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ABSTRACT. A two-dimensional particle simulation model of the sea-ice ridging 
process is developed. In this model, ridges are formed from an intact layer of newly 
frozen lead ice colliding with a thick multi-year floe. Blocks broken from the leading 
edge of the lead ice collect above and beneath the multi-year floe to form the 
characteristic ridge structure seen in the central Arctic. The total energy consumed in 
ridging ice, which is converted into the potential energy of the ridge structure and 
dissipated by the frictional and inelastic contacts between blocks of ice, is calculated 
explicitly. The results of preliminary numerical experiments using this model indicate 
that the amount of energy required to ridge ice may be much larger than previous 
estimates. 

INTRODUCTION 

A typical sea-ice cover In the polar regions contains a 
variety of ice thicknesses which evolve in response to both 
dynamic and thermodynamic forcing. The variable 
thickness of the ice cover is created by deformation which 
simultaneously causes formation of thick ice through ridge 
building and thin ice through lead creation. Since the 
energy expended in deformation is largely determined by 

the ridging process, investigating the energetics of pressure 
ridging is cri tical for the determination of ice strength on a 
geophysical scale. 

A framework for describing the variable thickness 
character of sea ice was developed by Thorndike and 
others (1975). Within this framework, pressure ridging is 
treated statistically by a redistribution process whereby 
thin ice is transferred to thick ice categories. The amount 
of energy used for this process can be related to the large­
scale strength of the pack ice (Rothrock, 1975). A key issue 
here is the ratio of the total energy consumed to the 
potential energy created in the ridging process. Most 
estimates have typically placed the total energy losses at 
about twice the potential energy (Rothrock, 1975), a 
factor that was based largely on a kinematic ridge model 
developed by Parmerter and Coon ( 1972) . However, 
while modeling the kinematics of the ridging process, this 
ridge model did not explicitly calculate frictional and 
other non-potential energy losses. The factor of two was 
also inconsistent with large-scale simulation results. In a 
seasonal simulation of the Arctic basin using a variable 
thickness sea-ice model, Hibler (1980) estimated the ratio 
of total work to the change in potential energy to be 
between two and ten. 

In their classical paper, Parmerter and Coon (1972) 
constructed a two-dimensional kinematic model of the 
ridging process. They began with two ice floes of equal 
thickness separated by a lead uniformly filled with rubble. 

As the floes converged, an arbitrary fraction of the 
displaced rubble was thrust above the sheet and the 
remainder below. The rubble thrust above and below the 
floe was shaped by two mechanisms. A lateral transfer 
coefficient was used to define the fraction of rubble carried 
wi th the floe toward the cen ter of the lead and the fraction 
which remained in place. An assumed angle of repose 
shaped the rubble piles forming above and below the 
water level. The floes themselves were treated structurally 
as plates on an elastic foundation. 

Hopkins and others (1991) adopted a similar picture 
of ridge growth. However, in place of the arbitrary ridge 
building mechanisms used by Parmerter and Coon, a 
particle simulation model was used in which the dynamics 
of the blocks of rubble were calculated explicitly. Since 
frictional and inelastic contacts were included, this model 
furnished a more complete picture of the energetics of the 
ridging process than the lower bound provided by 
Parmerter and Coon, which was based on potential 
energy alone. This type of ridge growth characteristically 
shows a small sail to keel ratio, because the layer of rubble 
remains in hydrostatic equilibrium until the multi-year 
floes approach each other. 

Whereas instances of ridges grown from rubble-filled 
leads probably do occur in the central Arctic pack, this 
model seems better suited to areas of the pack in the 
vicinity of land. A more likely model for ridge growth in 
the central pack is for a plate of thin ice covering a newly 
frozen lead to be driven against a multi-year floe by the 
converging pack. With enough lead ice and a sustained 
period of convergence, blocks broken from the leading 
edge of the lead ice will collect above and beneath the 
multi-year floe to form the characteristic ridge structure 
seen in the central Arctic. 

In the present work, the latter type of ridge growth is 
modeled. The simulation begins with a thin plate of ice 
moving at a constant speed toward a thick multi-year floe 
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(see the first snapshot in Fig. 2). The lead ice is modeled as a 
a plate on an elastic foundation using standard solutions 
(Hentenyi, 1946) for vertical and angular deflection and 
moment at regular points in the plate. As the lead ice 
collides with the floe, it bends. When the moment at a 
point in the lead ice exceeds its flexural strength, it breaks 
at that point. As the lead ice continues to move toward the 
floe, additional blocks break off and contribute to the ridge 
structure. At the same time, the motions of the blocks 
which make up the growing ridge are calculated based on 
contact forces between blocks and body forces. The 
individual blocks may also fail in flexure. The energy 
dissipated at every contact is calculated explicitly, as well 
as the changes in potential energy of the rubble blocks and 
the thin ice plate. The overall energy consumed is found 
by calculating the work performed by the horizontal force 
pushing the plate ofIead ice into the ridge. The multi-year 
floe is treated as a rigid plate. 

THE PARTICLE SIMULATION 

In general terms, a particle simulation is a computer 
program which models the Newtonian dynamics ofa large 
system of discrete particles. The simulation stores the 
shape and the instantaneous position and velocity of each 
particle. The contact and body forces on each particle are 
calculated at each time step and the particles are moved to 
new locations with new velocities which depend on the 
resultant of the forces. In the following paragraphs, the 
general details of the particle simulation used in this paper 
are described. A detailed description of simulation 
methods using polygonal block-shaped particles may be 
found in Hopkins and Hibler (in press) and Walton 
( 1980) . 

The domain of the simulation is defined sufficiently far 
above, below and to each side of the lead that the domain 
will contain the entire ridge at all times. The rubble is 
composed of block-shaped polygons of uniform thickness 
which were broken from the lead ice. In order to model 
the contact forces between blocks, a list of neighboring 
pairs of blocks is compiled periodically. The method used 
to compile the list begins by overlaying the domain with a 
square grid. Each cell of the grid is small enough that at 
most one block center may lie in the cell at any time. A 
two-dimensional array is dimensioned to correspond with 
this grid and the index of each block is assigned to the 
array element corresponding to the cell in which its center 
lies. In addition, two inverse address arrays are defined. 
One holds the i location of a block and the other the} 
location, where i denotes a column and} a row in the grid. 
These arrays enable the program to find the block located 
at (i,j) in the domain and the (i,j) address of a given 
block. With this information, it is a straightforward matter 
to find the close neighbors of each block. The pairs of 
blocks which are discovered less than some arbitrarily 
small distance apart are placed in an array of near 
neighbors, which is refreshed periodically. 

At each time step, D.t, each pair of blocks in the array 
of near neighbors is checked for contact. Contact exists 
when the blocks overlap. If a pair of blocks is found to 
overlap (Fig. la), a local orthogonal coordinate frame (n,t) 
is established with its origin at the centroid of the area of 
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Fig. 1.( a) A pair of overlapping ice blocks. (b) The contact 
force model. 

overlap. The normal axis n is perpendicular and the 
tangential axis t is tangent to the surface of(at least one of) 
the blocks. 

A representation of the interparticle force model is 
shown in Figure 1 b. The normal contact force F n has an 
elastic component proportional to the area of contact Ac 
and a viscous or dissipative component proportional to the 
normal component of the relative velocity at the point of 
contact V rel 

(1) 

where kns is an elastic spring constant, knd is a viscous 
damping constant, and the superscript n denotes the 
current time step. Tensile forces are not allowed. 

In the tangential direction, the blocks are coupled by 
a sliding surface to a linear spring. The sliding surfaces are 
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characterized by a constant coefficient of friction J1.. The 
initial relative tangential motion at the point of contact 
compresses the spring creating a force. The magnitude of 
the force increases incrementally from time step to time 
step until it reaches the limiting value of J1. lFn l. The 
magnitude of the frictional force may not exceed that 
value; instead, sliding occurs at the contact surface. The 
equation defining the tangential force Ft (Walton, 1980) is 

F n = Fn-l_k flt (V n-l /2. t) 
t t ts rei ' (2) 

with IFtl ~ J1. IFnl. In Equation (2) kts is an elastic spring 
constant. The moments of F n and Ft, about the center of 
each block, follow from the geometry of the contact. 

After the body forces and the forces and moments 
exerted on each block by surrounding blocks have been 
found, the equations of motion are derived from a Taylor 
series expansion about the current time. The equations are 
second order accurate with velocity dependent forces. The 
velocity of a block at time n + 1/2 is 

(3) 

In Equation (3) the subscript I denotes direction in 
Cartesian space, F is the resultant force on the block, and 
M is the mass of the block. The velocity of a block at time 
n+ 1 is 

(4) 

The position of a block at time n + I is 

(5) 

Similar equations determine the angular orientation e and 
velocity (j) of the block. 

Because of the tendency for polygonal blocks to form 
stable load-bearing structures by interlocking or stacking, 
some form of breakage mechanism is necessary. A simple 
breakage model suitable for slender blocks, in which the 
blocks fail in flexure, was developed by Hopkins and 
Hibler (in press). In this model, breakage is caused by 
flexure in the x, Z plane. The d'Alembert force and torque 
due to the contact forces and unbalanced body forces on 
the block are calculated. Given the d'Alembert force and 
torque the calculation of the moment at a point in the 
block is reduced to a statics problem. If the moment at a 
point exceeds the flexural strength of the block, then the 
block is broken at that point. The flexural strength of the 
block is (h2 /6 ) O"cr (Timoshenko, 1956), where h is the 
block thickness and 0" cr is the tensile strength of sea ice. 

The vertical and angular deflections of the lead ice are 
calculated using standard solutions (Hetenyi, 1946) in 
which plate rigidity replaces beam stiffness. These are 
equilibrium solutions which are assumed to apply to the slowly 
moving plate. At regular time intervals during the 
simulation, the deflections are calculated at regular 
points in the lead ice. The calculations use forces which 
are the averages of the forces exerted on the lead ice by the 
rubble during the preceding interval. Vertical and angular 
velocities are calculated to bring each point in the plate to 
its new position over a second time interval. In the ridge 
simulation discussed in this paper, deflections were 
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calculated at 0.1 s intervals and velocities were calculated 
to bring each point in the plate to the new position in 2 s. 
This lag was necessary in order to couple the lead ice to 
the rubble, which has a slower response time. At the same 
time, moments were calculated at each point. If the 
moment at a point exceeded the flexural strength of the 
lead ice, it was broken at that point and the broken piece 
was added to the rubble. 

THE ENERGETICS 

The work performed in building the ridge is transformed 
into the potential energy of the ridge structure and lost 
through dissipative mechanisms. The dissipative mechan­
isms consist of frictional contacts between sliding blocks 
and inelasticity, which implies crushing at the point of 
contact, implemented by the dashpot in the normal force 
(Equation 1). The stored elastic energy which is lost when 
the lead ice breaks is implicitly accounted for as unrestored 
potential energy. The overall ridge building work is 
calculated directly from the horizontal forces Fx exerted 
by the rubble blocks in contact with the lead ice moving 

with speed ulead 

(6) 

The summations in Equation (6) are over the forces 
exerted by the rubble on the lead ice (ki) at each time step 
(Ln) in the experiment. The change in the potential 
energy of the ridge structure is 

(7) 

The summations in Equation (7) are over each block in 
the rubble at each time step. A is the area and w the 
vertical component of the velocity of block i; As is the 
submerged area and Ws the vertical component of the 
velocity of the center of mass of the submerged area of 
block i; Pi is the sea-ice density and Pw is the sea-water 
density. The frictional dissipation, cI>f> is the work 
performed by the tangential component of the contact 
forces 

(8) 

Similarly, the dissipation cl> d by the dashpot in the normal 
direction, which is equivalent to particle inelasticity, is the 
net work performed by the normal component of the 
contact forces 

(9) 

In both Equations (8) and (9), the summations are over 
the pairs of blocks in contact at each time step. The 
changes in kinetic energy of the rubble are also calculated 
and in general remain negligible compared to the above 
processes. 

DISCUSSION OF THE RESULTS 

The results given here are from a single preliminary 
experiment with the ridge simulation described above. 
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Fig. 2. Fifteen snapshots of simulated ridge growth at 50 s intervals. 
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Snapshots of the simulated ridge growth are shown in 
Figure 2. The following parameters were used in the 
simulation: 

floe thickness 
lead ice thickness 

ulead 
Pi 
Pw 
er cr 
kns 
knd 
kts 
Ildry 
Il wet 
Young's modulus 

2.0m, 
0.3m, 
0.33 ms-\ 
920.0 kg m-3

, 

1010.0 kg m-3, 

300kPa, 
4 X 106 Nm-2, 

4 x 103 Nsm- I , 

1 x 106 Nm-2, 

0.40, 
0.25, 
1.0 X 107 Nm-2

. 

Separate values of the friction coefficient were used for dry 
contacts (above the water) and wet contacts (underwater). 
The value of Young's modulus used in the simulation is 
much less than values typically cited. Young's modulus 
occurs in the elastic beam equations where it controls the 
length of the blocks broken from the lead ice plate. The 
value used results in blocks with a typical length of about 
1.5 m. Young's modulus also affects the rigidity of the 
plate, which may have a secondary effect on the 
energetics. 

The rates of work, dissipation, and increase of 
potential energy are shown in Figure 3 for the simulated 
ridge growth in Figure 2. The overall rate of work 
increases in an approximately linear fashion throughout 
the experiment, whereas the rate of increase of potential 
energy remains relatively constant. This behavior may be 
explained in the following way. Consider the section of 
rubble directly beneath the plate of lead ice. The overall 
work is largely a function of the frictional force exerted on 
the underside of the lead ice. The frictional force, which 
depends on the buoyancy of the rubble, is proportional to 
the area of the rubble . Since the lead ice is fed into the 
ridge at a constant rate, the area of rubble beneath the 
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Fig. 3. The rates of work, dissipation and potential energy 
change for the ridge shown in Figure 2. 

Hopkins and Hibler, IIl: Ridging of a thin lead-ice sheet 

plate, the frictional force, and the overall work, will 
increase linearly with time. The potential energy of the 
rubble beneath the plate is also proportional to the area of 
the rubble. Therefore, the increase of potential energy will 
be linear, and its derivative (plotted in Fig. 3) will be 
constant. The ratio of the overall rate of work to the rate of 
increase of potential energy in Figure 3 varied between 
15: I and 20 : I . In the ridges grown from a rubble lead 
(Hopkins and others, 1991 ) the ratio was between 3: I and 
5: I depending on the coefficient of friction . 

CONCLUSIONS 

The intent of this work has been to give a brief description 
of a model for the simulation of the formation of pressure 
ridges in situations where relatively thin, intact lead ice is 
driven against a thick floe. The ridging model uses a 
dynamic particle simulation in which the motions of ice 
blocks are a consequence of explicitly modeled contact and 
body forces on each block. A preliminary numerical 
experiment with the ridging model furnished pictures of 
simulated ridge growth (Fig. 2) and an estimate of the 
energetics of the ridging process (Fig. 3). In th is 
experiment, the total energy consumed in ridging was 
much higher than the value of two times the increase of 
poten tial energy estimated by Rothrock (1975). It was 
also significantly higher than the estimates of Hopkins and 
others (1991 ) of three to five times the increase of poten tial 
energy (depending on friction ), for ridges grown from a 
rubble-filled lead. The result implies that ridges grown 
from an intact frozen lead require much more energy per 
unit increase of potential energy in the ridge structure 
than ridges grown from a rubble-filled lead. 

Since these are preliminary results, they are offered 
with some trepidation and should be interpreted with 
caution. The results may depend strongly on the speed of 
the lead ice, which was very high in the simulated ridge 
described above or on other factors yet to be considered . 
Future experiments will examine the sensitivity of the 
ridging energy budget to variations in speed, friction , 
flexural strength, Young's modulus, and plate thickness . 
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