. Let K be a right R-subgroup ofR. If K £ N + M0(H), then it is the
direct sum of a number of copies of H. If K $N + M0(H), then

j
isl jeJ

where Hi s H, Hj = H, Hj + Z2 is isomorphic to G, I has at most m elements and J has
at most TO + 1 elements.

This follows immediately from the remarks above. In fact, by induction on the
number of generators, we can describe K as follows. If K £ N + M0(H), then G can
be expressed as a disjoint union of subsets G = (J"= " Dh u ^ 1, v ^ 0, every element
in a set Dt is mapped to the same element, g\eH say, which can be chosen arbitrarily
for 1 < i ^ u, and for i > u, g\ is a word in {g\,-.,g'u}- If K <£N + M0(H), then Gcan
be expressed as a disjoint union of subsets

G = U+(jWDi, v^\, u, w$sO, (j £»,£//, "\J D^G-H,
i = 1 l l i = u + 1
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every element in a set Di is mapped to the same element, g\ say, g\ e H for 1 < i < M,
g\ e G for u +1 ^ i! ^ u + v, and each g\ can be chosen arbitrarily for 1 ^ i ^ u + v,
and for i > u + v, g'iis awordin {g\,...,g'u} or in {g'u+i,—,g'u + v}- In terms of Theorem
5.6, I /1 = u, IJ = v in the second case.

6. The left R-subgroups of R

This case proves to be easier than the case of right R-subgroups. We quote the
following result about left R-subgroups of M0(H).

THEOREM 6.1. The left R-subgroups of M0(H) are in 1-1 correspondence with the
subgroups of H and each left R-subgroup consists of all maps from H into the
corresponding subgroup of H.

This can be found in Laxton (1963), Betsch (1973) or Pilz (1977). The results for R
are remarkably similar. We first give a set of multiplications based on Theorem 2.4,
which clarify the position as regards left R-subgroups.

LEMMA 6.2.

(i) fa.0,O)fl = O,fa,/U»)0 = 0.

(") ( T St £„ P, o) J? = Q E S&p, p'P, 0

(iii) (n', /?', 0) n = U,

/m + 1 \ /m + 1 \ /m + 1

( . 1 % , , j j ^ . X ^ » J (^.Z

(iv) ( I <5 f̂,i?',0 )(j8 + 0) = ( j I 5,£,ft/J'ft0

(v) (»/,ft(
/m + 1 \ /m + 1

(vi) ( i 5, ̂ , /J-, 0 (̂̂  + jS) = (Jz 5, $, ft pp,0

m+ 1

i = 1 ' / \ i = 1
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(vii) Q E 5ti,p,o) (,, + /? + 0) = (^Z SiU,PP,0

m + 1 \ fm + 1 \ /m + 1 \

.1 '/w^'^j^Z ^ M j ^ . Z fittm+l,PP,o}

PROOF. Just apply Theorem 2.4.
To simplify the classification, we look first at a case which does not resemble those

described above.

THEOREM 6.3. AH subgroups of9R are left R-subgroups of R.

PROOF. Obvious from Lemma 6.2(i).
Note that such a subgroup consists of elements from the set

m + 1 m -f 1

0,9, I StZb T SiZi

where dj^ = SJ^J for all ;', j , 1 ̂  i, j ^ m+l. Then we could use (iii) and (v) of
Lemma 6.2, if we wished.

Because of Theorem 6.3, we define three subgroups associated with each left R-
subgroup K of R, which we call Ki,K2,K3.

(6.1) Ki=HK, K2=(G-H){KnSlM0(H)), K3 = G(Kn9R).

The fact that K{, K2 and X3 are subgroups is easy to check. Note that K, and K2

are subgroups of H, while K3 is a subgroup of G.

LEMMA 6.4. Let Kbea left R-subgroup ofR.Then K2 is a normal subgroup ofK3, and
in particular K2 £ K3.

PROOF. From Lemma 6.2(iii), it is obvious that if St t; e K then Sj^e K also for any
j , l s S j s S m + 1 , £,eM0{H). Hence K1=(G-H)(Kr\5iM0(H)) for any j ,
1 ^ i ̂  m + 1. Now let heK2,ge K3. We first show that h e K3. We know that there
exists £ 6 M0(H) such that gm+1d1£ = h.By above 5^ e K. So £"=7 S
and thus heK3. So, in the notation of Theorem 5.3,0geK. Then —g g

mapsgm+ ! to — g + h + g, andgm + j toOfori > l.Thus —g + h + geK2. This suffices
to prove the result.

We call a triple (KltK2,K3) of subgroups of G admissible if Kj and X2 are
contained in H and K2 is a normal subgroup of K3. Lemma 6.4 shows that every left
R-subgroup gives rise to an admissible triple. We now establish the converse : every
admissible triple arises from a left /^-subgroup and the correspondence is one-to-
one. Given an admissible triple (Kl,K2.K3), let K^R be defined by

(6.2) K = {p + rt + 9;, Hp £ K , , Grj £X 2 , 9X, xeK3
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LEMMA 6.5. K as defined in (6.2) is a left R-subgroup of R.

PROOF. Let p s + q t + 9X and f}2 + 12 + 0, l'e ' n K- Since K t is a subgroup, it follows
that H(j?,-j32) £ K , . Also

We now consider the second part of this expression. So

Put x — y = z. Then

As K3 is a subgroup zeK3. Also </(»71 + 9Z — n2 — 9Z) = gnl+z — gri2 — zi{geG — H
and is in K2 as K2 is a normal subgroup of K3. If g e H, ^(^, + 0r — >/2 — 9Z) = 0. So
^ I + ®z ~ *?2 ~~ ^3) £=^2- This finishes the proof that K is a subgroup. Let yeR.
Then tfy £ H gives us Hyi? £J/;8 £ K,, Gy^ £ Gr\ £ X2. Also y0x = 0 or 0X, since
9xe9R and y0 = 0 or 8. This shows that RK £ K . Hence the result is proved.

We now come to the final step.

THEOREM 6.6. There is a one-to-one correspondence between admissible triples and
left R-subgroups of R.

PROOF. Let T be the set of admissible triples, L the set of left R-subgroups of R. We
define i/': T-* L given by (6.2) and <p : L—> T given by (6.1). It is obvious that ij/cp is
the identity map on T. We will now show that q>ij/ is the identity map on L. So let
KeL,K<p = (KUK2,K3), Kq>^ = K'.

Since (O,0\O)(?/,/S,a) = (0,0'/?, 0) by Theorem 2.4, it follows that

K = (Kn M0(H)) + (K

and similarly for K'. By Theorem 6.1, it follows that

K n M0(H) = K'n M0(H).

Alternatively the same method that we will apply now can be used to show that
K n M0(H) = K'n M0(H). Let n e K, n = U = 7 5, £, If g, Zt = gx Zj for all i,j, 1 ^ i,
j ^ m + 1 , then neKn9R. From the definitions it is immediate that
K'n9R = Kn 9R. So consider rieK-8R. Then t] = YT=i &iZi and for some k # j
we have #, ^t / gl £j. Let gi£k — hk>9i£j — nj- Then from Lemma 6.2(iii) it follows
that 9X e K for x = Ẑ , x = fy. Then y—0X = Xr^i1 ^i(^i — 4)- Again applying Lemma
6.2(iii) for a suitable choice of j(i), namely j(l) = it — 1 for 1 ^ / < m, j(0) =7 — 1, we
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obtain that S^j — ^eK. Hence hj — hkeK2, and hj€K3. Similarly we can show
that ^ , - 4 ) e X and thus that G81(£l-c;k)eK2 for all/, 1 s= I ^m + l.Thusn =
2J=V <*.-(&-&) + 0» e * ' , s ince G2J=Y <*,(£,-&) £ * 2 - Thus K SX'. But if
Gr]sK2, and /; = 2J=V <5,£i> then gm + i8i£,ieK2. So we can find <5, ^-eK such that
3m+i ^i i'i — Sm + i^i^i a n d then <5; £; = (5; £•. By the remarks in the proof of Lemma
6.4, or by Lemma 6.2(iii),

Hence >yeX. This, together with the facts proved above, that
K n M0(H) = K'n M0(H) and Kn9R = K'n OR, show that K' S K. Thus
K = X'. This finishes the proof.

COROLLARY 6.7. If we define T as a lattice in the natural way, the correspondence
given in Theorem 6.6 is a lattice isomorphism between Tand L.

PROOF. This is obvious from the definitions.

THEOREM 6.8. The only two-sided R-subgroups of R arc the following :

{0}, N, N + Z2, M0(H), M0(H) + N, {Ox;xeK}, R

where K is a subgroup of G.

This follows easily from the above analysis. They correspond respectively to the
triples :

(0,0,0), (0,H,H), (0,H,G), (H,0,0), (H,H,H), (0.0, K), (H,H,G).
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