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Abstract. We give elementary proofs of the main theorems about the (small) quantum coho-
mology of Grassmannians, including the quantum Giambelli and quantum Pieri formulas, the
rim-hook algorithm, the presentation, and a recent theorem of Fulton and Woodward about

the minimal q-power which appears in a product of two Schubert classes.
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1. Introduction

The purpose of this paper is to give simple proofs of the main theorems about the

(small) quantum cohomology ring of a Grassmann variety. This first of all includes

Bertram’s quantum versions of the Pieri and Giambelli formulas [1]. Bertram’s

proofs of these theorems required the use of quot schemes. Our proof of the quan-

tum Pieri formula uses no moduli spaces and only the definition of Gromov–Witten

invariants. In fact we show that this formula is a consequence of the classical Pieri

formula. We then show that the quantum Giambelli formula follows immediately

from the quantum Pieri formula together with the classical Giambelli formula and

associativity of quantum cohomology [13, 17].

We also give a short proof of the Grassmannian case of a formula of Fulton and

Woodward for the minimal q-power which appears in a quantum product of two

Schubert classes [10]. In addition we supply a proof of a simple version of the rim-

hook algorithm [2] based on ‘mod n’ arithmetic which is due to F. Sottile [19]. Finally

we recover the presentation of the quantum cohomology of Grassmannians [18, 21].

In this paper we only assume associativity of quantum cohomology and standard

facts about the usual cohomology. The basic idea is that if a rational curve

of degree d passes through a Schubert variety in the Grassmannian Grðl;C
n
Þ of l-

dimensional subspaces of C
n, then the linear span of the points of this curve gives

rise to a point in Grðlþ d;C
n
Þ which must lie in a related Schubert variety. Remark-

ably, this simple idea can in many cases be used to conclude that no curves pass

through three Schubert varieties in general position because the intersection of the
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related Schubert varieties in Grðlþ d;C
n
Þ is empty. In particular, the quantum

Giambelli formula can be deduced by knowing that certain Gromov–Witten

invariants are zero, and in each case this follows because the codimensions of the

related Schubert varieties add up to more than the dimension of Grðlþ d;C
n
Þ.

The same idea can be used to prove the quantum Monk’s formula for flag varieties

SLn=B [4, 7] and even the quantum Pieri formula for partial flag varieties SLn=P [5,

6]. In a paper [3] with A. Kresch and H. Tamvakis this idea will furthermore be

applied to obtain a similar treatment of the quantum cohomology of Lagrangian

and orthogonal Grassmannians [14, 15].

2. Preliminaries

Set E ¼ C
n, X ¼ Grðl;E Þ, and k ¼ n� l. Given a flag of subspaces F1 � F2 �

� � � � Fn ¼ E and a partition l ¼ ðl1 5l2 5 � � � 5ll 5 0Þ with l1 4 k, we define

the Schubert variety

OlðF�Þ ¼ fV 2 X j dimðV \ Fkþi�liÞ5 i 814 i4 lg: ð1Þ

The codimension of this variety is equal to the weight jlj ¼
P

li of l. We let Ol

denote the class of OlðF�Þ in the cohomology ring H �X ¼ H �ðX;ZÞ. The Schubert

classes Ol form a basis for this ring. The partitions indexing this basis are exactly

those where the Young diagram fits in an l� k rectangle.

The cohomology ring has the presentation H�X ¼ Z½O1; . . . ;Ok�=ðYlþ1; . . . ;YnÞ

where Yp ¼ detðO1þj�iÞ14i; j4p. Here we set Oi ¼ 0 for i < 0 or i > k for convenience.

In this presentation the class Ol is given by the Giambelli formula

Ol ¼ detðOliþj�iÞ14i; j4l: ð2Þ

This is usually deduced (cf. [8]) from the Pieri formula, which states that

Oi � Ol ¼
X

On ð3Þ

where the sum is over all partitions n which can be obtained by adding i boxes to the

Young diagram of l with no two in the same column.

Recall that the degree of a rational curve f : P
1
! P

N is equal to the number of

points in the inverse image by f of a general hyperplane in P
N. The degree of a map

f : P
1
! X is the degree of the composition of f with the Plücker embedding

X � Pð
Vl E Þ which maps a point V 2 X to v1 ^ � � � ^ vl for any basis fv1; . . . ; vlg of

V. Now let l, m, and n be three partitions contained in an l� k rectangle, and let

d5 0 be an integer such that jlj þ jmj þ jnj ¼ lkþ dn. The Gromov–Witten invariant

hOl;Om;Onid is defined as the number of rational curves of degree d on X, which

meet all of the Schubert varieties OlðF�Þ, OmðG�Þ, and OnðH�Þ for general flags F�,

G�, H�, up to automorphisms of P
1. A simple proof that this number is well defined

is given in [1]. If jlj þ jmj þ jnj 6¼ lkþ dn; then hOl;Om;Onid ¼ 0.

The (small) quantum cohomology ring QH�X ¼ QH�ðX;ZÞ of X is a Z½q�-algebra

which is isomorphic to H�X�Z Z½q� as a module over Z½q�. In this ring we have

Schubert classes sl ¼ Ol � 1. The ring structure on QH�X is defined by
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sl � sm ¼
X
n;d50

hOl;Om;On_id q
d sn ð4Þ

where n_ ¼ ðk� nl; k� nl�1; . . . ; k� n1Þ is the partition for the dual Schubert class of

On. It is a nontrivial fact that this defines an associative ring structure [13, 17] (see

also [9]). Notice that the definition implies that QH�X is a graded ring where sl
has degree jlj and q has degree n. Furthermore, the map QH�X=ðqÞ ! H�X which

sends sl to Ol is an isomorphism of rings, so the quantum ring is a deformation

of the usual cohomology ring.

Siebert and Tian have given a presentation of this ring which is similar to the

above presentation of the cohomology ring [18]. We will comment on this presenta-

tion towards the end of this paper. For now we will start from the basic assumption

that the quantum ring is a well defined associative ring, and aim towards proving

generalizations of the Pieri and Giambelli formulas stated above to reveal its

structure.

3. The Span and Kernel of a Curve

Our main new tool is the following definition. If Y is any subvariety of X ¼ Grðl;E Þ

we define the span of Y to be the smallest subspace of E containing all the l-dimen-

sional spaces given by points of Y. Similarly we define the kernel of Y to be the lar-

gest subspace of E contained in all the spaces given by points of Y.

LEMMA 1. Let C be a rational curve of degree d in X. Then the span of C has

dimension at most lþ d and the kernel of C has dimension at least l� d.

Proof. Let C be the image of a regular function f : P
1
! X of degree d, and let

S � E�OX be the tautological subbundle on X. Then f �S ¼
Ll

i¼1 OP
1 ð�aiÞ for

integers ai 5 0 with sum d, and f is given by an inclusion
Ll

i¼1 OP
1 ð�aiÞ � E�O

P
1 ,

i.e. a point p 2 P
1 is mapped to the fiber over p of the image of this bundle map. If

ðs : tÞ are homogeneous coordinates on P
1 then GðO

P
1 ðaiÞÞ has the basis

fsjtai�jg04j4ai
, so each map O

P
1 ð�aiÞ ! E�O

P
1 has the form

Xai

j¼0

aj s�jt j�ai 7!
Xai

j¼0

v
ðiÞ
j � aj

for vectors v
ðiÞ
j 2 E (which will depend on the chosen identification of f �S with

Ll
i¼1 OP

1ð�aiÞ ). The span of C must therefore be contained in the span of the set

fv
ðiÞ
j g which has cardinality

P
ð1þ aiÞ ¼ lþ d. On the other hand, at least l� d of

the integers ai must be zero, and the kernel of C contains the span of the correspond-

ing vectors v
ðiÞ
0 . &

The above lemma can also be obtained by proving that any regular function

f : P
1
! X can be written as fðtÞ ¼ f1ðtÞ ^ � � � ^ flðtÞ for maps fi : P

1
! PðE Þ. This

is what we did until A. Kresch showed us the simpler argument given here.
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If l is a partition and d a nonnegative integer, we let l̂ denote the partition

obtained by removing the leftmost d columns from the Young diagram of l, i.e.

l̂i ¼ maxðli � d; 0Þ.

LEMMA 2. Let C � X be a rational curve of degree d4 k and let W � E be an lþ d

dimensional subspace containing the span of C. If l is a partition such that

C \ OlðF�Þ 6¼ ; then W belongs to the Schubert variety Ol̂ðF�Þ in Grðlþ d;E Þ.

Proof. Let V 2 C \ OlðF�Þ. Since V � W, the Schubert conditions on V imply

that dimðW \ Fkþi�li Þ5 i for all i, which says exactly that W belongs to Ol̂ðF�Þ. &

Similarly, if K � E is an l� d dimensional subspace contained in the kernel of C,

then K 2 O�lðF�Þ � Grðl� d;E Þ, where �l ¼ ðldþ1; . . . ; llÞ is the result of removing the

top d rows of l. Therefore, the condition that a curve meets a given set of Schubert

varieties in X implies that intersections of related Schubert varieties in Grðlþ d;E Þ

and in Grðl� d;E Þ are not empty, which is a statement about the usual cohomology

of these spaces. As we shall see, this simple idea is sufficient to compute Gromov–

Witten invariants in many important cases.

4. The Quantum Pieri Formula

We start with the following quantum version of the Pieri formula [1].

THEOREM 1 (Bertram). If l is contained in an l� k rectangle and p4 k then

sp � sl ¼
X

sm þ q
X

sn

where the first sum is over all partitions m such that jmj ¼ jlj þ p and k5m1 5
l1 5m2 5l2 5 � � � 5ml 5ll, and the second sum is over all partitions n such that

jnj ¼ jlj þ p� n and l1 � 15n1 5l2 � 15n2 5 � � � 5ll � 15nl 5 0.

Recall that the length ‘ðlÞ of a partition l is the number of non-zero parts of l.
Notice that the second sum in the theorem is nonzero only if ‘ðlÞ ¼ l.

Proof. The first sum is dictated by the classical Pieri formula. Notice that this

classical case is equivalent to the following statement. If a and b are partitions such

that jaj þ jbj þ p ¼ lk then

hOa;Ob;Opi0 ¼
1 if ai þ bj 5 k for iþ j ¼ l and ai þ bj 4 k for iþ j ¼ lþ 1;
0 otherwise:

n

Now suppose jaj þ jbj þ p ¼ lkþ dn for some d5 1 and let C be a rational curve

of degree d in X which meets each of the varieties OaðF�Þ, ObðG�Þ, and OpðH�Þ for

general flags F�, G�, H�. Notice that dn4 lkþ k which implies that d4 k. Let

W � E be a subspace of dimension lþ d which contains the span of C. Then

W 2 Grðlþ d;E Þ lies in the intersection OâðF�Þ \ Ob̂ðG�Þ \ Op̂ðH�Þ where â and b̂
are the results of removing the leftmost d columns from a and b, and
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p̂ ¼ maxð p� d; 0Þ. Since the flags F�, G�, H� are general, this implies that

jâj þ jb̂j þ p̂4 ðlþ d Þðk� d Þ. Since we also have

jâj þ jb̂j þ p̂5 jaj þ jbj � 2ldþ p� d ¼ ðlþ d Þðk� d Þ þ d 2 � d

we deduce that d ¼ 1 and ‘ðaÞ ¼ ‘ðbÞ ¼ l. Using this, the quantum Pieri formula

becomes equivalent to the statement that if jaj þ jbj þ p ¼ lkþ n then

hOa;Ob;Opi1 ¼ 1 if ai þ bj 5 kþ 1 for iþ j ¼ lþ 1 and ai þ bj 4 kþ 1 for

iþ j ¼ lþ 2; otherwise hOa;Ob;Opi1 ¼ 0. In other words, the quantum Pieri formula

states that hOa;Ob;Opi1 ¼ hOâ;Ob̂;Op̂i0 where the right hand side is a coefficient of

the classical Pieri formula for Grðlþ 1;E Þ.

If hOâ;Ob̂;Op̂i0 is zero then the space W can’t exist, so neither can C. On the other

hand, if hOâ;Ob̂;Op̂i0 ¼ 1 then there exists a unique subspace W � E of dimension

lþ 1 which is contained in the intersection OâðF�Þ \ Ob̂ðG�Þ \ Op̂ðH�Þ. Furthermore,

since the flags are general, W must lie in the interior of each of these Schubert vari-

eties. In particular, each of the spaces V1 ¼ W \ Fn�al and V2 ¼ W \ Gn�bl
have

dimension l. Notice also that V1 2 OaðF�Þ and V2 2 ObðG�Þ. Since OaðF�Þ\

ObðG�Þ ¼ ; we deduce that V1 6¼ V2, so K ¼ V1 \ V2 has dimension l� 1. We con-

clude that the only rational curve of degree 1 in X which meets the Schubert varieties

for a, b, and p is the line PðW=K Þ of l-dimensional subspaces between K and W. &

5. The Quantum Giambelli Formula

Now set si ¼ 0 for i < 0 and for k < i < n. The quantum Giambelli formula states

that the classical formula (2) continues to be valid if all Schubert classes are replaced

with the corresponding quantum Schubert classes [1].

THEOREM 2 (Bertram). If l is a partition contained in an l� k rectangle, then the

Schubert class sl in QH�Grðl;E Þ is given by sl ¼ detðsliþj�iÞ14i; j4l.

Proof. We claim that if 04 ij 4 k for 14 j4 l then si1 � si2 � � � sil ¼

ðOi1 � Oi2 � � �OilÞ � 1, i.e. no q-terms show up when the first product is expanded in the

quantum ring. Using induction, this can be established by proving that if ‘ðmÞ < l

then the expansion of si � sm involves no q-terms and no partitions of lengths greater

than ‘ðmÞ þ 1. The claim therefore follows from Theorem 1. Since the determinant of

the quantum Giambelli formula is a signed sum of products of the form

si1 � si2 � � � sil , we conclude from the classical Giambelli formula (2) that detðsliþj�iÞ ¼

detðOliþj�iÞ � 1 ¼ Ol � 1 ¼ sl as required. &

Notice that this proof uses only that no q-terms are contained in a product si � sm
when ‘ðmÞ < l (in addition to the classical Giambelli and Pieri formulas). In fact,

Theorem 1 could be replaced with the following lemma.

LEMMA 3. Let l and m be partitions contained in an l� k rectangle such that

‘ðlÞ þ ‘ðmÞ4 l. Then sl � sm ¼ ðOl � OmÞ � 1.
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Proof. If d5 1 and n is a partition such that jlj þ jmj þ jnj ¼ lkþ nd, then any

intersection Ol̂ðF�Þ \ Om̂ðG�Þ \ On̂ðH�Þ of general Schubert varieties in Grðlþ d;E Þ

must be empty since jl̂j þ jm̂j þ jn̂j5 jlj þ jmj þ jnj � 2dl ¼ lkþ dk� dl > ðlþ d Þ

ðk� d Þ. This shows that hOl;Om;Onid ¼ 0. &

A dual version of this lemma states that if l1 þ m1 4 k, then sl � sm ¼ ðOl � OmÞ � 1.

This follows by replacing the span of a curve with its kernel in the above proof, or by

using the duality isomorphism QH�Grðl;E Þ ffi QH�Grðk;E �Þ.

6. The Minimal Power of q in a Quantum Product

As a further demonstration of the use of the span of a rational curve in X, we will

give a short proof of a recent theorem of Fulton and Woodward [10] in the

case of Grassmannians. It generalizes the fact that any product sl � sm in QH�X is

nonzero.

Given a partition l and an integer d5 0, we let �̂l denote the partition obtained by

removing the top d rows and the leftmost d columns from l. Recall that a product

Ol � Om is non-zero in H�Grðl;E Þ if and only if li þ mj 4 k for iþ j ¼ lþ 1.

THEOREM 3 (Fulton and Woodward). The smallest power of q which appears in

a product sl � sm in QH�X is equal to the smallest d for which O �̂l
� Om 6¼ 0 in H�X.

Proof. If sl � sm contains qd times a Schubert class then some curve of degree d

meets each of the Schubert varieties OlðF�Þ and OmðG�Þ where F� and G� are general

flags. If W � E has dimension lþ d and contains the span of this curve then W lies in

the intersection Ol̂ðF�Þ \ Om̂ðG�Þ in Grðlþ d;E Þ. In particular this intersection is not

empty which implies that Ol̂ � Om̂ 6¼ 0 in H�Grðlþ d;E Þ. Since this is equivalent to

O �̂l
� Om 6¼ 0 in H�X, this proves the inequality ‘5’ of the theorem. (If d > k then it is

also true that O �̂l
� Om 6¼ 0.)

Now let d be the smallest number for which O �̂l
� Om 6¼ 0. Notice that this implies

that l contains a d� d rectangle, i.e. ld 5 d. Set a ¼ ðkþ d� ld; . . . ; kþ d� l1Þ and
let b be the partition given by bi ¼ maxðd� llþ1�i; 0Þ for 14 i4 l. If the Young dia-

gram for l is put in the upper-left corner of an l by kþ d rectangle, then a is the com-

plement of l in the top d rows of this rectangle, turned 180 degrees, and b is the

complement of l in the leftmost d columns, also turned.

It follows from the Littlewood–Richardson rule that the product sl � sb contains

the class s
ðdlÞþl̂ ¼ sðdlÞ � sl̂ and that sl̂ � sa contains s

ðkd Þ; �̂l
¼ sðkd Þ � s �̂l

. Since the struc-

ture constants of QH�X are all nonnegative, this implies that sl � sb � sa contains the

product sðdlÞ � sðkd Þ � s �̂l
¼ qds �̂l

. Since O �̂l
� Om 6¼ 0 by assumption, we conclude that

sl � sm � sa � sb contains qd times some Schubert class. In particular, at least one term

of the product sl � sm must involve a power of q which is less than or equal to d. This

proves the other inequality ‘4’ in the theorem. Notice that the identities we have

used in this argument follow easily from Theorem 1 and the dual version

of Lemma 3, combined with the classical Pieri rule. &
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7. The Rim-Hook Algorithm

We will next recall how to carry out computations in the quantum cohomology ring

of X. Let ci 2 QH�X denote the ith Chern class of the dual of the tautological sub-

bundle S � E�OX. This means that ci ¼ sð1iÞ for 04 i4 l and ci ¼ 0 for i < 0 and

i > l. For p5 1 we then define sp ¼ detðc1þj�iÞ14i; j4p in QH�X. Notice that for p < n

we have sp ¼ Op � 1, so this definition is compatible with our previous definition of

sp. The definition implies that for every m5 1 we have

Xl

i¼0

ð�1Þi sm�i sð1iÞ ¼ 0: ð5Þ

LEMMA 4. For any p5 kþ 1 we have sp ¼ ð�1Þl�1 q sp�n.

Proof. Both sides of the identity are zero for kþ 14 p < n. It follows from

(5) with m ¼ n that sn þ ð�1Þlsk sð1lÞ ¼ 0, so sn ¼ ð�1Þl�1sk sð1lÞ ¼ ð�1Þl�1q by

Theorem 1. For p > n we finally obtain

sp ¼
Xl

i¼1

ð�1Þi�1sp�i sð1iÞ ¼ ð�1Þl�1 q
Xl

i¼1

ð�1Þi�1sp�n�i sð1iÞ ¼ ð�1Þl�1 q sp�n

by induction, which proves the lemma. &

If I ¼ ðI1; I2; . . . ; IpÞ is any sequence of integers we set sI ¼ detðsIiþj�iÞ14i; j4p in

QH�X. This is compatible with our notation sl for partitions l by Theorem 2.

Any element sI can be rewritten as zero or plus or minus sm for some partition m
by moves of the form sI;a;aþ1;J ¼ 0 and sI;a;b;J ¼ �sI;b�1;aþ1;J, which correspond to

interchanging rows in the determinant defining sI. Notice that if l is a partition then

we have the formal identity sl ¼ detðcl0iþj�iÞ where l0 is the conjugate partition of l,
obtained by mirroring the Young diagram for l in its diagonal. In particular, if

‘ðlÞ > l then the top row of the latter determinant is zero, and sl ¼ 0.

COROLLARY 1. Let l be a partition with at most l parts. For each 14 j4 l, choose

Ij 2 Z such that Ij � lj ðmod nÞ and j� l4 Ij < j� lþ n. Then we have

sl ¼ ð�1Þdðl�1Þ qd sI 2 QH�X

where I ¼ ðI1; . . . ; IlÞ and nd ¼ jlj �
P

Ij.

Notice that the moves described above will rewrite the chosen element sI to zero

or plus or minus a basis element sm of QH�X with m contained in an l� k rectangle.

The corollary is equivalent to the dual rim-hook algorithm of [2]. The formulation in

terms of reduction modulo n is due to F. Sottile [19], who in turn was inspired by the

work of Ravi, Rosenthal, and Wang [16]. This formulation gives an efficient

algorithm to determine if two elements sl and sm are identical. In particular it shows

that sl ¼ 0 if and only if li � i � lj � j ðmod nÞ for some i 6¼ j.
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Corollary 1 makes it easy to do computations in QH�X (cf. [2, 11, 20] and [12, Ex.

13.35]). In order to expand a product sl � sm, one uses the classical Littlewood–

Richardson rule to write sl � sm ¼
P

cnlmsn where the sum is over partitions n of

length at most l and cnlm is the Littlewood–Richardson coefficient. Each of the ele-

ments sn can then be reduced to a basis element of QH�X by the corollary.

8. Generators and Relations

Finally, we show how to deduce Siebert and Tian’s presentation of the quantum

cohomology ring of X [18] (see also [21]). We claim that

QH�X ¼ Z½c1; . . . ; cl; q�=ðskþ1; . . . ; sn�1; sn þ ð�1ÞlqÞ: ð6Þ

In fact, all of the given relations vanish in QH�X by Lemma 4. On the other hand,

the proof of Lemma 4 together with Corollary 1 shows that the linear map

H�X� Z½q� ! Z½c1; . . . ; cl; q�=ðskþ1; . . . ; sn�1; sn þ ð�1ÞlqÞ which sends Ol � qd to

qdsl is surjective, which proves the isomorphism. Siebert and Tian gave this presen-

tation in its dual form QH�X ¼ Z½s1; . . . ; sk; q�=ð ~Ylþ1; . . . ; ~Yn�1; ~Yn þ ð�1ÞkqÞ where

the ~Yi are defined inductively by ~Y0 ¼ 1, ~Yi ¼ 0 for i < 0, and ~Yi ¼Pk
j¼1ð�1Þ j�1sj

~Yi�j for i > 0.

The presentation (6) can also be stated as QH�X ¼ Z½c1; . . . ; cl�=I
ðl;nÞ where

Iðl;nÞ ¼ ðskþ1; . . . ; sn�1Þ. In this form the variable q is represented by

ð�1Þl�1sn ¼ sðkþ1;1l�1Þ. In [11] other generators for the ideal Iðl;nÞ are used, namely

all elements sl for which l1 � ll ¼ kþ 1. It is an easy exercise to show that these

elements in fact generate the same ideal, and to show that the basis fqdsl j l1 4 kg

of QH�X is equal to the set fsl j l1 � ll 4 kg which is the basis used in [11]. We refer

to [19] for a more detailed discussion of the relations of quantum cohomology of

Grassmannians with other fields.
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