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Abstract

Leonetti and Luca [‘On the iterates of the shifted Euler’s function’, Bull. Aust. Math. Soc., to appear]
have shown that the integer sequence (xn)n≥1 defined by xn+2 = φ(xn+1) + φ(xn) + k, where x1, x2 ≥ 1, k ≥ 0
and 2 | k, is bounded by 4X3k+1

, where X = (3x1 + 5x2 + 7k)/2. We improve this result by showing that the
sequence (xn) is bounded by 22X2+X−3, where X = x1 + x2 + 2k.
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1. Introduction

In a recent study of integer sequences generated by Euler’s totient function, Leonetti
and Luca [3] proved the following theorem.

THEOREM 1.1. Fix an even integer k ≥ 0. The integer sequence (xn)n≥1 defined
by xn+2 = φ(xn+1) + φ(xn) + k, where x1, x2 ≥ 1, is bounded by 4X3k+1

, where
X = (3x1 + 5x2 + 7k)/2.

It is natural to ask whether the size of the upper bound for the sequence (xn) in
Theorem 1.1 could be reduced. In this paper, we will provide such an improvement.
The main result of this paper is the following theorem.

THEOREM 1.2. Fix an even integer k ≥ 0. The integer sequence (xn)n≥1 defined
by xn+2 = φ(xn+1) + φ(xn) + k, where x1, x2 ≥ 1, is bounded by 22X2+X−3, where
X = x1 + x2 + 2k.
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Note that the bound in Theorem 1.2 is exponentially smaller than the bound in
Theorem 1.1. To prove Theorem 1.2, we will use the Chinese remainder theorem in
combination with some estimates on prime numbers due to Erdős (Lemma 2.4) and
Rosser (Lemma 2.3).

2. Proof of Theorem 1.2

Case 1: x3 = 2. Since k ≥ 0, 2 | k and φ(x1) + φ(x2) + k = x3 = 2, we must have k = 0
and φ(x1) = φ(x2) = 1. Hence, x1, x2 ∈ {1, 2}. Note that if φ(xn) = φ(xn−1) = 1, then
xn+1 = φ(xn) + φ(xn−1) = 2. By induction, xn = 2 for all n ≥ 3. Since X = x1 + x2 +

2k ≥ 2, we have 22X2+X−3 > 2. Hence, xn < 22X2+X−3 for all n ≥ 1.

Case 2: x3 ≥ 3. Then x4 = φ(x3) + φ(x2) + k ≥ 3. Note that if xn ≥ 3 with n ≥ 3, then

xn+1 = φ(xn) + φ(xn−1) + k ≥ 3 + k ≥ 3.

By induction, xn ≥ 3 for all n ≥ 3, so that 2 | φ(xn) for all n ≥ 3. Therefore,
2 | φ(xn−1) + φ(xn−2) + k = xn for all n ≥ 5 and so

φ(xn) ≤ n
2

for all n ≥ 5. (2.1)

LEMMA 2.1. For n = 1, 2, . . . , 6,

xn < 2X . (2.2)

PROOF. We consider each value of n in turn.
n = 1 or n = 2. Then (2.2) holds because max{x1, x2} < x1 + x2 ≤ X < 2X .
n = 3. Then (2.2) holds because 3 ≤ x3 = φ(x1) + φ(x2) + k ≤ x1 + x2 + k ≤ X < 2X .
n = 4. Since φ(x3) ≤ x3 − 1 ≤ x1 + x2 + k − 1 and φ(x2) ≤ x2,

x4 = φ(x3) + φ(x2) + k ≤ x1 + 2x2 + 2k − 1 < 2X ≤ 2X (since 2X ≥ 2X for X ≥ 2).

n = 5. Since φ(x4) ≤ x4 − 1 ≤ x1 + 2x2 + 2k − 2 and φ(x3) ≤ x1 + x2 + k − 1,

x5 = φ(x4) + φ(x3) + k ≤ 2x1 + 3x2 + 4k − 3

= 3(x1 + x2 + 2k) − x1 − 2k − 3

≤ 3X − 4 (since x1 + 2k + 3 ≥ 4)

< 2X (since 2X > 3X − 4 for X ≥ 2). (2.3)

n = 6. By (2.1) and (2.3), φ(x5) ≤ x5/2 ≤ (2x1 + 3x2 + 4k − 3)/2. Combining this with
the estimate φ(x4) ≤ x1 + 2x2 + 2k − 2 gives

x6 = φ(x5) + φ(x4) + k ≤ 2x1 + 3x2 + 4k − 3
2

+ (x1 + 2x2 + 2k − 2) + k

=
4x1 + 7x2 + 10k − 7

2
=

7(x1 + x2 + 2k)
2

− 3x1 + 4k + 7
2
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≤ 7
2

X − 5 (since (3x1 + 4k + 7)/2 ≥ 5

< 2X (since 2X > 7X/2 − 5 for X ≥ 2). �

We now return to the proof of Theorem 1.2 when x3 ≥ 3 (Case 2).

Case 2.1: k = 0. Then xn = φ(xn−1) + φ(xn−2) for all n ≥ 3. By (2.1),

xn+2 = φ(xn+1) + φ(xn) ≤ xn+1

2
+

xn

2
for all n ≥ 5. (2.4)

An induction, using Lemma 2.1 and (2.4), shows that xn < 2X for all n ≥ 1. Hence,
xn < 2X < 22X2+X−3 for all n ≥ 1.

Case 2.2: k ≥ 1. Let p1 < p2 < · · · < p2k+2 be the first 2k + 2 primes. By the Chinese
remainder theorem, there exist infinitely many positive integers x such that

x ≡ −i (mod pi) for all i = 1, 2, . . . , 2k + 2. (2.5)

LEMMA 2.2. Let M be a positive integer satisfying the congruences (2.5) and such that
M ≥ max{2X − 2k − 2, kp2k+2 − k − 2}. Then, for all positive integers n,

xn ≤ M + 2k + 2. (2.6)

PROOF. Since M + 2k + 2 ≥ 2X , by Lemma 2.1, (2.6) holds for n = 1, 2, . . . , 6.
Suppose n ≥ 7 and assume that Lemma 2.2 is not true. Let m be the smallest positive
integer such that xm > M + 2k + 2. Then xm−1, xm−2 ≤ M + 2k + 2 and m ≥ 7. Thus,
2 | xm−1, xm−2. Therefore,

M + 2k + 2 < xm = φ(xm−1) + φ(xm−2) + k ≤ xm−1

2
+

xm−2

2
+ k

and so xm−1 + xm−2 > 2M + 2k + 4. It follows that xm−1, xm−2 > M + 2 since
xm−1, xm−2 ≤ M + 2k + 2. Let xm−1 = M + 2 + r and xm−2 = M + 2 + s, where r, s ∈ Z
and 0 < r, s ≤ 2k. Since M satisfies (2.5), there exist odd primes p, q ≤ p2k+2 such
that p | M + 2 + r = xm−1 and q | M + 2 + s = xm−2. Therefore, 2p | xm−1 and 2q | xm−2.
Recalling that xm−1, xm−2 ≤ M + 2k + 2 and p, q ≤ p2k+2,

xm = φ(xm−1) + φ(xm−2) + k ≤ xm−1

2

(
1 − 1

p

)
+

xm−2

2

(
1 − 1

q

)
+ k

≤ 2 · M + 2k + 2
2

(
1 − 1

p2k+2

)
+ k

= (M + 2k + 2)
(
1 − 1

p2k+2

)
+ k

≤ M + 2k + 2 (since M + 2k + 2 ≥ p2k+2k),

which contradicts the assumption that xm > M + 2k + 2. Therefore, (2.6) holds for all
positive integers n. Lemma 2.2 is proved. �
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LEMMA 2.3 (Rosser [4, Theorem 2]). For all positive integers n ≥ 4,

pn < n(log n + 2 log log n),

where pn is the nth prime and log denotes the natural logarithm.

LEMMA 2.4 (Erdős [2]; see Aigner and Ziegler [1, Ch. 2, page 10]). For all positive
integers n ≥ 2,

∏
p≤n

p ≤ 4n−1,

where the product is taken over all primes p ≤ n.

LEMMA 2.5. For all positive integers n ≥ 4,

pn < n2, (2.7)

p1 p2 · · · pn < 4n2−1. (2.8)

PROOF. It is a routine verification that log x + 2 log log x < x for all x > 1. Hence,

n(log n + 2 log log n) < n2. (2.9)

Then (2.7) follows from Lemma 2.3 and inequality (2.9).
Inequality (2.8) is a consequence of Lemma 2.4 and (2.7). Indeed,

p1 p2 · · · pn ≤ 4pn−1 < 4n2−1. �

We return to the proof of Theorem 1.2. Let α be the smallest positive integer
satisfying (2.5). Then α ≤ p1 p2 · · · p2k+2. Note that 4 ≤ 2k + 2 ≤ 2k + x1 + x2 = X. It
follows from (2.8) that

α ≤ p1 p2 · · · p2k+2 < 4(2k+2)2−1 ≤ 4X2−1. (2.10)

Let M = α + 2x1+x2 p1 p2 · · · p2k+2. Then M satisfies (2.5). Since p1 p2 · · · p2k+2 > 22k

and p1 p2 · · · p2k+2 > pk p2k+2 > kp2k+2,

M > 2x1+x2 p1 p2 · · · p2k+2 > 2x1+x2 22k = 2X

and

M > p1 p2 · · · p2k+2 > kp2k+2.

Thus, M satisfies all the conditions in Lemma 2.2. Hence,

xn ≤ M + 2k + 2 for all n ≥ 1. (2.11)

Since x1 + x2 = X − 2k ≤ X − 2, by (2.10),

M = α + 2x1+x2 p1 p2 · · · p2k+2 < (1 + 2X−2) · 4X2−1. (2.12)
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Note that X ≤ 2X−2 since X ≥ 4. Thus,

2k + 2 ≤ 2k + x1 + x2 = X ≤ 2X−2. (2.13)

Combining (2.12) and (2.13) gives

M + 2k + 2 ≤ M + 2X−2 < (1 + 2X−2) · 4X2−1 + 2X−2

< 2X−2 · 4X2−1 + 2X−2 · 4X2−1 = 22X2+X−3. (2.14)

It follows from (2.11) and (2.14) that xn < 22X2+X−3 for all n ≥ 1. This completes the
proof of Theorem 1.2.

REMARK 2.6. Leonetti and Luca [3] also proved that the integer sequence
(xn)n≥1 defined by xn+1 = φ(xn) + k, where x1 ≥ 1 and k ≥ 0, is bounded by
max{x1, k4} + (k + 1)2. A similar argument to that in the proof of Theorem 1.2 shows
that the sequence (xn) is bounded but with a worse upper bound.

REMARK 2.7. It is an open question to find the best possible bound (in terms of x1, x2
and k) for the sequence (xn) in Theorems 1.1 and 1.2.
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