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ON MODULES OF SINGULAR SUBMODULE ZERO
VASILY C. CATEFORIS AND FRANCIS L. SANDOMIERSKI

Introduction. In this paper we generalize to modules of singular submodule
zero over a ring of singular ideal zero some of the results, which are well
known for torsion-free modules over a commutative integral domain, e.g.
[2, Chapter VII, p. 127], or over a ring, which possesses a classical right
quotient ring, e.g. [13, § 5].

Let R be an associative ring with 1 and let 3 be a unitary right R-module,
the latter fact denoted by Mpz. A submodule Ny of My is large in Mz (Mp is
an essential extension of Np) if N intersects non-trivially every non-zero
submodule of Mz; the notation Nz &’ Mz is used for the statement Ny is
large in Mp"”. The singular submodule of Mz, denoted Z(Mp), is then defined
to be the set {m € M|r(m) C' Ry}, where

r(m) = r.anngm = {x € R| mx = 0}.

The module My is said to be non-singular (or of singular submodule zero) if
Z(Mpz) = (0). The ring R is right (left) non-singular according as Rz (RxR) is
a non-singular module.

The main tool in proving the results in this paper is the maximal right
quotient ring Q of the ring R [12, § 4.3, p. 94] and as we deal with a right
non-singular ring R, Q is the injective hull of Ry and a von Neumann regular
ring, i.e. a ring every finitely generated ideal of which is a direct summand
(12, § 4.5, p. 106].

As we deal with rings, which are right and left non-singular (this is not an
assumption!) we say that a ring .S containing a ring R (and sharing the identity
of R), is a right (left) quotient ring of R if R T’ S (xR C' rS5).

Now let R be a right non-singular ring and let Q be its maximal right
quotient ring. The main results of this paper are as follows.

In § 1 the condition every finitely generated non-singular right R-module s
torsionless is shown to be equivalent to Q is also a left quotient ring of R. The
condition every non-singular right module is torsionless is shown to be equivalent
to Qg is torsionless. There are non-singular rings, other than semi-simple
artinian, which satisfy the last theorem.

In § 2, with the further assumptions that

(a) Q is also the maximal left quotient ring of R and

(b) both Qf and zQ are flat modules, the condition every finitely generated
non-singular right (left) R-module is isomorphic to a submodule of a free right
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(left) R-module is shown to be equivalent to the condition the R-(Q-)module
0 ®r O s non-singular (as right (left) R-module (Q-module)).

In § 3 the condition every non-singular right R-module is projective is shown
to be equivalent to R is a semi-hereditary right perfect ring and Q s also « left
quotient ring of R. A ring R satisfying either of the last two equivalent condi-
tions is shown to be artinian, hereditary with a two-sided semi-simple artinian
maximal quotient ring, and so in particular if one of the conditions above
holds, so does the right (left) symmetric of the same, hence the theorem is
two-sided.

All rings are assumed to be associative with identity 1 and all modules are
assumed to be unitary. For any homological notions used in the following,
the reader is referred to [2].

1. Torsionless among non-singular modules. Let R be a ring. A module
Mg is torsionless if Mp can be embedded in a direct product of copies of the
module Rg, equivalently, M ker f = (0) where the intersection is taken over
all f € M*, M* = Homg (Mg, Rg). For more details on the notion of torsion-
less see (e.g.) [1]. The main theorem in this section is the following.

THEOREM 1.1. For any right non-singular ring R, with maximal right quotient
Q, the following statements are equivalent:

(a) Every finitely generated non-singular module My is torsionless;

(b) Q s also a left quotient ring of R.

We postpone the proof of Theorem 1.1 until several pertinent facts, some of
interest in themselves, have been established.

As usual, if 4 is a non-empty subset of a module Mg, we set r. anngd =
{x € R| Ax = 0} and we abbreviate this to 7z(4). In an appropriate setting,
Ir(A4) is similarly defined.

LEmMA 1.2. Let R be a right non-singular ring with maximal right quotient
ring Q and let My be a torsionless submodule of Qp. If A = {p € Q| pM C R}
(a subset of Qq), then ro(4) M M = (0).

Proof. Every element f of M* = Homg(Mg, Rz) can be extended to an
element f* of Homgz(Qg, Or), since Qf is injective. However, each element of
Homgz(Qg, Q) is given as left multiplication by some element of Q (because,
e.g.,, Homy(Qgq, Qo) = Homy(Qg, Qr)); thus there exists ¢ € Q such that
f(p) = gp for each p € Q. Since f’ extends f, we have ¢gM = f(M) C R, and
soq € A.Nowifx € 7o(4) M M, then for any f € M* we have f(x) = ¢gx = 0,
thus & € Nyenx ker f = (0); hence ro(4) N\ M = (0).

ProposiTiON 1.3. Let R be a right non-singular ring with maximal right
quotient ring Q and suppose that every finitely generated R-submodule of Qg is
torstonless. If Mg is any finitely generated submodule of Qr and if
A4 ={p € QpM C R}, then ro(4) = (0).
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Proof. Considerx € ro(A);let Mz’ = xR 4+ Mgzand A" = {p € Q| pM' C R}.
The module Mz is a finitely generated submodule of Qf, and hence torsionless
by assumption. Since A’ C A4, we have r¢(4) C 7o(4’), and so in particular
x € ro(A4"). Since x € Mz, we have x € ro(A’) M M'; thus x = 0 follows
from Lemma 1.2; we have r4,(4) = (0).

COROLLARY 1. (Same assumptions as in Proposition 1.3.) If zK and gL are
left R-submodules of gQ, such that K M L = (0), then QK M QL = (0).

Proof. Consider b € QK M QL; there exist elements p;,q, € Q, k; € K,
l;€eL,i=1,...,n,such thatb = 3 ;pk; = > 1qidi Let Mg = 3 p,R +
Y q:R and let 4 = {p € Q| pM C R} = {p € Q| pps, pg: € R, all 4}. It
follows from Proposition 1.3 that 74(4) = (0). Now Ab = (0) since
Ab C KN L = (0), hence b = 0, and so QK M QL = (0).

LemMa 1.4, If R is a right non-singular ring with maximal right quotient
ring Q, then every finitely generated non-singular module Mg can be embedded in
a finitely generated free right Q-module F,.

Proof. This is [3, p. 42, Lemma 2.2].

COROLLARY 2. (R and Q as in Lemma 1.4.) Every finitely generated non-
singular module My can be embedded in a finite direct sum of finitely generated
R-submodules of Qg.

Proof. Let My = Y {—1 m:R be a finitely generated non-singular module and
let Fo = QM X ...X Q®, where Q9 = Qq for each 7, be a free right Q-
module such that Mz C Fo (the latter given by Lemma 1.4). For each 7,

i=1,...,t there exist elements ¢;; € Q, 7= 1,...,n, such that m; =
(qaty « - - » gin). We see from this that

mR C (Qm ey Qin)R CgaR®... ® QinRv
where ¢, is identified with (0, ..., ¢, ..., 0)in Fq. Setting 4; = {1 iR,

we have M C 41 ® ... ® A4,, with 4; C Qp for each 1.

Proof of Theorem 1.1. (a) = (b). By definition of essential extension, it
suffices to show that if rK C zQ satisfies KN R = (0), then K = (0).
Now (a), together with Z(Qg) = (0), implies that every finitely generated
R-submodule of Qf is torsionless; thus Corollary 1 yields QK M QR = (0).
However, K C QK N QR, and so zK = (0) whenever K N\ R = (0); we
have (b).

(b) = (a). In view of Corollary 2, it is sufficient to show (a) in case My is
a finitely generated R-submodule of Q. To this end, let Mz = > .71 ¢.R C Qr

andlet A = {r € R|rq; € R,4=1,...,n}. Since zgR C' 0, it follows from
[4, p. 242, Proposition 1.1 (vi)] that g4 &’ zR. Now using 4 as an indexing
set, define
¢: Mp—]] R, R = Ry,
TEA
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by ¢(m) = [rm|r € A], for each m € M. The map ¢ is clearly a homomor-
phism of right R-modules and m € ker ¢ if and only if Am = 0. However,
g4 €' kR and Am = 0, m € Q, implies that m € Z(zQ); also, Z(zQ) = (0)
since Q is von Neumann regular, and so m = 0. Thus ker ¢ = (0) and ¢ is
an embedding of R-modules.

This completes the proof of Theorem 1.1.

Remark 1. Right non-singular rings R over which the maximal right
quotient ring Q is not also a left quotient ring exist [5], and so Theorem 1.1 is
not ‘‘automatic’”’ for non-singular rings as it is for commutative integral
domains; see e.g. [2, p. 131, Proposition 2.4].

Wei has shown [17, p. 416, Proposition 7] that every non-singular module
My can be embedded in a direct product of copies of the module Qg, where Q
is the maximal right quotient ring of a right non-singular ring R. Since a
submodule of a torsionless module is clearly torsionless and a direct product
of torsionless modules is a torsionless module, the following theorem is
immediate.

THEOREM 1.5. For a right non-singular ring R with maximal right quotient
ring Q the following statements are equivalent:

(@) Every non-singular module My, is torsionless;

(b) Qg s torsionless.

Remark 2. (1) In view of Theorem 1.1, if Qf is torsionless, then Q is also a
left quotient ring of R.

(2) Although the class of commutative integral domains that satisfies
Theorem 1.5 coincides with the class of fields, among right non-singular rings
there exist rings with no finiteness conditions, that satisfy the theorem. An
example is the following.

Let F be a field and let Q be the (ring) (full) direct product

11 F®, F™ = F for each n.
n=1
Let
R= @F”+1-FCQ,
n=1

where 1 is the identity of Q. The ring Q is the maximal (two-sided) quotient
ring of R and Qg is torsionless.

To see the latter part of the last statement, observe that given any 0 £ g € Q,
there is

0 % x € Soc(R) = Soc(Q) = @ F®
n=1

such that 0  xg € R and the map x*, multiplication of elements of Q by x,
is an element of Homg(Qg, REz).
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(3) It is appropriate to mention here the class of rings, satisfying
Theorem 1.5, determined by Colby and Rutter in [7]; these are the right
non-singular, right QF-3 rings among the semi-primary ones.

2. Submodules of free modules among finitely generated non-
singular modules. In this section we investigate the following condition:
(NF) Every finitely generated non-singular R-module is isomorphic to a
submodule of a free R-module.
We say that a ring R has right (left) NF if the condition (NF) holds for
right (left) R-modules.

THEOREM 2.1.7 Over a right non-singular ring R, whose maximal right quotient
ring Q 1s also the maximal left quotient ring and such that the R-modules Qg
and gQ are flat, the following statements are equivalent:

(a) R has right NF;

(b) The singular submodule of Q @ Q (as an R-right or Q-right or left

module) s zero;

(¢) R has left NF.

We precede the proof of the theorem by Proposition 2.2. below, which lies
in the heart of the matter. A module My is essentially finitely generated if
Mp is an essential extension of a finitely generated submodule, e.g. [3 or 4].

ProrosiTioN 2.2. If R is a right non-singular ring with maximal right
quotient ring Q and has the property that (R:q) = {x € R| gx € R} is essentially
finitely generated for every q € Q, then every finitely generated left R-submodule
of gQ 1is isomorphic to a submodule of a free left R-module.

Proof. Let g4 = Rq1 + ...+ Rq,, ¢: € Q. By [3, p. 40, Theorem 1.6(c)],
z0 is flat, and so it follows from [4, p. 426, Theorem 2.1 (Remark (d’))] that
MNi=1 (R:q:) is essentially finitely generated. Thus there exist elements

U1, ..., upin N (R:q;) such thatI = Y #;R ' N (R:q:), and hence I, C’ Rg.
Let F=R®D X ... X R® where R®» = R,2=1,...,k Define ¢: g4 — gF
by ¢(x) = (xuy,...,xu;) for each x € 4. Clearly, ¢ is a homomorphism of

left R-modules and ¢ (x) = 0 implies x%#; = 0 for each 7, so that xI = 0; since
Iz C' Ry, this puts x in Z(Qg) but Z(Qz) = (0), and so ¢ is an embedding
of RA into RF.

Remark 3. Proposition 2.2, together with Corollary 2, yields the well-known
(e.g. [2, p- 131, Proposition 2.4]) fact that a commutative integral domain R

tAdded in proof. K. R. Goodearl in his paper Embedding non-singular modules in free modules
(to appear in J. Pure Appl. Algebra) has established the following theorem, which makes our
Theorem 2.1 inadequate:

If R is a ring with zero right singular ideal, then every finitely generated non-singular right
R-moduie can be embedded in a free right R-module if and only if Qg is flat and (Q @ Q) is non-
singular, where Q is the maximal right quotient ring of R.
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has NF. It suffices to observe that for each ¢ € Q, Q the field of quotients of R,
and any 0 # x € (R:q) we have xR C’ (R:q); thus (R:q) is essentially
finitely generated for each ¢ € Q.

Proof of Theorem 2.1. (a) = (b). Let Mz be a finitely generated non-
singular module and let Fy be a free module such that My C Fg. Since zQ is
flat, the sequence (0) > M ® Q — F ® Q (tensor product over R), induced
by the inclusion Mz C Fg, is exact; now F @ Q is Q-isomorphic to the free
Q-module Fy, and so Z((F ® Q)r) = (0) as Z(Qr) = (0). It follows that
Z((M ® Q)r) = (0), and so (b) follows from [3, p. 40, Theorem 1.6] and
the fact that non-singularity of Q ® z Q, say, as a right R-module is equivalent
to the canonical map Y $; ® ¢; — 2 p:q: from Q ® z Q to Q being an isomor-
phism of right R-modules (or Q-modules) and remains such as one of left
modules; then note that Z(4,Q) = (0).

(b) = (c). In view of Corollary 2, it is sufficient to show property (NF)
for finitely generated submodules of zQ. However, this follows from Proposi-
tion 2.2, as condition (b), together with the fact that rQ is flat, implies that
(R:q) = {x € R| gx € R} is essentially finitely generated for every g € Q,
[3, p. 40, Theorem 1.6(c)].

Arguments symmetric to the ones given above establish that (c¢) = (b)
and (b) = (a).

This completes the proof of Theorem 2.1.

Remark 4. The statement of Theorem 2.1 is admittedly cumbersome; there
is some evidence that, perhaps, it cannot be improved.

(1) Any right self-injective ring R, i.e. a ring R such that Ry is injective,
has right NF [16, p. 227, Theorem 2.7]. In particular, the maximal right
quotient ring Q of a right non-singular ring R has right NF since Q,, is injective
[12, p. 107]. On the other hand, the ring R described in Remark 2 (2) has a
two-sided maximal quotient ring Q such that Qp and zQ are flat modules
(R is von Neumann regular) but R does not have NF since Z(Q ® z Q) # (0)
(3, p. 42, Remark 1].

(2) A ring R which has right NF but not left NF exists. It suffices to take
R to be a right non-singular right but not left self-injective ring, e.g. [14].
Such a ring cannot have left NF, since if it did it would have to be a left
self-injective ring as well; to see the last assertion consider the following
lemma.

LeEmMMA 2.3. If R is a right non-singular ring with the property that the maximal
right quotient ring Q is also a left quotient ring of R and the maximal left quotient
ring S 1s also a right quotient ring of R, then Q and S coincide up to a ring
isomorphism, which extends the identity on R.

Proof. By uniqueness of injective hull there exists a monomorphism
f: gQ — &S such that f(r) = r for all » € R. To show the assertion of the
lemma, it is sufficient to show that f is also a homomorphism of right R-modules
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(f will remain a monomorphism, of course). To this end, let ¢ € Q and r € R
and let s = f(¢)r — f(gr) € S. The left ideal I = {x € R|xq € R} is large in
&R, since gR €' zQ, and for any x € I we have: xs = x(f(q)r) — xf(gr) =
f(@)r — flx(gr)) = flxg)r — f((xq)r) = (xq)r — (xq)r = O, since xgr € R.
Thus s € Z(zS) = (0) or f(g)r = f(gr) forall g € Q, 7 € R.

We note that a ring R such as we are discussing here has left modules,
which are finitely generated non-singular but not torsionless; thus Theorem 1.1
is not two-sided.

(3) A ring R which has an artinian semi-simple maximal right quotient ring
Q will have right NF if and only if zkR C’ Q.

The direct product R = IIR, of a countably infinite collection of com-
mutative integral domains {R,} has a maximal (two-sided) quotient ring
Q = II Q., where each Q, is the field of quotients of R,; Q is also a classical
quotient ring for R, and so the assumptions of Theorem 2.1 and condition (b)
are satisfied. Q has no chain conditions.

3. The coincidence of the non-singular property with the projective
property. Among commutative integral domains R, those over which torsion-
free (in the classical sense) modules are projective, are fields, since, in par-
ticular, Q, the field of quotients of R, would be projective. Among right
non-singular rings, the condition that every non-singular module be projective
characterizes a class of rings which properly contains the class of semi-simple
artinian rings. Theorem 3.1, the main result of this section, contains this
characterization and the tool in establishing it is Chase’s theorem [6, p. 467,
Theorem 3.3] recorded below for easy reference.

A ring R is left (right) coherent if every finitely generated left (right) ideal
of R is finitely related [6, p. 459].

THEOREM (Chase [6, p. 467, Theorem 3.3]). For any ring R, the following
statements are equivalent:

(@) The direct product of any family of projective right R-modules is projective;

(b) The direct product of amy family of copies of Ry is a projective right
R-module;

(c) R 1s right perfect and left coherent.

THEOREM 3.1. For any ring R, the following statements are equivalent:

(a) Z(Rg) = (0), and every non-singular right R-module is projective;

(b) R is right perfect, right semi-hereditary, left coherent, and Q, the maximal
right quotient ring, is also a left quotient ring of R;

(a*) Z(zR) = (0) and every non-singular left R-module is projective;

(b*) R is left perfect, left semi-hereditary, right coherent, and S, the maximal
left quotient ring, is also a right quotient ring of R.

Proof. (a) = (b). An arbitrary direct product of copies of Ry is a non-
singular right R-module, and so projective by (a). That R is right perfect
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and left coherent follows from Chase’s theorem; R is right semi-hereditary
(in fact right hereditary) since right ideals are non-singular right R-modules;
R C' zQ follows, e.g., from Theorem 1.1.

(b) = (a). Z(Rg) = (0) since R is right semi-hereditary and Z (Ry) contains
no idempotents # 0. From Theorem 1.1 and zR C'zQ, it follows that a
finitely generated non-singular module Mg is torsionless, hence projective from
Theorem (C) (b) and the fact that R is right semi-hereditary [2, p. 15,
Proposition 6.2]. In particular, Q is flat, being the direct limit of its finitely
generated (non-singular) R-submodules, hence Qy is projective since R is right
perfect [1, p. 467, Theorem P (3)]. It follows (Theorem 1.5) that every non-
singular right R-module is torsionless, hence projective since in fact R is right
hereditary (every right ideal is flat and R is right perfect).

The equivalence of (a*) and (b*) is obtained by a symmetric argument and
the equivalence of either (a) or (b) to either (a*) or (b*) is contained in the
following proposition.

PRroOPOSITION 3.2. For a ring R that satisfies either of the equivalent con-
ditions (a) or (b) of Theorem 3.1, the following siatements are true:
(i) The maximal right quotient ring Q of R is semi-simple aritnian (hence
also the maximal left quotient ring of R);
(i1) R is artinian and hereditary (on both sides).

Proof. (i) Condition (a) implies that Z(Q ® z Q) = (0), e.g. [3, p. 43,
Theorem 2.3] and since R is right hereditary, [3, p. 44, Theorem 2.5] shows
that Q is semi-simple artinian. Since Q is left self-injective, the condition
=R C’ rQ shows that Q is the maximal left quotient ring as well.

(i1) It follows from (i) and [15, p. 115, Theorem 1.6] that the Goldie dimen-
sions d(Rg), d(zR) (e.g. [15]) are finite; since R is right hereditary, it follows
from [16, p. 226, Corollary 2] that R is right noetherian. Thus the (Jacobson)
radical J of R is nilpotent since it is nil, e.g. [1, p. 467, Theorem P]. Now a
ring R with

(1) R/J artinian semi-simple,

(2) J nilpotent, and

(8) J finitely generated as a right ideal,
is easily shown to have a right R-module composition series, by the argument
used to prove Hopkin’s theorem, e.g. [12, p. 69, Corollary to Proposition 3]
(it suffices to observe that J* is finitely generated as a right ideal for every
positive integer k).

To complete the proof of (ii), we show that R is left artinian as follows:
R is left semi-hereditary by [16, p. 227, Corollary to Theorem 2.6], and so
every left ideal is flat hence projective since R is clearly left perfect also
(e.g. R is right artinian). Thus R is left hereditary and d(zR) < o, and so
R is left noetherian [16, p. 226], hence left artinian.

This completes the proof of the proposition and also the proof of
Theorem 3.1.
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Remark 5. (1) In the language of QF-3 rings, Theorem 3.1 characterizes the
right hereditary, right artinian, right QF-3 rings. Various definitions for
“right QF-3"" exist in the literature, e.g. [8; 9; 7]; since they are all equivalent
over a right artinian ring [8, p. 345], the one immediately relevant here is that
the injective hull of Ry be a projective module.

The structure of the right QF-3 rings of Theorem 3.1 has been completely
determined by Harada [9; 10; 11].

It is appropriate to mention here that E. P. Armendariz (oral communica-
tion) has independently characterized the rings satisfying condition (a) of
Theorem 3.1 as the right hereditary, right artinian, right QF-3 rings.

(2) The class of rings that satisfy Theorem 3.1 is properly contained in
the class of hereditary artinian rings.

Let A be a division ring and let R be the subring of M;(A), the ring of
3 X 3 matrices over A, consisting of the matrices of the form

a 0 x
0 a¢ vy, a,x,y,2 € A.
0 0 =

We have the following facts about R:
(i) Risright and left artinian since it is a finite-dimensional (right and left)
vector space over A= A-1,1 € R;
(ii) Z(Rg) = Z(zR) = (0) and Q = M3(A) is the maximal right quotient
ring of R, not a left quotient ring of R [5, Theorem 3.4];
(iii) R is hereditary.

The easiest way to establish the last fact is to observe the following.

(1) A ring R is right (left) hereditary if and only if every large right (left)
ideal of R is projective.

(2) Over any ring R, a simple right R-module is projective if and only if it
is non-singular.

Now the ring R above has right socle Soc(Rz) = l. anng/, a maximal
right ideal hence the only proper (# R) large right ideal; Soc(Rg) is pro-
jective by (2) and (ii), and so R is right hereditary by (1). Similarly, R is
left hereditary.

The condition that every finitely generated non-singular module be pro-
jective has been dealt with in [3] and the theorem obtained there [3, p. 43,
Theorem 2.3] is the following.

THEOREM 3.3. For any ring R, the following statements are equivalent:

(@) Z(Rg) = (0) and every finitely generated non-singular right R-module is
projective;

(b) R s right semi-hereditary, Qg is flat, and Z(Q ® Q) = (0), where Q is
the maximal right quotient ring of R.
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