ON MODULES OF SINGULAR SUBMODULE ZERO

VASILY C. CATEFORIS AND FRANCIS L. SANDOMIERSKI

Introduction. In this paper we generalize to modules of singular submodule zero over a ring of singular ideal zero some of the results, which are well known for torsion-free modules over a commutative integral domain, e.g. [2, Chapter VII, p. 127], or over a ring, which possesses a classical right quotient ring, e.g. [13, § 5].

Let R be an associative ring with 1 and let M be a unitary right R-module, the latter fact denoted by M_R . A submodule N_R of M_R is large in M_R (M_R is an essential extension of N_R) if N_R intersects non-trivially every non-zero submodule of M_R ; the notation $N_R \subseteq' M_R$ is used for the statement " N_R is large in M_R ". The singular submodule of M_R , denoted $Z(M_R)$, is then defined to be the set $\{m \in M | r(m) \subseteq' R_R\}$, where

$$r(m) \equiv r. \operatorname{ann}_{R}m = \{x \in R \mid mx = 0\}.$$

The module M_R is said to be non-singular (or of singular submodule zero) if $Z(M_R) = (0)$. The ring R is right (left) non-singular according as R_R ($_RR$) is a non-singular module.

The main tool in proving the results in this paper is the maximal right quotient ring Q of the ring R [12, § 4.3, p. 94] and as we deal with a right non-singular ring R, Q is the injective hull of R_R and a von Neumann regular ring, i.e. a ring every finitely generated ideal of which is a direct summand [12, § 4.5, p. 106].

As we deal with rings, which are right and left non-singular (this is not an assumption!) we say that a ring S containing a ring R (and sharing the identity of R), is a right (left) quotient ring of R if $R_R \subseteq' S_R$ ($_RR \subseteq' _RS$).

Now let R be a right non-singular ring and let Q be its maximal right quotient ring. The main results of this paper are as follows.

In § 1 the condition every finitely generated non-singular right R-module is torsionless is shown to be equivalent to Q is also a left quotient ring of R. The condition every non-singular right module is torsionless is shown to be equivalent to Q_R is torsionless. There are non-singular rings, other than semi-simple artinian, which satisfy the last theorem.

In § 2, with the further assumptions that

(a) Q is also the maximal left quotient ring of R and

(b) both Q_R and $_RQ$ are flat modules, the condition every finitely generated non-singular right (left) R-module is isomorphic to a submodule of a free right

Received August 5, 1970.

(left) R-module is shown to be equivalent to the condition the R-(Q-)module $Q \otimes_{\mathbf{R}} Q$ is non-singular (as right (left) R-module (Q-module)).

In § 3 the condition every non-singular right R-module is projective is shown to be equivalent to R is a semi-hereditary right perfect ring and Q is also a left quotient ring of R. A ring R satisfying either of the last two equivalent conditions is shown to be artinian, hereditary with a two-sided semi-simple artinian maximal quotient ring, and so in particular if one of the conditions above holds, so does the right (left) symmetric of the same, hence the theorem is two-sided.

All rings are assumed to be associative with identity 1 and all modules are assumed to be unitary. For any homological notions used in the following, the reader is referred to [2].

1. Torsionless among non-singular modules. Let R be a ring. A module M_R is torsionless if M_R can be embedded in a direct product of copies of the module R_R , equivalently, $\bigcap \ker f = (0)$ where the intersection is taken over all $f \in M^*$, $M^* = \operatorname{Hom}_R(M_R, R_R)$. For more details on the notion of torsionless see (e.g.) [1]. The main theorem in this section is the following.

THEOREM 1.1. For any right non-singular ring R, with maximal right quotient Q, the following statements are equivalent:

- (a) Every finitely generated non-singular module M_R is torsionless;
- (b) Q is also a left quotient ring of R.

We postpone the proof of Theorem 1.1 until several pertinent facts, some of interest in themselves, have been established.

As usual, if A is a non-empty subset of a module M_R , we set r. $\operatorname{ann}_R A = \{x \in R | Ax = 0\}$ and we abbreviate this to $r_R(A)$. In an appropriate setting, $l_R(A)$ is similarly defined.

LEMMA 1.2. Let R be a right non-singular ring with maximal right quotient ring Q and let M_R be a torsionless submodule of Q_R . If $A = \{p \in Q | pM \subset R\}$ (a subset of Q_Q), then $r_Q(A) \cap M = (0)$.

Proof. Every element f of $M^* = \text{Hom}_R(M_R, R_R)$ can be extended to an element f' of $\text{Hom}_R(Q_R, Q_R)$, since Q_R is injective. However, each element of $\text{Hom}_R(Q_R, Q_R)$ is given as left multiplication by some element of Q (because, e.g., $\text{Hom}_Q(Q_Q, Q_Q) = \text{Hom}_R(Q_R, Q_R)$); thus there exists $q \in Q$ such that f'(p) = qp for each $p \in Q$. Since f' extends f, we have $qM = f(M) \subset R$, and so $q \in A$. Now if $x \in r_Q(A) \cap M$, then for any $f \in M^*$ we have f(x) = qx = 0, thus $x \in \bigcap_{f \in M^*} \ker f = (0)$; hence $r_Q(A) \cap M = (0)$.

PROPOSITION 1.3. Let R be a right non-singular ring with maximal right quotient ring Q and suppose that every finitely generated R-submodule of Q_R is torsionless. If M_R is any finitely generated submodule of Q_R and if $A = \{p \in Q | pM \subset R\}$, then $r_Q(A) = (0)$.

346

Proof. Consider $x \in r_Q(A)$; let $M_{R'} = xR + M_R$ and $A' = \{p \in Q | pM' \subset R\}$. The module $M_{R'}$ is a finitely generated submodule of Q_R , and hence torsionless by assumption. Since $A' \subseteq A$, we have $r_Q(A) \subset r_Q(A')$, and so in particular $x \in r_Q(A')$. Since $x \in M_{R'}$, we have $x \in r_Q(A') \cap M'$; thus x = 0 follows from Lemma 1.2; we have $r_Q(A) = (0)$.

COROLLARY 1. (Same assumptions as in Proposition 1.3.) If $_{R}K$ and $_{R}L$ are left R-submodules of $_{R}Q$, such that $K \cap L = (0)$, then $QK \cap QL = (0)$.

Proof. Consider $b \in QK \cap QL$; there exist elements $p_i, q_i \in Q, k_i \in K$, $l_i \in L, i = 1, ..., n$, such that $b = \sum_i p_i k_i = \sum_i q_i l_i$. Let $M_R = \sum_i p_i R + \sum_i q_i R$ and let $A = \{p \in Q \mid pM \subset R\} = \{p \in Q \mid pp_i, pq_i \in R, all i\}$. It follows from Proposition 1.3 that $r_Q(A) = (0)$. Now Ab = (0) since $Ab \subset K \cap L = (0)$, hence b = 0, and so $QK \cap QL = (0)$.

LEMMA 1.4. If R is a right non-singular ring with maximal right quotient ring Q, then every finitely generated non-singular module M_R can be embedded in a finitely generated free right Q-module F_Q .

Proof. This is [3, p. 42, Lemma 2.2].

COROLLARY 2. (R and Q as in Lemma 1.4.) Every finitely generated nonsingular module M_R can be embedded in a finite direct sum of finitely generated R-submodules of Q_R .

Proof. Let $M_R = \sum_{i=1}^{t} m_i R$ be a finitely generated non-singular module and let $F_Q = Q^{(1)} \times \ldots \times Q^{(n)}$, where $Q^{(i)} = Q_Q$ for each *i*, be a free right *Q*-module such that $M_R \subset F_Q$ (the latter given by Lemma 1.4). For each *i*, $i = 1, \ldots, t$, there exist elements $q_{ij} \in Q$, $j = 1, \ldots, n$, such that $m_i = (q_{i1}, \ldots, q_{in})$. We see from this that

$$m_i R \subset (q_{i1}, \ldots, q_{in}) R \subset q_{i1} R \oplus \ldots \oplus q_{in} R,$$

where q_{ij} is identified with $(0, \ldots, q_{ij}, \ldots, 0)$ in F_Q . Setting $A_j = \sum_{i=1}^t q_{ij}R$, we have $M_R \subset A_1 \oplus \ldots \oplus A_n$, with $A_i \subseteq Q_R$ for each *i*.

Proof of Theorem 1.1. (a) \Rightarrow (b). By definition of essential extension, it suffices to show that if $_{R}K \subset _{R}Q$ satisfies $K \cap R = (0)$, then K = (0). Now (a), together with $Z(Q_{R}) = (0)$, implies that every finitely generated *R*-submodule of Q_{R} is torsionless; thus Corollary 1 yields $QK \cap QR = (0)$. However, $K \subset QK \cap QR$, and so $_{R}K = (0)$ whenever $K \cap R = (0)$; we have (b).

(b) \Rightarrow (a). In view of Corollary 2, it is sufficient to show (a) in case M_R is a finitely generated *R*-submodule of Q_R . To this end, let $M_R = \sum_{i=1}^n q_i R \subset Q_R$ and let $A = \{r \in R | rq_i \in R, i = 1, ..., n\}$. Since $_RR \subseteq'_RQ$, it follows from [4, p. 242, Proposition 1.1 (vi)] that $_RA \subseteq'_RR$. Now using *A* as an indexing set, define

$$\phi: M_R \to \prod_{r \in A} R^{(r)}, \qquad R^{(r)} \equiv R_R,$$

by $\phi(m) = [rm| r \in A]$, for each $m \in M$. The map ϕ is clearly a homomorphism of right *R*-modules and $m \in \ker \phi$ if and only if Am = 0. However, ${}_{R}A \subseteq' {}_{R}R$ and Am = 0, $m \in Q$, implies that $m \in Z({}_{R}Q)$; also, $Z({}_{R}Q) = (0)$ since *Q* is von Neumann regular, and so m = 0. Thus ker $\phi = (0)$ and ϕ is an embedding of *R*-modules.

This completes the proof of Theorem 1.1.

Remark 1. Right non-singular rings R over which the maximal right quotient ring Q is not also a left quotient ring exist [5], and so Theorem 1.1 is not "automatic" for non-singular rings as it is for commutative integral domains; see e.g. [2, p. 131, Proposition 2.4].

Wei has shown [17, p. 416, Proposition 7] that every non-singular module M_R can be embedded in a direct product of copies of the module Q_R , where Q is the maximal right quotient ring of a right non-singular ring R. Since a submodule of a torsionless module is clearly torsionless and a direct product of torsionless modules is a torsionless module, the following theorem is immediate.

THEOREM 1.5. For a right non-singular ring R with maximal right quotient ring Q the following statements are equivalent:

(a) Every non-singular module M_R is torsionless;

(b) Q_R is torsionless.

Remark 2. (1) In view of Theorem 1.1, if Q_R is torsionless, then Q is also a left quotient ring of R.

(2) Although the class of commutative integral domains that satisfies Theorem 1.5 coincides with the class of fields, among right non-singular rings there exist rings with no finiteness conditions, that satisfy the theorem. An example is the following.

Let F be a field and let Q be the (ring) (full) direct product

$$\prod_{n=1}^{\infty} F^{(n)}, \qquad F^{(n)} = F \text{ for each } n.$$

Let

$$R = \bigoplus_{n=1}^{\infty} F^{(n)} + 1 \cdot F \subset Q,$$

where 1 is the identity of Q. The ring Q is the maximal (two-sided) quotient ring of R and Q_R is torsionless.

To see the latter part of the last statement, observe that given any $0 \neq q \in Q$, there is

$$0 \neq x \in \operatorname{Soc}(R) = \operatorname{Soc}(Q) = \bigoplus_{n=1}^{\infty} F^{(n)}$$

such that $0 \neq xq \in R$ and the map x^* , multiplication of elements of Q by x, is an element of $\operatorname{Hom}_R(Q_R, R_R)$.

(3) It is appropriate to mention here the class of rings, satisfying Theorem 1.5, determined by Colby and Rutter in [7]; these are the right non-singular, right QF-3 rings among the semi-primary ones.

2. Submodules of free modules among finitely generated nonsingular modules. In this section we investigate the following condition:

(NF) Every finitely generated non-singular *R*-module is isomorphic to a submodule of a free *R*-module.

We say that a ring R has right (left) NF if the condition (NF) holds for right (left) R-modules.

THEOREM 2.1.[†] Over a right non-singular ring R, whose maximal right quotient ring Q is also the maximal left quotient ring and such that the R-modules Q_R and $_RQ$ are flat, the following statements are equivalent:

- (b) The singular submodule of $Q \otimes_{\mathbf{R}} Q$ (as an R-right or Q-right or left module) is zero;
- (c) *R* has left NF.

We precede the proof of the theorem by Proposition 2.2. below, which lies in the heart of the matter. A module M_R is essentially finitely generated if M_R is an essential extension of a finitely generated submodule, e.g. [3 or 4].

PROPOSITION 2.2. If R is a right non-singular ring with maximal right quotient ring Q and has the property that $(R:q) = \{x \in R | qx \in R\}$ is essentially finitely generated for every $q \in Q$, then every finitely generated left R-submodule of _RQ is isomorphic to a submodule of a free left R-module.

Proof. Let $_{R}A = Rq_{1} + \ldots + Rq_{n}$, $q_{i} \in Q$. By [3, p. 40, Theorem 1.6(c)], $_{R}Q$ is flat, and so it follows from [4, p. 426, Theorem 2.1 (Remark (d'))] that $\bigcap_{i=1}^{n} (R:q_{i})$ is essentially finitely generated. Thus there exist elements u_{1}, \ldots, u_{k} in $\bigcap (R:q_{i})$ such that $I = \sum u_{i}R \subseteq' \bigcap (R:q_{i})$, and hence $I_{R} \subseteq' R_{R}$. Let $F = R^{(1)} \times \ldots \times R^{(k)}$, where $R^{(i)} = {}_{R}R$, $i = 1, \ldots, k$. Define $\phi: {}_{R}A \to {}_{R}F$ by $\phi(x) = (xu_{1}, \ldots, xu_{k})$ for each $x \in A$. Clearly, ϕ is a homomorphism of left R-modules and $\phi(x) = 0$ implies $xu_{i} = 0$ for each i, so that xI = 0; since $I_{R} \subseteq' R_{R}$, this puts x in $Z(Q_{R})$ but $Z(Q_{R}) = (0)$, and so ϕ is an embedding of $_{R}A$ into $_{R}F$.

Remark 3. Proposition 2.2, together with Corollary 2, yields the well-known (e.g. [2, p. 131, Proposition 2.4]) fact that a commutative integral domain R

⁽a) *R* has right NF;

 $[\]dagger Added$ in proof. K. R. Goodearl in his paper *Embedding non-singular modules in free modules* (to appear in J. Pure Appl. Algebra) has established the following theorem, which makes our Theorem 2.1 inadequate:

If R is a ring with zero right singular ideal, then every finitely generated non-singular right R-module can be embedded in a free right R-module if and only if Q_R is flat and $(Q \otimes_R Q)_R$ is non-singular, where Q is the maximal right quotient ring of R.

has NF. It suffices to observe that for each $q \in Q$, Q the field of quotients of R, and any $0 \neq x \in (R:q)$ we have $xR \subseteq' (R:q)$; thus (R:q) is essentially finitely generated for each $q \in Q$.

Proof of Theorem 2.1. (a) \Rightarrow (b). Let M_R be a finitely generated nonsingular module and let F_R be a free module such that $M_R \subset F_R$. Since $_RQ$ is flat, the sequence $(0) \rightarrow M \otimes Q \rightarrow F \otimes Q$ (tensor product over R), induced by the inclusion $M_R \subset F_R$, is exact; now $F \otimes Q$ is Q-isomorphic to the free Q-module F_Q , and so $Z((F \otimes Q)_R) = (0)$ as $Z(Q_R) = (0)$. It follows that $Z((M \otimes Q)_R) = (0)$, and so (b) follows from [3, p. 40, Theorem 1.6] and the fact that non-singularity of $Q \otimes_R Q$, say, as a right R-module is equivalent to the canonical map $\sum p_i \otimes q_i \rightarrow \sum p_i q_i$ from $Q \otimes_R Q$ to Q being an isomorphism of right R-modules (or Q-modules) and remains such as one of left modules; then note that $Z(_QQ) = (0)$.

(b) \Rightarrow (c). In view of Corollary 2, it is sufficient to show property (NF) for finitely generated submodules of $_{R}Q$. However, this follows from Proposition 2.2, as condition (b), together with the fact that $_{R}Q$ is flat, implies that $(R:q) = \{x \in R | qx \in R\}$ is essentially finitely generated for every $q \in Q$, [3, p. 40, Theorem 1.6(c)].

Arguments symmetric to the ones given above establish that $(c) \Rightarrow (b)$ and $(b) \Rightarrow (a)$.

This completes the proof of Theorem 2.1.

Remark 4. The statement of Theorem 2.1 is admittedly cumbersome; there is some evidence that, perhaps, it cannot be improved.

(1) Any right self-injective ring R, i.e. a ring R such that R_R is injective, has right NF [16, p. 227, Theorem 2.7]. In particular, the maximal right quotient ring Q of a right non-singular ring R has right NF since Q_Q is injective [12, p. 107]. On the other hand, the ring R described in Remark 2 (2) has a two-sided maximal quotient ring Q such that Q_R and $_RQ$ are flat modules (R is von Neumann regular) but R does not have NF since $Z(Q \otimes_R Q) \neq (0)$ [3, p. 42, Remark 1].

(2) A ring R which has right NF but not left NF exists. It suffices to take R to be a right non-singular right but not left self-injective ring, e.g. [14]. Such a ring cannot have left NF, since if it did it would have to be a left self-injective ring as well; to see the last assertion consider the following lemma.

LEMMA 2.3. If R is a right non-singular ring with the property that the maximal right quotient ring Q is also a left quotient ring of R and the maximal left quotient ring S is also a right quotient ring of R, then Q and S coincide up to a ring isomorphism, which extends the identity on R.

Proof. By uniqueness of injective hull there exists a monomorphism $f: {}_{R}Q \rightarrow {}_{R}S$ such that f(r) = r for all $r \in R$. To show the assertion of the lemma, it is sufficient to show that f is also a homomorphism of right R-modules

(f will remain a monomorphism, of course). To this end, let $q \in Q$ and $r \in R$ and let $s = f(q)r - f(qr) \in S$. The left ideal $I = \{x \in R | xq \in R\}$ is large in $_{R}R$, since $_{R}R \subseteq '_{R}Q$, and for any $x \in I$ we have: xs = x(f(q)r) - xf(qr) = (xf(q))r - f(x(qr)) = f(xq)r - f((xq)r) = (xq)r - (xq)r = 0, since $xqr \in R$. Thus $s \in Z(_{R}S) = (0)$ or f(q)r = f(qr) for all $q \in Q$, $r \in R$.

We note that a ring R such as we are discussing here has left modules, which are finitely generated non-singular but not torsionless; thus Theorem 1.1 is not two-sided.

(3) A ring R which has an artinian semi-simple maximal right quotient ring Q will have right NF if and only if $_{R}R \subseteq'_{R}Q$.

The direct product $R = \prod R_{\alpha}$ of a countably infinite collection of commutative integral domains $\{R_{\alpha}\}$ has a maximal (two-sided) quotient ring $Q = \prod Q_{\alpha}$, where each Q_{α} is the field of quotients of R_{α} ; Q is also a classical quotient ring for R, and so the assumptions of Theorem 2.1 and condition (b) are satisfied. Q has no chain conditions.

3. The coincidence of the non-singular property with the projective property. Among commutative integral domains R, those over which torsion-free (in the classical sense) modules are projective, are fields, since, in particular, Q, the field of quotients of R, would be projective. Among right non-singular rings, the condition that every non-singular module be projective characterizes a class of rings which properly contains the class of semi-simple artinian rings. Theorem 3.1, the main result of this section, contains this characterization and the tool in establishing it is Chase's theorem [6, p. 467, Theorem 3.3] recorded below for easy reference.

A ring R is left (right) coherent if every finitely generated left (right) ideal of R is finitely related [6, p. 459].

THEOREM (Chase [6, p. 467, Theorem 3.3]). For any ring R, the following statements are equivalent:

(a) The direct product of any family of projective right R-modules is projective;

(b) The direct product of any family of copies of R_R is a projective right *R*-module;

(c) R is right perfect and left coherent.

THEOREM 3.1. For any ring R, the following statements are equivalent:

(a) $Z(R_R) = (0)$, and every non-singular right R-module is projective;

(b) R is right perfect, right semi-hereditary, left coherent, and Q, the maximal right quotient ring, is also a left quotient ring of R;

(a*) $Z(_{\mathbb{R}}R) = (0)$ and every non-singular left R-module is projective;

(b*) R is left perfect, left semi-hereditary, right coherent, and S, the maximal left quotient ring, is also a right quotient ring of R.

Proof. (a) \Rightarrow (b). An arbitrary direct product of copies of R_R is a nonsingular right *R*-module, and so projective by (a). That *R* is right perfect and left coherent follows from Chase's theorem; R is right semi-hereditary (in fact right hereditary) since right ideals are non-singular right R-modules; ${}_{R}R \subseteq' {}_{R}Q$ follows, e.g., from Theorem 1.1.

(b) \Rightarrow (a). $Z(R_R) = (0)$ since R is right semi-hereditary and $Z(R_R)$ contains no idempotents $\neq 0$. From Theorem 1.1 and $_R R \subseteq '_R Q$, it follows that a finitely generated non-singular module M_R is torsionless, hence projective from Theorem (C) (b) and the fact that R is right semi-hereditary [2, p. 15, Proposition 6.2]. In particular, Q_R is flat, being the direct limit of its finitely generated (non-singular) R-submodules, hence Q_R is projective since R is right perfect [1, p. 467, Theorem P(3)]. It follows (Theorem 1.5) that every nonsingular right R-module is torsionless, hence projective since in fact R is right hereditary (every right ideal is flat and R is right perfect).

The equivalence of (a^*) and (b^*) is obtained by a symmetric argument and the equivalence of either (a) or (b) to either (a^*) or (b^*) is contained in the following proposition.

PROPOSITION 3.2. For a ring R that satisfies either of the equivalent conditions (a) or (b) of Theorem 3.1, the following statements are true:

- (i) The maximal right quotient ring Q of R is semi-simple artinian (hence also the maximal left quotient ring of R);
- (ii) R is artinian and hereditary (on both sides).

Proof. (i) Condition (a) implies that $Z(Q \otimes_R Q) = (0)$, e.g. [3, p. 43, Theorem 2.3] and since R is right hereditary, [3, p. 44, Theorem 2.5] shows that Q is semi-simple artinian. Since Q is left self-injective, the condition ${}_{R}R \subseteq {'}_{R}Q$ shows that Q is the maximal left quotient ring as well.

(ii) It follows from (i) and [15, p. 115, Theorem 1.6] that the Goldie dimensions $d(R_R)$, d(R) (e.g. [15]) are finite; since R is right hereditary, it follows from [16, p. 226, Corollary 2] that R is right noetherian. Thus the (Jacobson) radical J of R is nilpotent since it is nil, e.g. [1, p. 467, Theorem P]. Now a ring R with

(1) R/J artinian semi-simple,

(2) J nilpotent, and

(3) J finitely generated as a right ideal,

is easily shown to have a right *R*-module composition series, by the argument used to prove Hopkin's theorem, e.g. [12, p. 69, Corollary to Proposition 3] (it suffices to observe that J^k is finitely generated as a right ideal for every positive integer k).

To complete the proof of (ii), we show that R is left artinian as follows: R is left semi-hereditary by [16, p. 227, Corollary to Theorem 2.6], and so every left ideal is flat hence projective since R is clearly left perfect also (e.g. R is right artinian). Thus R is left hereditary and $d(_{R}R) < \infty$, and so R is left noetherian [16, p. 226], hence left artinian.

This completes the proof of the proposition and also the proof of Theorem 3.1.

Remark 5. (1) In the language of QF-3 rings, Theorem 3.1 characterizes the right hereditary, right artinian, right QF-3 rings. Various definitions for "right QF-3" exist in the literature, e.g. [8; 9; 7]; since they are all equivalent over a right artinian ring [8, p. 345], the one immediately relevant here is that the injective hull of R_R be a projective module.

The structure of the right QF-3 rings of Theorem 3.1 has been completely determined by Harada [9; 10; 11].

It is appropriate to mention here that E. P. Armendariz (oral communication) has independently characterized the rings satisfying condition (a) of Theorem 3.1 as the right hereditary, right artinian, right QF-3 rings.

(2) The class of rings that satisfy Theorem 3.1 is properly contained in the class of hereditary artinian rings.

Let Δ be a division ring and let R be the subring of $M_3(\Delta)$, the ring of 3×3 matrices over Δ , consisting of the matrices of the form

$$\begin{pmatrix} a & 0 & x \\ 0 & a & y \\ 0 & 0 & z \end{pmatrix}, \qquad a, x, y, z \in \Delta.$$

We have the following facts about R:

- (i) R is right and left artinian since it is a finite-dimensional (right and left) vector space over $\Delta \equiv \Delta \cdot 1$, $1 \in R$;
- (ii) $Z(R_R) = Z(_R R) = (0)$ and $Q = M_3(\Delta)$ is the maximal right quotient ring of R, not a left quotient ring of R [5, Theorem 3.4];
- (iii) R is hereditary.

The easiest way to establish the last fact is to observe the following.

(1) A ring R is right (left) hereditary if and only if every large right (left) ideal of R is projective.

(2) Over any ring R, a simple right R-module is projective if and only if it is non-singular.

Now the ring R above has right socle $Soc(R_R) = 1$. $ann_R J$, a maximal right ideal hence the only proper $(\neq R)$ large right ideal; $Soc(R_R)$ is projective by (2) and (ii), and so R is right hereditary by (1). Similarly, R is left hereditary.

The condition that every finitely generated non-singular module be projective has been dealt with in [3] and the theorem obtained there [3, p. 43, Theorem 2.3] is the following.

THEOREM 3.3. For any ring R, the following statements are equivalent:

(a) $Z(R_R) = (0)$ and every finitely generated non-singular right R-module is projective;

(b) R is right semi-hereditary, Q_R is flat, and $Z(Q \otimes_R Q) = (0)$, where Q is the maximal right quotient ring of R.

References

- 1. H. Bass, Finitistic dimension and a homological generalization of semi-primary rings, Trans. Amer. Math. Soc. 95 (1960), 466-488.
- 2. H. Cartan and S. Eilenberg, *Homological algebra* (Princeton Univ. Press, Princeton, N.J., 1956).
- 3. V. Cateforis, On regular self-injective rings, Pacific J. Math. 30 (1969), 39-45.
- 4. Flat regular quotient rings, Trans. Amer. Math. Soc. 138 (1969), 241-249.
- 5. Two-sided semisimple maximal quotient rings, Trans. Amer. Math. Soc. 149 (1970), 339–350.
- 6. S. U. Chase, Direct product of modules, Trans. Amer. Math. Soc. 97 (1960), 457-473.
- 7. R. Colby and E. Rutter, Semi-primary QF-3 rings, Nagoya Math. J. 32 (1968), 253-257.
- 8. K. Fuller, The structure of QF-3 rings, Trans. Amer. Math. Soc. 134 (1968), 343-354.
- 9. M. Harada, QF-3 and semi-primary PP-rings. I, Osaka J. Math. 2 (1965), 357-368.
- 10. QF-3 and semi-primary PP-rings. II, Osaka J. Math. 3 (1966), 21-27.
- 11. ——— Hereditary semi-primary rings and triangular matrix rings, Nagoya Math. J. 27 (1966), 463–484.
- 12. J. Lambek, Lectures on rings and modules (Blaisdell, Waltham, Massachusetts, 1966).
- 13. L. Levy, Torsion-free and divisible modules over non-integral domains, Can. J. Math. 15 (1963), 132–151.
- B. Osofsky, Cyclic injective modules of full linear rings, Proc. Amer. Math. Soc. 17 (1966), 247-253.
- F. L. Sandomierski, Semi-simple maximal quotient rings, Trans. Amer. Math. Soc. 128 (1967), 112–120.
- 16. —— Nonsingular rings, Proc. Amer. Math. Soc. 19 (1968), 225-230.
- 17. D. Y. Wei, On the concept of torsion and divisibility for general rings, Illinois J. Math. 13 (1969), 414-431.

University of Kentucky, Lexington, Kentucky; Kent State University, Kent, Ohio