Natural Language Engineering (2023), 29, pp. 769-793
doi:10.1017/81351324921000292

CAMBRIDGE
WP UNIVERSITY PRESS

ARTICLE

A semantic parsing pipeline for context-dependent
question answering over temporally structured data

Charles Chen, Razvan Bunescu* and Cindy Marling

School of Electrical Engineering and Computer Science, Ohio University, Athens, OH 45701, USA
*Corresponding author. E-mail: razvan.bunescu@uncc.edu

(Received 9 June 2020; revised 13 September 2021; accepted 15 September 2021; first published online 29 October 2021)

Abstract

We propose a new setting for question answering (QA) in which users can query the system using both
natural language and direct interactions within a graphical user interface that displays multiple time series
associated with an entity of interest. The user interacts with the interface in order to understand the entity’s
state and behavior, entailing sequences of actions and questions whose answers may depend on previous
factual or navigational interactions. We describe a pipeline implementation where spoken questions are
first transcribed into text which is then semantically parsed into logical forms that can be used to automat-
ically extract the answer from the underlying database. The speech recognition module is implemented by
adapting a pre-trained long short-term memory (LSTM)-based architecture to the user’s speech, whereas
for the semantic parsing component we introduce an LSTM-based encoder-decoder architecture that
models context dependency through copying mechanisms and multiple levels of attention over inputs and
previous outputs. When evaluated separately, with and without data augmentation, both models are shown
to substantially outperform several strong baselines. Furthermore, the full pipeline evaluation shows only
a small degradation in semantic parsing accuracy, demonstrating that the semantic parser is robust to mis-
takes in the speech recognition output. The new QA paradigm proposed in this paper has the potential
to improve the presentation and navigation of the large amounts of sensor data and life events that are
generated in many areas of medicine.

Keywords: Semantic Parsing; Question Answering

1. Introduction and motivation

Wearable sensors are being increasingly used in medicine to monitor important physiological
parameters. Patients with type I diabetes, for example, wear a sensor inserted under the skin which
provides measurements of the interstitial blood glucose level (BGL) every 5 minutes. Sensor bands
provide a non-invasive solution to measuring additional physiological parameters, such as tem-
perature, skin conductivity, heart rate, and acceleration of body movements. Patients may also
self-report information about discrete life events such as meals, sleep, or stressful events, while
an insulin pump automatically records two types of insulin interventions: a continuous stream of
insulin called the basal rate, and discrete self-administered insulin dosages called boluses. The data
acquired from sensors and patients accumulate rapidly and lead to a substantial data overload for
the health provider.

To help doctors more easily browse the wealth of generated patient data, we developed
PhysioGraph, a graphical user interface (GUI) that displays various time series of measurements
acquired from a patient. As shown in Figure 1, PhysioGraph displays the data corresponding to
one day, whereas buttons allow the user to move to the next or previous day. Clicking on any

© The Author(s), 2021. Published by Cambridge University Press. This is an Open Access article, distributed under the terms of the
Creative Commons Attribution licence (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and
reproduction in any medium, provided the original work is properly cited.

P
@ CrossMark
https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S1351324921000292&domain=pdf
https://doi.org/10.1017/S1351324921000292

770 C. Chen et al.

G -> ’!‘ Q E Date: 2016-03-08 11:09

TYPE: Mol -]

Value:
Notes:
Lunch

2016-03-1

2016-04-13 2016-04-20

120 Moy 30 Arbys turkey club, 1.0 whole
20 160 Mixed veggie side salad with
10° croutons , 1.0 whole
10 o | . Carbs: 47.0
B z
% 100 20E
o boo 3
] o 3
= @
" 10 !
" i___~ ro-
6 500 = € -
. .

400

Basal Rate
Blood Glucose

E
e
&
2
=
]

Clear
1day
3days
1 week
2 weeks.
1 month
View All

100

] 0 - - -
£3.08.00 03.08 03 03.08 06 03.08 03 030812 03.0815 03.08 18 03.08 21

= Previous : Next =
— Basal Rate ® vk O Bolusevents a4 HypoActions @ InfusionSet —— Heart Rate®

= Temporary Basal = Blood glucose v Stressors - Meals Skintemp* —— Subcutanecus Insulin —— Carbs digested Go To Date
— Reported Sleep » Bloodglucose.hypo v Menses * Misc Airtempr —— Insulin Concentration —— Line2D(Acceleration®) Favorite Dates controls

Exercise o Fingersticks v HypoEvents finesses — G « Toss and Tum® < <+ > 3>

Figure 1. PhysioGraph window displaying one day’s worth of patient data (default view). The blue graph at the top shows
the entire timeline of blood glucose measurements, over approximately 8 weeks. The top pane below it shows physiological
parameters, including heart rate (red) and skin conductivity (green). The bottom pane shows time series of blood glucose
(blue), basal insulin (black), and estimated active insulin (red). Discrete life events such as meals and exercise are shown at
the top of the bottom pane, whereas boluses are shown at the bottom. When an event is clicked, details are displayed in the
pane on the right.

measurement or event displays additional data, such as amount of carbohydrates for a meal or
the amount of insulin for a bolus event. The user also has the option of toggling off the display of
specific time series, in order to reduce clutter.

While PhysioGraph was enthusiastically received by doctors, it soon became apparent that the
doctor-GUI interaction could be improved substantially if the tool also allowed for natural lan-
guage (NL) interactions. Most information needs are highly contextual and local. For example, if
the blood glucose spiked after a meal, the doctor would often want to know more details about the
meal or about the bolus that preceded the meal. The doctors often found it easier to express their
queries in NL, for example, “show me how much he ate,” “did he bolus before that,” resulting in
a sub-optimal situation where the doctor would ask this type of local questions in English while a
member of our team would perform the clicks required to answer the question, for example, click
on the meal event, to show details such as amount of carbohydrates. Furthermore, there were also
global questions, such as “how often does the patient go low in the morning and the evening,”
whose answers required browsing the entire patient history in the worst case, which was very inef-
ficient. This motivated us to work on a new question answering (QA) paradigm that allows users
to express their information needs using NL queries and direct actions within a GUL To this end,
we propose a pipeline architecture comprised of two major modules: first, a speech recognizer
transcribes the doctor’s spoken question into text; then the text is converted by a semantic parser
into a logical form (LF). The LF can be run by an inference engine to automatically retrieve the
answer from the database storing the patient data. The new QA paradigm described in this paper
has the potential for applications in many areas of medicine where sensor data and life events are

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 771

fEP Q=R Date: 7016-03-08 11:08
TS veat B
Valoe:

Notes:
Luneh

Adbys turkay chub, 1.0 whole.

= Patient Data

Basal Rate

mmmmm

 Pravious : Next ~
Go To Date

Favorite Dates cortrots

" Speech |__What did she eat [Semantic | Amswer(e.food) A Retrieval|
Recognition for her snack? — | Parsin e.type == Meal A Engine Apples
9 ’ A 9 Around(e. time, e(—1). time) s

Figure 2. The proposed semantic parsing pipeline for context-dependent question answering.

pervasive. The proposed intelligent user interface will also benefit the exploration and interpre-
tation of data in other domains such as experimental physics, where large amounts of time series
data are generated from high-throughput experiments.

The structure of the paper is as follows: Section 2 describes the new QA setting and its major
distinguishing features; Section 3 details the speech recognition module and its evaluation; Section
4 focuses on the semantic parsing system and its performance when using correct textual input;
Section 5 presents an empirical evaluation of the entire semantic parsing pipeline. The paper ends
with related work and concluding remarks.

2. Task definition and distinguishing features

Figure 2 shows an example of interaction with PhysioGraph, where the doctor first clicks on
a hypoglycemia event, represented by the red triangle in the bottom pane. To determine what
kind of food the patient ate in response to the hypoglycemia event, the doctor then asks the
question “ What did she eat for her snack?”. The question is first transcribed into text by the
speech recognition module. The transcribed question is then used as input to the semantic pars-
ing system, which produces its formal representation, that is, its LF Answer(e.food) A e.type =
Meal A Around(e.time, e(— 1).time). Note that the patient had multiple meals (shown as blue
squares) on the particular day shown in PhysioGraph. To determine the correct meal intended
by the doctor, the semantic parsing module takes into account the fact that the doctor previ-
ously clicked on the hypoglycemia event. This serves as an anchoring action and therefore the
correct meal should be the one that is close to the hypoglycemia event, as reflected by the clause
Around(e.time, e(— 1).time) in the LF. In this example, the context dependency is realized by ref-
erencing the focus event of the previous interaction, formally represented as e(— 1).time. Once
the LF is generated, an answer retrieval engine can easily return the answer by performing a query
against the back-end database.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

772 C. Chen et al.

Table 1. Examples of interactions and logical forms

Example 1

Click on Exercise event at 9:29am.
Click(e) A e.type = Exercise A e.time = 9:29am

Click on Miscellaneous event at 9:50am
Click(e) A e.type = Misc A e.time = 9:50am
Q1: What was she doing mid afternoon when her heart rate went up?
Answer(e) A Behavior(e;.value, Up) A Around(e.time, e; .time) A e.type = DiscreteType A e;.type = HeartRate
A e1.time = MidAfternoon()
Q,: What time did that start?

Answer(e(— 1).time)

Example 2

Click on Bolus at 8:03pm.
Click(e) A e.type = Bolus A e.time = 8:03pm
Q3: What did she eat for her snack?

Answer(e.food) A e.type = Meal A Around(e.time, e(— 1).time)

Example 3

Click on Exercise at 7:52pm.
Click(e) A e.type = Exercise A e.time =7:52pm
Qi:Whatdidshedothen?
Aﬁswef(e(- l).kiﬁd) v :

Qs: Did she take a boius before then?

Answer(Any(d.type = Bolus A Before(d.time, e(— 1).time)))

Example 4

Qe: What is the first day they have heart rate reported?

Answer(e.date) A Order(e, 1, Sequence(d, d.type = HeartRate))

Example 5

Q7: Is there another day he goes low in the morning?

Answer(Any(Hypo(d) A x! = CurrentDate A x.type = Date A d.time = Morning(x))

Table 1 shows additional sample inputs paired with their LFs. For each input, the examples also
show relevant previous inputs from the interaction sequence. The LFs often contain constants,
such as dates or specific times during the day, which are out of the LF vocabulary. When translat-
ing NL queries, these out-of-vocabulary (OOV) constants will be copied from the NL input into
the LF using a copy mechanism, as will be described in Section 4.3. A separate copying mechanism
will also be used for referencing events in the previous LF.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 773

In the following, we describe a number of major features that, on their own or through their
combination, distinguish the proposed QA paradigm from other QA tasks powered by semantic
parsing.

2.1 Time is essential

All events and measurements in the knowledge base are organized in time series. Consequently,
many queries contain time expressions, such as the relative “midnight” or the coreferential
“then,” and temporal relations between relevant entities, expressed through words such as
“after” or “when.” This makes processing of temporal relations essential for good performance.
Furthermore, the GUI serves to anchor the system in time, as most of the information needs

expressed in local questions are relative to the day shown in the GUI, or the last event that was
clicked.

2.2 GUI interactions versus NL questions

The user can interact with the system (1) directly within the GUI (e.g. mouse clicks); (2) through
NL questions; or (3) through a combination of both, as shown in Examples 1 and 2 in Table 1.
Although the result of every direct interaction with the GUI can also be obtained using NL ques-
tions, sometimes it can be more convenient to use the GUI directly, especially when all events of
interest are in the same area of the screen and thus easy to move the mouse or hand from one to
the other. For example, a doctor interested in what the patient ate that day can simply click on the
blue squares shown at the bottom pane in PhysioGraph, one after another. Sometimes a click can
be used to anchor the system at a particular time during the day, after which the doctor can ask
short questions implicitly focused on that region in time. An example of such hybrid behavior is
shown in Example 2, where a click on a Bolus event is followed by a question about a snack, which
implicitly should be the meal right after the bolus.

2.3 Factual queries versus GUI commands

Most of the time, doctors have information needs that can be satisfied by clicking on an event
shown in the GUI or by asking factual questions about a particular event of interest from that
day. In contrast, a different kind of interaction happens when the doctor wants to change what
is shown in the tool, such as toggling on/off particular time series, for example, “toggle on heart
rate,” or navigating to a different day, for example, “go to next day,” “look at the previous day.”
Sometimes, a question may be a combination of both, as in “what is the first day they have a meal
without a bolus?”, for which the expectation is that the system navigates to that day and also clicks
on the meal event to show additional information and anchor the system at the time of that meal.

2.4 Sequential dependencies

The user interacts with the system through a sequence of questions or clicks. The LF of a question,
and implicitly its answer, may depend on the previous interaction with the system. Examples 1-3
in Table 1 are all of this kind. In example 1, the pronoun “that” in question 2 refers to the answer
to question 1. In example 2, the snack refers to the meal around the time of the bolus event that
was clicked previously - this is important, as there may be multiple snacks that day. In example
3, the adverb “then” in question 5 refers to the time of the event that is the answer of the previous
question. As can be seen from these examples, sequential dependencies can be expressed as coref-
erence between events from different questions. Coreference may also occur within questions,

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

774 C. Chen et al.

as in question 4 for example. Overall, solving coreferential relations will be essential for good
performance.

3. Speech recognition

This section describes the speech recognition system, which is the first module in the proposed
semantic parsing pipeline. Given a spoken question or command coming from the user, the task is
to transcribe it automatically into text. For this, we adapt the neural end-to-end model proposed
by Zeyer et al. (2018), a publicly available open source system that was trained on LibriSpeech
and which at the time of its publication obtained state-of-the-art results, that is, a word error rate
(WER) of 3.82% on the test-clean subset of LibriSpeech. While this represents a competitive per-
formance on in-domain data, its WER on the speech recorded from the two doctors in our study
was much higher, and thus insufficiently accurate for the semantic parsing module downstream.
For lack of free access to a better speech recognizer, our solution was to fine-tune the LibriSpeech-
trained model of Zeyer et al. (2018) on a small parallel corpus obtained from each doctor, taking
advantage of the fact that the encoder-decoder architecture used by this system is relatively simple
and straightforward to retrain or fine-tune. First, each input audio file is converted into a Mel-
frequency cepstral coefficients (MFCC) representation (Sigurdsson, Petersen, and Lehn-Schigler
2006). The encoder consists of six layers of bi-directional long short-term memories (LSTMs) that
project the MFCC vectors into a sequence of latent representations which are then used to initial-
ize the decoder, a one-layer bi-directional LSTM. The decoder operates on subword-level units,
such as characters and graphemes, which are created through byte-pair encoding (BPE) (Sennrich,
Haddow, and Birch 2016). An individual grapheme may or may not carry meaning by itself, and
may or may not correspond to a single phoneme of the spoken language. The advantage for using
subword-level units as output is that it allows recognition of unseen words and does not require a
large softmax output which is computationally expensive. Therefore, during training, the manu-
ally transcribed text is first processed via BPE to create subword units, which are then used as the
actual output targets of the decoder. At each step, the decoder computes attention weights over
the sequence of hidden states produced by the encoder and uses them to calculate a corresponding
context vector. Together with the current state in the decoder, the context vector is used as input
to the softmax that generates the BPE unit for the current step. Once the decoding is complete,
all the generated BPE units are merged into a sequence of words. Stochastic gradient descent with
global gradient clipping is utilized to train the entire encoder-attention-decoder architecture.

3.1 Experimental evaluation

The speech from two doctors! was recorded while they were using PhysioGraph, resulting in two
datasets, Amber and Frank. The corresponding transcripts of the speech, including queries and
commands, are obtained by manual annotation. The end-to-end speech recognition model (Zeyer
et al. 2018), which was originally trained on LibriSpeech, is fine-tuned separately for each of the
two datasets. In order to improve the recognition performance, in a second set of experiments, we
also apply data augmentation. A more detailed description of the evaluation procedure follows.
The speech recognition system was first trained and tested on the Amber dataset using a
10-fold evaluation scenario where the dataset is partitioned into 10 equal size folds, and each fold
is used as test data while the remaining 9 folds are used for training. WER is used as the evaluation
metric, and the final performance is computed as the average WER over the 10 folds. We denote
this system as SR.Amber (Amber without data augmentation). In addition, we evaluate the speech
recognition system with data augmentation. The system in this evaluation scenario is denoted as
SR.Amber + Frank, which means that Amber is the target data, while Frank is the external data

' Amber Healy, DO, and Frank Schwartz, MD, physicians in Ohio University Heritage College of Osteopathic Medicine.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 775

Table 2. Performance of speech recognition system on dataset Amber and dataset Frank with
and without data augmentation. SR.Amber and SR.Frank are two systems without data aug-
mentation while SRAmber + Frank and SR.Frank + Amber are two systems enhanced with
data augmentation. WER (%) is the evaluation metric

WER (%) Standard deviation
SR.Amber 14.55 3.62
SR.Amber + Frank 13.90 3.69
SR.Frank 15.39 4.23
SR.Frank + Amber 12.20 3.67

used for data augmentation. We use the same 10 folds of data used in the SR.Amber evaluation,
where for each of the 10 folds used as test data, all examples in the Frank dataset are added to
the remaining 9 folds of the Amber dataset that are used for training. The final performance of
SR.Amber + Frank is computed as the average WER over the 10 folds.

The WER performance of the speech recognition system on the Amber dataset, with and with-
out data augmentation, is shown in the top half of Table 2. The experimental results indicate
that SR.Amber + Frank outperforms SR.Amber, which means that data augmentation is able to
improve the performance in this evaluation scenario. In order to further investigate the impact
of data augmentation, we run a similar evaluation setup on the Frank dataset, using the Amber
dataset for augmentation. The corresponding results for SR.Frank and SR.Frank + Amber are
shown in the bottom half of Table 2. Here, too, data augmentation is shown to be beneficial. The
improvement of SR.Frank + Amber over SR.Frank and SR.Amber + Frank over SR.Amber is both
statistically significant at p = 0.02 in a one-tailed paired ¢-test.

Table 3 reports outputs from the speech recognition system, demonstrating that data augmen-
tation is able to correct some of the mistakes made by the baseline systems.

4, Context-dependent semantic parsing

The role of the semantic parsing module is to take the text version of the doctor’s queries and
commands and convert it into a formal representation, that is, the LF. We first introduce the
evaluation datasets in Section 4.1, followed by a description of the neural network architectures in
Sections 4.2 and 4.3, and the experimental evaluation in Section 4.4.

4.1 Semantic parsing datasets

To train and evaluate semantic parsing approaches, we created three datasets of sequential inter-
actions: two datasets of real interactions (Section 4.1.1) and a much larger dataset of artificial
interactions (Section 4.1.2).

4.1.1 Real interactions

We recorded interactions with the GUI in real time, using data from 9 patients, each with around
8 weeks worth of time series data. The interactions were acquired from two physicians, Frank
Schwartz, MD and Amber Healy, DO, and were stored in two separate datasets called Frank and
Amber, respectively. In each recording session, the tool was loaded with data from one patient
and the physician was instructed to explore the data in order to understand the patient behav-
ior as usual, by asking NL questions or interacting directly with the GUL. Whenever a question
was asked, a member of our study team found the answer by navigating in PhysioGraph and

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

776 C. Chen et al.

Table 3. Examples of transcriptions generated by SR systems trained on SR.Frank and SR.Amber,
and their augmented versions SR.Frank + Amber and SR.Amber + Frank, respectively. True refers
to the correct transcription

True & SRAmber & SR.Amber + Frank:
It looks like it happened again on the fifth
What did his sugar do going into the night

True&SRAmber+Frank
And he bolused for it

SR.Amber:
Any bolus for it

True&SRAmber+Frank OSSOSO
But he still went high after breakfast

SR.Amber:
What he still went high after breakfast

True&SRank&SRank+Amber OSSOSO
| see that she went low in the middle of the day
I wonder what kind of exercise she’s doing this day

True&SRFrank+Amber SO
How many carbs did the patient consume at that meal

SR.Frank:

How many carbs to the patient consume at that meal

clicking on the corresponding events. After each session, the question segments were extracted
manually from the speech recordings, transcribed, and timestamped. The transcribed speech was
used to fine-tune the speech recognition models, as described in Section 3. All direct interactions
(e.g. mouse clicks) were recorded automatically by the tool, timestamped, and exported into an
XML file. The sorted list of questions and the sorted list of mouse clicks were then merged using
the timestamps as key, resulting in a chronologically sorted list of questions and GUI interactions.
Mouse clicks were automatically translated into LFs, whereas questions were parsed into LFs man-
ually, to be used for training and evaluating the semantic parsing algorithms. Sample interactions
and their LFs are shown in Table 1.

A snapshot of the vocabulary for LFs is shown in Table 4, detailing the Event Types, Constants,
Functions, Predicates, and Commands. Every life event or physiological measurement stored in
the database is represented in the LFs as an event object e with 3 major attributes: e.type, e.date,
and e.time. Depending on its type, an event object may contain additional fields. For example, if
e.type = BGL, then it has an attribute e.value. If e.type = Meal, then it has attributes e.food and
e.carbs. We use e(— i) to represent the event appearing in the ith previous LF. Thus, to reference
the event mentioned in the previous LE we use e(— 1), as shown for question Qs. If more than
one event appears in the previous LE, we use an additional index j to match the event index in the
previous LF. Coreference between events is represented simply using the equality operator, for
example, e =e(— 1).

Overall, the LFs in the two datasets have the following statistics:

o The Frank dataset contains LFs for 237 interactions, corresponding to 74 mouse clicks and
163 NL queries.

- The LFs for 43 NL queries reference an event from the previous LF.
- The LFs for 26 NL queries contain OOV tokens that can be copied from the NL input.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 777

Table 4. Vocabulary for logical forms

Event types
Physiological Parameters:
BGL, BasalRate, TemporaryBasal, Carbs, GSR, InfusionSet, AirTemperature, SkinTemperature,
HeartRate, StepCount.
Life Events:
FingerSticks, Bolus, Hypo, HypoAction, Misc, Illness,
Meal, Exercise, ReportedSleep, Wakeup, Work, Stressors.
Constants 00O DSOS
UpDownon Off,Monday’TueSday 5unday e
Funcnons
/'nbfén;a'[(}l;fz)" ééféfe(‘t).’;‘qfté}(.tj; e e
return corresponding intervals (default lengths).
Morning([d]), Afternoon([d]), Evening([d]), . . .
return corresponding intervals for day d.
WeekDay(d):
return the day of the week of date d.
Sequence(var, statements):
return a chronologically ordered sequence of possible values for var that satisfy statements.
Count(var[,statements)):
returns the number of possible values for var that satisfy statements.
Predicates
Answer(e), Click(e)
Morning(t), Afternoon(t), Evening(t), . . .
Overlap(t1, t,), Before(t1, t;), Around(t1, t3), . . .
Behavior(variable,direction):
whether variable increases, if direction is Up, (or decrease if direction is Down).
High(variable), Low(variable):
whether variable has some low value.
Order(event,ordinal,sequencel,attribute]):
whether the event is at place ordinal in sequence
v(forvﬁmvénd's et oo e

DoClick, DoToggle, DoSetDate, DoSetTime, . . .

o The Amber dataset contains LFs for 504 interactions, corresponding to 330 mouse clicks
and 174 NL queries.

- The LFs for 97 NL queries reference an event from the previous LF.
- The LFs for 35 NL queries contain OOV tokens that can be copied from the NL input.

4.1.2 Artificial interactions

The number of annotated real interactions is too small for training an effective semantic parsing
model. To increase the number of training examples, we developed an artificial data generator,
previously described in Chen et al. (2019). To simulate user-GUI interactions, the artificial data

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

778 C. Chen et al.

context vector ¢,

Vm stop

x| X2 X3 Xy Xn start Ya Yma Ym

Figure 3. The SeqGen model takes a sequence of natural language (NL) tokens as input X =x1, ..., X, and encodes it with
a Bi-LSTM (left, green). The two final states are used to initialize the decoder LSTM (right, blue) which generates the LF

sequence Y =J1,...,m. The attention-augmented SeqGen+Att2in model computes attention weights (blue arrows) and
a context vector (red arrow) for each position in the decoder.

generator uses sentence templates in order to maintain high-quality sentence structure and gram-
mar. This approach is similar to Weston et al. (2016), with the difference that we need a much
higher degree of variation such that the machine learning model does not memorize all possible
sentences, which resulted in a much richer template database. The template language is defined
using a recursive grammar, which allows creating as many templates and generating as many data
examples as desired. We used the same vocabulary as for the real interactions dataset. To gener-
ate contextual dependencies (e.g. event coreference), the implementation allows for more complex
combo templates where a sequence of templates are instantiated together. A more detailed descrip-
tion of the template language and the simulator implementation is given in Chen et al. (2019)
and Appendix A, together with illustrative examples. The simulator was used to generate 1000
interactions and their LFs: 312 mouse clicks and 688 NL queries.

4.2 Baseline models for semantic parsing

In this section, we describe two baseline models: a standard LSTM encoder-decoder for sequence
generation SeqGen and its attention-augmented version SeqGen+Att2In. The attention-based
model will be used later in Section 4.3 as a component in the context-dependent semantic parsing
architecture.

As shown in Figure 3, the sequence generation model SeqGen uses LSTM (Hochreiter and
Schmidhuber 1997) units in an encoder—decoder architecture (Cho et al. 2014; Bahdanau, Cho,
and Bengio 2015), composed of a bi-directional LSTM for the encoder and a unidirectional LSTM
for the decoder. The Bi-LSTM encoder is run over the input sequence X in both directions and
the two final states (one from each direction) are concatenated to produce the initial state sy for
the decoder. Starting from the initial hidden state sy, the decoder produces a sequence of states

$1,...,Sm. Both the encoder and the decoder use a learned embedding function e for their input
tokens. We use X =xi,...,x, to represent the sequence of tokens in the NL input, and Y =
Y1> - - - » Ym to represent the tokens in the corresponding LF. We use Y; =y, . .., y; to denote the

LF tokens up to position ¢, and ¥ to denote the entire LF generated by the decoder. A softmax is
used by the decoder to compute token probabilities at each position as follows:

Pt Yi—1, X) = softmax(Wps;) (1
st = h(si—1, e(ys—1))

The transition function h is implemented by the LSTM unit (Hochreiter and
Schmidhuber 1997).

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 779

Additionally, the SeqGen+Att2In model uses an attention mechanism Att2In to compute
attention weights and a context vector ¢; for each position in the decoder, as follows:

etj = VZ; tanh (ng‘] + Uast—l) (2)
= & _Za i,
4y = Zk 1 €Xp (ew) “ gl

We follow the attention mechanism formulation of Bahdanau et al. (2015) where, at each time step
t in the decoder, the softmax output depends not only on the current LSTM state s; but also an
an additional context vector ¢; that aims to capture relevant information from the input sequence.
The context vector is formulated as a weighted combination of the hidden states f; computed by
the Bi-LSTM encoder over the input NL sequence, using a vector of attention weights oy, one
attention weight for each position j in the input sequence. The attention vector is obtained by
applying softmax to a vector of unnormalized weights ;; computed from the hidden state f; in the
encoder and the previous decoder state s;_;. The context vector d; = ¢; and the current decoder
state s; are then used as inputs to a softmax that computes the distribution for the next token j; in
the LF:

Yi ~ softmax(Wys; + W yd;) 3)

4.3 Semantic parsing with multiple levels of attention and copying mechanism

Figure 4 shows the proposed context-dependent semantic parsing model, SP+Att2All+Copy
(SPAAC). Similar to the baseline models, we use a bi-directional LSTM to encode the input and
another LSTM as the decoder. Context dependency is modeled using two types of mechanisms:
attention and copying. The attention mechanism is composed of three models: Att2HisIn attend-
ing to the previous input, Att2HisLF attending to the previous LE, and the At2In introduced in
Section 4.2 that attends to the current input. The copying mechanism is composed of two models:
one for handling unseen tokens and one for handling coreference to events in the current and
previous LFs.

Attention Mechanisms At decoding step t, the Att2HisIn attention model computes the context
vector ¢; as follows:

& = v}, tanh (Wyry + Ups;_1) (4)

exp (&) R
.Btkz%’ &= B
21y exp (eq)

where ry. is the encoder hidden state corresponding to x in the previous input X1, ¢ is the con-
text vector, and By is an attention weight. Similarly, the Aft2HisLF model computes the context
vector ¢; as follows:

&5 = ve" tanh (Wl + Ues,_y) (5)
exp (et]
)/t‘ - = Vt
j ZJ | exp et] Z]

where I; is the j-th hidden state of the decoder for the previous LF Y.
The context vector d; is comprised of the context vectors from the three attention models
Att2In, Att2HisIn, and Att2HisLF, and will be used in the decoder softmax as shown previously in

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

780 C. Chen et al.

oov
- - Answer ... ¢ ... Around e ... time ... 10am

L 1|

d;i—ng around 10am

M

L]

L]
I
l

w
=
o

Wiiat was

_ Au2Hisin)
P e 7-;1{.{2010‘__ amem
E [—] EI L [I

What time did that start

Figure 4. Context-dependent semantic parsing architecture. We use a Bi-LSTM (left) to encode the input and a LSTM (right)
as the decoder. Top shows the previous interaction and bottom shows the current interaction. The complete previous LF is
Yy~ = [Answer, (, e,), A, Around, (, e,., time, 00V,), A, e,., type, =, DiscreteType]. The token 10am is copied from the input to
replace the generated OOV token (green arrow). The complete current LF is Y = [Answer, (, REF,., time,)]. The entity token
e(-1) is copied from the previous LF to replace the generated REF token (green arrow). To avoid clutter, only a subset of the
attention lines (dotted) are shown.

Equation (3):
d; = concat(c;, ¢, €1) (6)

Copying Mechanisms In order to handle OOV tokens and coreference (REF) between entities in
the current and the previous LFs, we add two special tokens OOV and REF to the LF vocabulary.
Inspired by the copying mechanism in Gu et al. (2016), we train the model to learn which token
in the current input X = {x;} is an OOV by minimizing the following loss:

X1 Yl

Loo(Y) ==Y "log po(Ojls},s}) (7)

j=1 t=1

where X./ is the length of current input, Y./ is the length of the current LF, sJX is the LSTM state for
xj, and stY is the LSTM state for y;. Oj € {0, 1} is a label that is 1 iff xj isan OOV and y; = x;. We use
logistic regression to compute the OOV probability, that is, po(Ojr = 1|sj-(, stY)=0 (wg [sJX , sf]).

Similarly, to solve coreference, the model is trained to learn which entity in the previously
generated LE Y1 = { j} is coreferent with the entity in the current LF by minimizing the following
loss:

Y11 v

Ly(N)=— Y > logp(Rils)) (8)

j=1 t=1

where Y11 is the length of the previous generated LE, Y.I is the length of the current LF, sj}%1

is the LSTM state at position j in Y~!, and s} is the LSTM state for position ¢t in Y. Rj €{0,1}
is a label that is 1 iff J; is an entity referred by y; in the next LF Y. We use logistic regression to

compute the coreference probability, that is, p,(Rj; = 1|sj1?_1 , stY)= J(W,T [sjl?_1 ,sT).

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 781

4.3.1 Token-level supervised learning: SPAAC-MLE

We use teacher forcing (Williams and Zipser 1989) to train the three models to learn which token
in the vocabulary (including special tokens OOV and REF) should be generated. Correspondingly,
the two baselines will minimize the following token generation loss:

Y.l
Lgen(Y) ==Y _ log p(yil i1, X))

t=1

where Y.l is the length of the current LF. The supervised learning model SPAAC-MLE is obtained
by training the semantic parsing architecture from Figure 4 to minimize the sum of the three
negative log-likelihood losses:

LMLE(Y):Lgen(Y)+Loov(Y)+Lref(Y) (10)

At inference time, the decoder is run in auto-regressive mode, which means that the input at step
t is the previously generated token J;_;. To alleviate the suboptimality of this greedy procedure,
beam search is used to generate the LF sequence (Ranzato et al. 2016; Wiseman and Rush 2016).
During inference, if the generated token at position t is OOV, the token from the current input
X that has the maximum OOV probability is copied, that is, arg max, <j<xl Po(0j = 1|s]X, s}’).
Similarly, if the generated entity token at position t is REF, the entity token from the previ-
ously generated LF sequence Y~ ! that has the maximum coreference probability is copied, that
. -1 3

is, arg max, _;_y-1,; pr(Rj = 1|sjY ,s)).

4.3.2 Sequence-level reinforcement learning: SPAAC-RL

All models described in this paper are evaluated using sequence-level accuracy, a discrete metric
where a generated LF is considered to be correct if it is equivalent with the ground truth LF.
This is a strict evaluation measure in the sense that it is sufficient for a token to be wrong to
invalidate the entire sequence. At the same time, there can be multiple generated sequences that
are correct, for example, any reordering of the clauses from the ground truth sequence is correct.
The large number of potentially correct generations can lead MLE-trained models to have sub-
optimal performance (Zeng et al. 2016; Norouzi et al. 2016; Rennie et al. 2017; Paulus, Xiong,
and Socher 2018). Furthermore, although teacher forcing is widely used for training sequence
generation models, it leads to exposure bias (Ranzato et al. 2016): the network has knowledge of
the ground truth LF tokens up to the current token during training, but not during testing, which
can lead to propagation of errors at generation time.

Like Paulus et al. (2018), we address these problems using policy gradient to train a token gener-
ation policy that aims to directly maximize sequence-level accuracy. We use the self-critical policy
gradient training algorithm proposed by Rennie et al. (2017). We model the sequence generation
process as a sequence of actions taken according to a policy, which takes an action (token ;) at
each step t as a function of the current state (history }A’t_l), according to the probability p(¥:| }A’t_l).
The algorithm uses this probability to define two policies: a greedy, baseline policy 7” that takes
the action with the largest probability, that is, 7t (Y,_y) = arg max, PG Yi_1); and a sampling
policy * that samples the action according to the same distribution, that is, 7r* (Y1) Pl Yi_1).

The baseline policy is used to generate a sequence Y?, whereas the sampling policy is used
to generate another sequence Y. The reward R(Y®) is then defined as the difference between

the sequence-level accuracy (A) of the sampled sequence ¥* and the baseline sequence Y. The
corresponding self-critical policy gradient loss is

Lrt = —R(7) x L () = = (A(F)-AF") x Laaes(¥) ()

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

782 C. Chen et al.

Table 5. Sequence-level accuracy on the Artificial dataset and the two Real interactions datasets

Models Artificial Frank Amber
SeqGen 51.8 22.2 18.6
SeqGen+-Att2in 72.7 354 25.5
SPAAC-MLE 84.3 67.6 62.3
SPAAC-RL 88.7 75.9 70.5

Table 6. Ablation results on the Amber dataset, as we gradually add more components to SeqGen

SeqGen + Att2in + Att2His + OOVCopy + REFCopy

18.6 25.5 45.6 54.4 62.3

Thus, minimizing the RL loss is equivalent to maximizing the likelihood of the sampled ¥ if it
obtains a higher sequence-level accuracy than the baseline Y.

4.4 Experimental evaluation

All models are implemented in Tensorflow using dropout to alleviate overfitting. The feed-
forward neural networks dropout rate was set to 0.5 and the LSTM units dropout rate was set
to 0.3. The word embeddings and the LSTM hidden states had dimensionality of 64 and were ini-
tialized at random. Optimization is performed with the Adam algorithm (Kingma and Ba 2015),
using an initial learning rate of 0.0001 and a minibatch size of 128. All experiments are performed
on a single NVIDIA GTX1080 GPU.

For each dataset, we use 10-fold evaluation, where the data are partitioned into 10 folds, one
fold is used for testing and the remaining for training. The process is repeated 10 times to obtain
test results on all folds. The embeddings for both the input vocabulary and output vocabulary are
initialized at random and trained together with the other model parameters. Preliminary exper-
iments did not show a significant benefit from using pre-trained input embeddings, likely due
to the limited vocabulary. To model tokens that have not been seen at training time, we train a
special <unknown> embedding by assigning it to tokens that appear only once during training.
Subword embeddings may provide a better approach to dealing with unknown input words at test
time, especially when coupled with contextualized embeddings provided by transformer-based
models such as BERT (Devlin et al. 2019). We leave these enhancements for future work.

To evaluate on the real interactions datasets, the models are pre-trained on the entire artificial
dataset and then fine-tuned using real interactions. SPAAC-RL is pre-trained with the MLE loss
to provide a more efficient policy exploration. Sequence-level accuracy is used as the evaluation
metric for all models: a generated sequence is considered correct if and only if all the generated
tokens match the ground truth tokens, in the same order.

The sequence-level accuracy results are reported in Table 5 for the artificial and real datasets.
The results demonstrate the importance of modeling context dependency, as the two SPAAC
models outperform the baselines on all datasets. The RL model also obtains substantially bet-
ter accuracy than the MLE model. The improvement in performance over the MLE model for
the real data is statistically significant at p =0.05 in a one-tailed paired ¢-test. To determine the
impact of each model component, in Table 6 we show ablation results on the Amber dataset, as we
gradually added more components to the MLE-trained SeqGen baseline. Going from left to right,
we show results after adding attention to current input (Att2In), attention to history (Att2His =

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 783

Table 7. Examples generated by SPAAC-MLE and SPAAC-RL using real interactions. MLE: logical forms by
SPAAC-MLE. RL: logical forms by SPAAC-RL. True: manually annotated LFs

Well the Finger Stick is 56.
True & MLE &RL:

e.type = Fingerstick A e.value = 56

It looks like she suspended her pump.
True & MLE & RL:

Suspended(e) A Around(e.time, e(— 1).time)

Let’s look at the next day.

True & MLE & RL:
DoSetDate(CurrentDate + 1)

See if he went low.

True & MLE & RL:

Answer(Any(e, Hypo(e)))

Let’s see what kind of exercise that is, where the steps are high?
True & RL:

Answer(e.kind) A e.type = Exercise A Around(e.time, e;.time) A e;.type = StepCount A High(e1.yaiue)
MLE:

Answer (e.kind) A e.type = Exercise A Around(e.time, e .time) A e;.type = Exercise A e1.type=Exercise
Cl,ckontheexerc,se 30000 TO OSSOSO OOt
True & RL:

Doclick(e) A e.type = Exercise
MLE:

Answer (e) A e.type = Exercise

Att2HisIn + Att2HisLF), the copy mechanism for OOV tokens (OOVCopy), and the copy mecha-
nism for coreference (REFCopy). Note that the last result in the table corresponds to SPAAC-MLE
= SeqGen + Att2In + Att2His + OOVCopy + REFCopy. The results show substantial improve-
ments after adding each attention component and copying mechanism. The improvements due
to the two copy mechanisms are expected, given the significant number of OOV tokens and refer-
ences that appear in the NL queries. According to the statistics presented in Section 4.1.1, across
the two real interactions datasets, 18.1% of LFs for NL queries contain OOV tokens, while 41.5% of
LFs for NL queries make references to the previous LF. By definition, the SeqGen baseline cannot
produce the correct LF for any such query.

Tables 7 and 8 show examples generated by the SPAAC models on the Frank dataset. Analysis
of the generated LFs revealed that one common error made by SPAAC-MLE is the generation of
incorrect event types. Some of these errors are fixed by the current RL model. However, there
are instances where even the RL-trained model outputs the wrong event type. By comparing the
sampled LFs ¥S and the baseline LFs }A’b, we found that in some cases the tokens for event types in

Y* are identical with the wrong event types created in the baseline LFs Y.

4.4.1 Data augmentation

Inspired by the fact that data augmentation improves the performance of speech recognition
(Section 3), we applied data augmentation to the semantic parsing system as well. Specifically, we
train and test the semantic parsing system, for both models SPAAC-MLE and SPAAC-RL, on the

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

784 C. Chen et al.

Table 8. Examples generated by SPAAC-MLE and SPAAC-RL using artificial interactions. MLE:
logical forms generated by SPAAC-MLE. RL: logical forms generated by SPAAC-RL. True: manu-
ally annotated logical forms

Does he always get some sleep around 4:30pm?
True & MLE & RL:
Answer(Cond(Around(x, 4:30pm) => Any(e.type = ReportedSleep A e.time = x)))
|S|t the fvirvst'\,v\',eévkvof'thé ,pé.tvievr.]vt?v. 00000045400 OSSOSO
True & MLE &RL:

Answer(Week(CurrentDate) = x) A Order(x, 1, Sequence(e, e.type = Week))

bées she e\)ér gé;c some rest al"ouvﬁ(‘j S:37pm?
True & MLE &RL:

Answer(Any(e.type = ReportedSleep A Around(e.time, 5:37pm)))
When|s thef|rstt|mehe changesh,s,nfu5|on Set? e
True & MLE &RL:

Answer(e.date) A Order(e, 1, Sequence(e, e.type = InfusionSet))

How many months she has multiple exercises?
True &RL:

Answer(Count(x, Count(e, e.type = Exercise A e.date = x) > 1 A x.type = Month))
MLE:

Answer(Count(x, Count(e, e.type = Exercise A e.date = x) > 1 A x.type = Week))
.T(.).g.g.l.e.sé) Wecan Seef|ngerst|cks T TSN
True & RL:

DoToggle(On, FingerSticks)

MLE:

DoToggle(On, BGL)

dataset Amber using a 10-fold evaluation scenario similar to the evaluation of the speech recog-
nition system described in Section 3. This system is denoted as SP.Amber (Semantic Parsing of
Amber interactions without data augmentation). The dataset Amber is partitioned into 10 equal
size folds. For each experiment, nine folds of data are used to train the semantic parsing system
and one fold of data is used to evaluate its performance. This process is repeated 10 times, each
time using a different fold as test data. The final performance of SP.Amber is computed as the
average sequence-level accuracy over the 10 folds. In a second set of experiments, we apply data
augmentation to SP.Amber. The system in this evaluation scenario is denoted as SP.Amber +
Frank, which means that Amber is the target data and Frank is the external data used for aug-
mentation. In this evaluation scenario, we use the same split in 10 folds as the one used for the
SP.Amber experiments. In each experiment, all examples in the Frank dataset are added to the
nine folds of data from Amber that are used for training. After training on the nine folds of Amber
and the data from Frank, the remaining one fold of data, which comes from the Amber dataset,
is used to evaluate the performance of SP.Amber + Frank. The final performance of SP.Amber +
Frank is computed as the average sequence-level accuracy over the 10 folds. The results on the
Amber data with and without augmentation are shown in the first section of Table 9. To further
evaluate the impact of data augmentation, we also run the symmetric evaluation where Frank is
the target data and Amber is used as external data. The corresponding results are shown in the
second section of Table 9. Finally, we evaluate the semantic parsing system on the union of the

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 785

Table 9. Sequence-level accuracy (%) of semantic parsing systems on datasets Amber and Frank. SPAmber and SP.Frank
are the original systems without data augmentation while SP.Amber + Frank and SP.Frank + Amber are the two systems
enhanced with data augmentation. SP.All is a system trained and tested on the union of the two datasets

SeqGen SeqGen + Att2in SPAAC-MLE SPAAC-RL
SP.Amber 18.6 255 62.3 70.5
SP.Amber + Frank 20.2 27.9 66.4 73.0
SP.Frank 22.2 354 67.6 75.9
SP.Frank + Amber 24.5 36.3 68.7 76.3
SPAll 20.9 329 67.6 73.4

two datasets Amber U Frank, using the same 10-fold evaluation scenario. This system is denoted
as SP.All, with its sequence-level accuracy shown in the last section of the table.

Overall, the results in Table 9 show that data augmentation is beneficial for both models
SPAAC-MLE and SPAAC-RL, which continue to do substantially better than the baseline SeqGen.
When evaluated on the union of the two datasets, the performance of SP.All is, as expected,
between the accuracy obtained by SP.Amber + Frank and SP.Frank + Amber.

Table 10 shows example LFs where data augmentation is able to correct mistakes made by the
original SP.Amber and SP.Frank systems.

5. Semantic parsing pipeline evaluation

The two main modules of the QA pipeline — speech recognition and semantic parsing — were inde-
pendently evaluated in Sections 3 and 4, respectively. In this section, we evaluate the performance
of the entire semantic parsing pipeline, where the potentially noisy text output by the speech rec-
ognizer is used as input for the semantic parsing model. To make results comparable, we used the
same 10-fold partition that was used in Sections 3 and 4. The last column in Table 11 shows the
sequence-level accuracy of the LFs when running the entire semantic parsing pipeline on the doc-
tors’ speech. Because errors made by the speech recognition system are propagated through the
semantic parsing module, the pipeline accuracy is lower than the accuracy of standalone semantic
parsing shown in the second column of results. However, inspection of the generated LFs revealed
cases where errors introduced by the speech recognition system did not have a negative impact
on the final LFs. An example is shown in the first section of Table 12, where the speech recogni-
tion system mistakenly transcribes “for” as “a”. However, when run on this slightly erroneous text,
the semantic parsing system still generates the correct LF. Another example is shown in the sec-
ond section, where even though the speech recognition system produces the extra word “again,”
the semantic parsing system still outputs the correct LF. The fact that semantic parsing is robust
to some speech recognition errors helps explain why SP.Frank is almost as good as SP.Frank +
Amber, even though the speech recognizer for SP.Frank makes more errors than the one trained
for SP.Frank + Amber. There are, however, cases where the speech recognizer makes multiple
errors in the same sentence, as in the example shown in the third section of Table 12, for which
the semantic parsing system is unable to recover the correct LF. In this case, instead of returning
just one BGL value, corresponding to a particular hyperglycemia event, the system returns all the
BGL values recorded that day, which should make it obvious to the user that the system did not
understand the question. For this kind of errors, the user has the option to find the correct answer
to their query by interacting directly with the GUI using mouse clicks. There are also more sub-
tle errors where the user receives a partially overlapping answer, as shown in the second example

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

786 C. Chen et al.

Table 10. Logical forms generated by SP.Amber + Frank versus SP.Amber, and SP.Frank
+ Amber versus SP.Frank. True refers to the manually annotated logical forms

How high did she go?
True & SP.Amber & SP.Amber + Frank:

Answer(e.value) A Lowest(e.value) A e.type = BGL
How much insulin did she give herself?

True & SP.Amber & SP.Amber + Frank:

Answer(e.value) A e.type = Bolus
Whatwasheraction?

True & SP.Amber + Frank:

Answer(e) A Around(e.time, e(-1).time) A e.type = DiscreteType
SP.Amber:

Answer(e) A e.type = Exercise
Did she get too much insulin with breakfast?

True & SP.Amber + Frank:

Answer(e.value) A e.type = Bolus A Around(e.time, e;.time) A ej.type = Breakfast
SP.Amber:

Answer(e.value) A e.type = Breakfast A Around(e.time, e(-1).time)

Shes h|gh é.t.n.ig.h.t {'h.ai mght ..
True & SP.Frank & SP.Frank + Amber:
High(e.value) A e.type = BGL A e.time = Night()
See what she ate.
True & SP.Frank & SP.Frank + Amber:

Answer(e.food) A e.type = Meal A Around(e.time, e(— 1).time)

.l. Wonder Whathappened then e
True & SP.Frank + Amber:

Answer(e) A Around(e.time, e(— 1).time) A e.type = DiscreteType
SP.Frank:

Answer(e.food) A e.type = Bolus A Around(e.time, e(— 1).time)
ifyou look around 10 o'clock at night, sweat goesup.
True & SP.Frank + Amber:

Behavior(e.value, Up) A Around(e.time, 10) A e.type = GSR
SP.Frank:

Behavior(e.value, Down) A Around(e.time, 10) A e.type = BGL

from Table 10, where instead of returning all types of discrete events anchored around a cer-
tain event, the SP.Amber system returns only Exercise events, at anytime during the day. These
types of errors show that, in order to become of practical utility, the system could benefit from
features that enabled the user to effortlessly determine whether the query was properly under-
stood. Possible features range from computing and displaying confidence values associated with
the outputs, to making the LF computed by the system available to the user, to using explainability
methods such as SHAP (Lundberg and Lee 2017) that show the inputs that are most responsible
for a potentially incorrect LE thus giving the user the option to reformulate their query or even
correct the output in an active learning scenario. While exploring these features is left for future

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 787

Table 11. The performance of the entire semantic parsing pipeline. SPAmber and
SP.Frank are the two systems without data augmentation while SP.Amber + Frank and
SP.Frank + Amber are the two systems enhanced with data augmentation. Word error
rate (WER) and Sequence-level accuracy (%) are the evaluation metrics

Speech recognition Semantic parsing Pipeline
WER(%) Acc(%) Acc(%)
SP.Amber 14.55 70.5 65.9
SP.Amber + Frank 13.90 73.0 67.2
SP.Frank 15.39 75.9 73.7
SP.Frank + Amber 12.20 76.3 73.8

Table 12. Transcriptions (SR) and logical forms (SP) generated by the pipeline versus
corresponding manually annotations (True text and True LF)

True text:
How much insulin did she give herself for correction?
SR.Amber + Frank:
How much insulin did she give herself a correction?
True LF & SP.Amber + Frank:
Answer(e.value) A e.type = Bolus
.T .rL.J.e. t.e),(.t:. ..
Looks like she actually went low later in the day what time was that?
SR.Frank + Amber:
Looks like she actually went low again later in the day what time was that?
True LF & SP.Frank + Amber:
Answer(e.time) A Hypo(e)
TrueteXt R
How high did her sugar get?
SR.Frank + Amber:
How I did sugar it?
True LF:
Answer(e.value) A Highest(e.value) A e.type = BGL A Around(e.time, e(-1).time)
SP.Frank + Amber:

Answer(e.value) A e.type = BGL

work, we believe that the system described in this paper represents an important first step toward
realizing a new QA paradigm in which users express their information needs relative to a GUI
using NL queries either exclusively or in combination with direct GUI interactions through mouse
clicks.

6. Related work

Speech Recognition In conventional speech recognition systems, hidden Markov model (HMM)-
based approaches and template-based approaches are commonly used (Matarneh et al. 2017).

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

788 C. Chen et al.

Given a phonetic pronunciation lexicon, the HMM approaches usually operate on the phone
level. Handling OOV words is not straightforward and increases the complexity significantly. In
recent years, deep learning has been shown to be highly effective in acoustic modeling (Hinton and
Salakhutdinov 2006; Bengio 2009; Hinton et al. 2012), by employing deep architectures where each
layer in the architecture models an increasingly higher-level abstraction of the data. Furthermore,
the encoder-decoder framework with neural networks has shown promising results for speech
recognition (Chan et al. 2016; Doetsch, Zeyer, and Ney 2016; Toshniwal et al. 2017; Zeyer et al.
2018; Baskar et al. 2019; Li et al. 2019; Pham et al. 2019). When trained end-to-end, neural mod-
els operate directly on words, subwords, or characters/graphemes, which removes the need for
a pronunciation lexicon and explicit phones modeling, highly simplifying decoding, as in Zeyer
et al. (2018). Other models, such as inverted HMMs (Doetsch et al. 2017) and the recurrent neu-
ral aligner (Sak et al. 2017), can be interpreted in the same encoder-decoder framework, but often
employ some variant of hard latent monotonic attention instead of soft attention used by Zeyer
et al. (2018).

In our approach, we used fine-tuning to adapt the end-to-end speech recognition of Zeyer et al.
(2018) to the doctors’ speech. This is a straightforward adaptation approach that does not require
changing the structure of the adapted module or introducing external modules during inference.
Other approaches explore the adaptation of the language model used by the speech recognition
system. To accurately estimate the impact of language model adaptation, Mdhaffar et al. (2019)
first perform a qualitative analysis and then conduct experiments on a dataset in French, show-
ing that language model adaptation reduces the WER of speech recognition significantly. Raju
et al. (2019) incorporate a language model into a speech recognition system and train it on het-
erogenous corpora so that personalized bias is reduced. Corona, Thomason, and Mooney (2017)
incorporate a language model and a semantic parser into a speech recognition system, obtaining
a significant improvement over a state-of-the-art baseline in terms of accuracy for both transcrip-
tion and semantic understanding. Bai et al. (2019) enhance speech recognition by incorporating
a language model via a training approach based on knowledge distillation; the recurrent neural
network language model, which is trained on a large corpus, computes a set of soft labels to guide
the training of the speech recognition system.

Semantic Parsing, QA, and Context Dependency Semantic parsing, which is mapping text in
NL to LFs, has emerged as an important component for building QA systems, as in Liang (2016),
Jia and Liang (2016), Zhong, Xiong, and Socher (2017). Context-dependent processing has been
explored in complex, interactive QA (Harabagiu et al. 2005; Kelly and Lin 2007) and semantic
parsing (Zettlemoyer and Collins 2009; Artzi and Zettlemoyer 2011; Long, Pasupat, and Liang
2016; Iyyer, Yih, and Chang 2017). Long et al. (2016) consider the task of learning a context-
dependent mapping from NL utterances to denotations in three scenarios: Alchemy, Scene, and
Tangrams. Using only denotations at training time, the search space for LFs is much larger than
that of the context-dependent utterances. To handle this challenge, the authors perform succes-
sive projections of the full model onto simpler models that operate over equivalence classes of
LFs. Iyyer et al. (2017) explore a semantic parsing task for answering sequences of simple but
inter-related questions in a conversational QA setting. A dataset of over 6000 question sequences
is collected, where each question sequence inquires about semi-structured tables in Wikipedia.
To solve this sequential QA task, a novel dynamic neural semantic parsing model is designed,
which is trained using a weakly supervised reward guided search. Although these approaches take
into account sequential dependencies between questions or sentences, the setting proposed in this
paper has a number of significant distinguishing features, such as the importance of time - data
are represented naturally as multiple time series of events — and the anchoring on a GUI that
enables direct interactions through mouse clicks as well as combinations of factual queries and
interface commands.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 789

Dong and Lapata (2016) use an attention-enhanced encoder-decoder architecture to learn the
LFs from NL without using hand-engineered features. Their proposed Seq2Tree architecture is
able to capture the hierarchical structure of LFs. Jia and Liang (2016) propose a sequence-to-
sequence recurrent neural network model where a novel attention-based copying mechanism
is used for generating LFs from questions. The copying mechanism has also been investigated
by Gulcehre et al. (2016) and Gu et al. (2016) in the context of a wide range of NLP applica-
tions. More recently, Dong and Lapata (2018) propose a two-stage semantic parsing architecture,
where the first step constructs a rough sketch of the input meaning, which is then completed
in the second step by filling in details such as variable names and arguments. One advantage
of this approach is that the model can better generalize across examples that have the same
sketch, that is, basic meaning. This process could also benefit the models introduced in this
paper, where constants such as times and dates would be abstracted out during sketch generation.
Another idea that could potentially benefit our context-dependent semantic parsing approach is to
rerank an n-best list of predicted LFs based on quality-measuring scores provided by a generative
reconstruction model or a discriminative matching model, as was recently proposed by Yin and
Neubig (2019).

The semantic parsing models above considered sentences in isolation. In contrast, generating
correct LFs in our task required modeling sequential dependencies between LFs. In particular,
we modeled coreference between events mentioned in different LFs by repurposing the copying
mechanism originally used for modeling OOV tokens.

7. Conclusion and future work

We introduced a new QA paradigm in which users can query a system using both NL and direct
interactions (mouse clicks) within a GUI. Using medical data acquired from patients with type 1
diabetes as a case study, we proposed a pipeline implementation where a speech recognizer tran-
scribes spoken questions and commands from doctors into a semantically equivalent text that
is then semantically parsed into a LF. Once a spoken question has been mapped to its formal
representation, its answer can be easily retrieved from the underlying database. The speech recog-
nition module is implemented by adapting a pre-trained LSTM-based architecture to the user’s
speech, whereas for the semantic parsing component we introduce an LSTM-based encoder-
decoder architecture that models context dependency through copying mechanisms and multiple
levels of attention over inputs and previous outputs. Correspondingly, we created a dataset of
real interactions and a much larger dataset of artificial interactions. When evaluated separately,
with and without data augmentation, both models are shown to substantially outperform sev-
eral strong baselines. Furthermore, the full pipeline evaluation shows only a limited degradation
in semantic parsing accuracy, demonstrating that the semantic parser is robust to mistakes in
the speech recognition output. The solution proposed in this paper for the new QA paradigm
has the potential for applications in many areas of medicine where large amounts of sensor data
and life events are pervasive. The approaches introduced in this paper could also benefit other
domains, such as experimental physics, where large amounts of time series data are generated
from high-throughput experiments.

Besides the ideas explored in Section 5 for increasing the system’s practical utility, one avenue
for future work is to develop an end-to-end neural model which takes the doctor’s spoken ques-
tions as input and generates the corresponding LFs directly, instead of producing text as an
intermediate representation. Another direction is to jointly train the speech recognition and
semantic parsing system, which would enable the speech recognition model to focus on words
that are especially important for decoding the correct LF. Finally, expanding the two datasets with
more examples of NL interactions is expected to lead to better performance, as well as provide a
clearer measure of its performance in a real use scenario.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

790 C. Chen et al.

The two datasets and the implementation of the systems presented in Section 4 are made
publicly available at https://github.com/charleschen1015/SemanticParsing. The data visualization
GUI is available under the name OhioT1DM Viewer at http://smarthealth.cs.ohio.edu/nih.html.

Acknowledgments. This work was partly supported by grant IR21EB022356 from the National Institutes of Health. We
would like to thank Frank Schwartz and Amber Healy for contributing real interactions, Quintin Fettes and Yi Yu for
their help with recording and pre-processing the interactions, and Sadegh Mirshekarian for the design of the artificial data
generation. We would also like to thank the anonymous reviewers for their constructive comments.

Conflicts of interest. The authors declare none.

References

Artzi Y. and Zettlemoyer L. (2011). Bootstrapping semantic parsers from conversations. In Proceedings of the 2011
Conference on Empirical Methods in Natural Language Processing, Edinburgh, UK, pp. 421-432.

Bahdanau D., Cho K. and Bengio Y. (2015). Neural machine translation by jointly learning to align and translate. In Bengio
Y. and LeCun Y., (eds), 3rd International Conference on Learning Representations, ICLR, San Dieco, CA.

BaiY.,Yi]J., TaoJ., Tian Z. and Wen Z. (2019). Learn spelling from teachers: transferring knowledge from language models
to sequence-to-sequence speech recognition. In Interspeech, Graz, Austria, pp. 3795-3799.

Baskar M.K., Watanabe S., Astudillo R., Hori T., Burget L. and Cernocky J. (2019). Semi-supervised sequence-to-sequence
ASR using unpaired speech and text. In Interspeech, Graz, Austria, pp. 3790-3794.

Bengio Y. (2009). Learning deep architectures for AL. Foundations and Trends in Machine Learning 2(1), 1-127.

Chan W, Jaitly N., Le Q. and Vinyals O. (2016). Listen, attend and spell: a neural network for large vocabulary conversa-
tional speech recognition. In IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), Shanghai,
China, pp. 4960-4964.

Chen C., Mirshekarian S., Bunescu R. and Marling, C. (2019). From physician queries to logical forms for efficient
exploration of patient data. In IEEE International Conference on Semantic Computing (ICSC), Newport Beach, CA, pp.
371-374.

Cho K., van Merriénboer B., Giilgehre C., Bahdanau D., Bougares F., Schwenk H. and Bengio Y. (2014). Learning phrase
representations using RNN encoder—decoder for statistical machine translation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing, Doha, Qatar, pp. 1724-1734.

Corona R., Thomason J. and Mooney R. (2017). Improving black-box speech recognition using semantic parsing. In
Proceedings of the 8th International Joint Conference on Natural Language Processing (Volume 2: Short Papers), Taipei,
Taiwan, pp. 122-127.

Devlin J., Chang M.-W., Lee K. and Toutanova, K. (2019). BERT: pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the 2019 Conference of the North American Chapter of the Association for
Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers), Minneapolis, Minnesota.
Association for Computational Linguistics, pp. 4171-4186.

Doetsch P., Hannemann M., Schliiter R. and Ney H. (2017). Inverted alignments for end-to-end automatic speech
recognition. IEEE Journal of Selected Topics in Signal Processing 11(8), 1265-1273.

Doetsch P., Zeyer A. and Ney H. (2016). Bidirectional decoder networks for attention-based end-to-end offline handwriting
recognition. In 2016 15th International Conference on Frontiers in Handwriting Recognition (ICFHR), Shenzhen, China,
Pp. 361-366.

Dong L. and Lapata M. (2016). Language to logical form with neural attention. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 33-43.

Dong L. and Lapata M. (2018). Coarse-to-fine decoding for neural semantic parsing. In Proceedings of the 56th Annual
Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Melbourne, Australia. Association for
Computational Linguistics, pp. 731-742.

Gu]J., Lu Z., Li H. and Li V.O. (2016). Incorporating copying mechanism in sequence-to-sequence learning. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp.
1631-1640.

Gulcehre C., Ahn S., Nallapati R., Zhou B. and Bengio Y. (2016). Pointing the unknown words. In Proceedings of the 54th
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 140-149.

Harabagiu S., Hickl A., Lehmann J. and Moldovan D. (2005). Experiments with interactive question-answering. In
Proceedings of the 43rd Annual Meeting of the Association for Computational Linguistics, Ann Arbor, MI, pp. 205-214.

Hinton G., Deng L., Yu D., Dahl G., Mohamed A.-R., Jaitly N., Senior A., Vanhoucke V., Nguyen P., Kingsbury B. and
others (2012). Deep neural networks for acoustic modeling in speech recognition. IEEE Signal Processing Magazine 29,
82-97.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://github.com/charleschen1015/SemanticParsing
http://smarthealth.cs.ohio.edu/nih.html
https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 791

Hinton G.E. and Salakhutdinov R.R. (2006). Reducing the dimensionality of data with neural networks. Science 313(5786),
504-507.

Hochreiter, S. and Schmidhuber, J. 1997. Long short-term memory. Neural Computation 9(8), 1735-1780.

Iyyer M., Yih W.-T. and Chang M.-W. (2017). Search-based neural structured learning for sequential question answer-
ing. In Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers),
Vancouver, Canada, pp. 1821-1831.

Jia R. and Liang P. (2016). Data recombination for neural semantic parsing. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp. 12-22.

Kelly D. and Lin J. (2007). Overview of the TREC 2006 ciQA task. In ACM SIGIR Forum, vol. 41, pp. 107-116.

Kingma D.P. and BaJ. (2015). Adam: a method for stochastic optimization. In ICLR 2015, the 3rd International Conference
on Learning Representations, Conference Track Proceedings, San Diego, CA.

Li J., Lavrukhin V., Ginsburg B., Leary R., Kuchaiev O., Cohen J. M., Nguyen H. and Gadde R. T. (2019). Jasper: an
end-to-end convolutional neural acoustic model. In Interspeech, Graz, Austria, pp. 71-75.

Liang P. (2016). Learning executable semantic parsers for natural language understanding. Communications of the ACM
59(9), 68-76.

Long R., Pasupat P. and Liang P. (2016). Simpler context-dependent logical forms via model projections. In Proceedings of
the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp.
1456-1465.

Lundberg S. M. and Lee S.-I. (2017). A unified approach to interpreting model predictions. In Advances in Neural
Information Processing Systems, vol. 30, Long Beach, CA, pp. 1-10.

Matarneh R., Maksymova S., Lyashenko V. and Belova N. (2017). Speech recognition systems: a comparative review. IOSR
Journal of Computer Engineering 19(5), 71-79.

Mdhaffar S., Esteve Y., Hernandez N., Laurent A., Dufour R. and Quiniou S. (2019). Qualitative evaluation of ASR
adaptation in a lecture context: application to the PASTEL corpus. In Interspeech, Graz, Austria, pp. 569-573.

Norouzi M., Bengio S., Jaitly N., Schuster M., Wu Y., Schuurmans D. et al. (2016). Reward augmented maximum likelihood
for neural structured prediction. In Advances in Neural Information Processing Systems 29, Barcelona, Spain, pp. 1723-
1731.

Paulus R., Xiong C. and Socher R. (2018). A deep reinforced model for abstractive summarization. In The 6th International
Conference on Learning Representations (ICLR), Conference Track Proceedings, Vancouver, Canada.

Pham N.-Q., Nguyen T.-S., Niehues J., Miiller M. and Waibel A. (2019). Very deep self-attention networks for end-to-end
speech recognition. In Interspeech, Graz, Austria, pp. 66-70.

Raju A, Filimonov D., Tiwari G., Lan G. and Rastrow A. (2019). Scalable multi corpora neural language models for ASR.
In Interspeech, Graz, Austria, pp. 3910-3914.

Ranzato M., Chopra S., Auli M. and Zaremba W. (2016). Sequence level training with recurrent neural networks. In The
4th International Conference on Learning Representations (ICLR), Conference Track Proceedings, San Juan, Puerto Rico.
Rennie S.J., Marcheret E., Mroueh Y., Ross J. and Goel V. (2017). Self-critical sequence training for image captioning. In

IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, Hawaii pp. 7008-7024.

Sak H., Shannon M., Rao K. and Beaufays F. (2017). Recurrent neural aligner: an encoder-decoder neural network model
for sequence to sequence mapping. In Interspeech, Stockholm, Sweden, pp. 1298-1302.

Sennrich R., Haddow B. and Birch A. (2016). Neural machine translation of rare words with subword units. In Proceedings
of the 54th Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), Berlin, Germany, pp.
1715-1725.

Sigurdsson S., Petersen K.B. and Lehn-Schioeler T. (2006). Mel frequency cepstral coefficients: an evaluation of robustness of
MP3 encoded music. In International Conference on Music Information Retrieval (ISMIR), Victoria, Canada, pp. 286-289.

Toshniwal S., Tang H., Lu L. and Livescu K. (2017). Multitask learning with low-level auxiliary tasks for encoder-decoder
based speech recognition. In Interspeech, Stockholm, Sweden, pp. 3532-3536.

Weston J., Bordes A., Chopra S. and Mikolov T. (2016). Towards Al-complete question answering: a set of prerequisite toy
tasks. In The 4th International Conference on Learning Representations (ICLR), Conference Track Proceedings, San Juan,
Puerto Rico.

Williams R. J. and Zipser D. (1989). A learning algorithm for continually running fully recurrent neural networks. Neural
Computation 1(2), 270-280.

Wiseman S. and Rush A.M. (2016). Sequence-to-sequence learning as beam-search optimization. In Empirical Methods in
Natural Language Processing (EMNLP), Austin, TX, pp. 1296-1306.

Yin P. and Neubig G. (2019). Reranking for neural semantic parsing. In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, Florence, Italy. Association for Computational Linguistics, pp. 4553-4559.

Zeng W., Luo W., Fidler S. and Urtasun R. (2016). Efficient summarization with read-again and copy mechanism. CoRR,
abs/1611.03382.

Zettlemoyer L.S. and Collins M. (2009). Learning context-dependent mappings from sentences to logical form. In
Proceedings of the Joint Conference of the 47th Annual Meeting of the ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Volume 2, Singapore, pp. 976-984.

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

792 C. Chen et al.

Zeyer A., Irie K., Schliiter R. and Ney H. (2018). Improved training of end-to-end attention models for speech recognition.
In Interspeech, Hyderabad, India, pp. 7-11.

Zhong V., Xiong C. and Socher R. (2017). Seq2SQL: generating structured queries from natural language using reinforce-
ment learning. CoRR, abs/1709.00103.

A. Artificial Data Generator

An artificial data generator was designed and implemented to simulate doctor-system interac-
tions, with sentence templates defining the skeleton of each entry in order to maintain high-quality
sentence structure and grammar. A context free grammar is used to implement a template

Table Al. Examples of generation of artificial samples

week_days — Monday | Tuesday | . .. | Sunday
daily_intervals — Morning | Afternoon | Evening | Night
daily_intervals_logic — Morning | Afternoon | Evening | Night
any_event — HeartRate | Bolus | BGL
any_event_ [oglc — HeartRate \ Bolus \ BloodGIucoseLevel
Exahple l:a statement |nvolvmg referencmg
Let’s go to [Week_days]. — DoSetDate([$1])
Possible derivations:

o Let’s go to Monday. — DoSetDate(Monday)

o Let’s 80 to Tuesday — DoSetDate(Tuesday)
Example 2:a combo statement captunng temporal dependence N
[[let’ s/please/we can]/can we] turn the [any_event] off[1:./7] N

DoToggle(Off, [$2:any_event_logic])

.. and the [any_event] too.

DoToggle(Off, [$1:any_event_logic])
Possible derivations:

e please turn the bolus off. — DoToggle(Off, Bolus)

and the heart rate too. — DoToggle(Off, HeartRate)
e can we turn the blood glucose level off? — DoToggle(Off, BGL)
and the bolus too — DoToggle(Off Bolus)

Example 3 a cllck mvolvmg the speaal type clocktlme -
Click(e) A e. type = [any_event logic] A e.time = [clocktlme]
A possible derivation:

o Click(e) Ae. type = Bolus Ae. tlme =12 36 PM
Example 4:a questlon mvolvmgthe speaal type range .
e [a/any][va[ued event] (morefless than [rangel. 500 500)] e e et
Answer(Any(d.value[$3: > /<][$4] A d.type = [$2:valued_event_logic]))
One possible derivation:

e is there any heart rate less than 2507

Answer(Any(d.value < 250 A d.type = HeartRate))

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292

Natural Language Engineering 793

language that can specify a virtually unlimited number of templates and generate as many
examples as desired. Below we show a simplification of three sample rules from the grammar:

(S) — maximum heart rate on (P) today?
(P) — the day before (P)
(P) — the Monday after

A sample derivation using these rules is “maximum heart rate on the Monday after today?”.

The implementation allows for the definition of any number of non-terminals, which are called
types, and any number of templates, which are the possible right-hand sides of the starting sym-
bol S. The doctor-system interactions can be categorized into three types: questions, statements,
and clicks, where templates can be defined for each type, as shown in Table Al. Given the set of
types and templates, a virtually unlimited number of sentences can be derived to form the artifi-
cial dataset. Since the sentence generator chooses each template randomly, the order of sentences
in the output dataset will be random. However, two important aspects of the real interactions
are context dependency and coreference. To achieve context dependency, the implementation
allows for more complex combo templates where multiple templates are forced to come in a pre-
defined order. It is also possible to specify groups of templates, via tagging, and combine groups
rather than individual templates. Furthermore, each NL sentence template is paired with a LF tem-
plate, and the two templates are instantiated jointly, using a reference mechanism to condition the
logical form generation on decisions made while deriving the sentence.

Table A1 shows examples of how artificial sentences and their logical forms are generated given
templates and types. Most types are defined using context free rules. There are, however, spe-
cial types, such as [clocktime] and [range()], which are dynamically rewritten as a random time
and a random integer from a given range, as shown in Examples 3 and 4, respectively. Note that
most examples use referencing, which is a mechanism to allow for dynamic matching of terminals
between the NL and LF derivations. In Example 1, $1 in the logical form template refers to the
first type in the main sentence, which is [week_days]. This means that whatever value is substi-
tuted for [week_days] should appear verbatim in place of $1. In case a coordinated matching from
a separate list of possible options is required, such as in Example 2, another type can be selected.
In Example 2, [$2:any_event_logic] will be option i from the type [any_event_logic] when option
i is chosen in the main sentence for the second template, which is [any_event].

Cite this article: Chen C, Bunescu R and Marling C (2023). A semantic parsing pipeline for context-dependent ques-
tion answering over temporally structured data. Natural Language Engineering 29, 769-793. https://doi.org/10.1017/
$1351324921000292

https://doi.org/10.1017/51351324921000292 Published online by Cambridge University Press

https://doi.org/10.1017/S1351324921000292
https://doi.org/10.1017/S1351324921000292
https://doi.org/10.1017/S1351324921000292

	
	Introduction and motivation
	Task definition and distinguishing features
	Time is essential
	GUI interactions versus NL questions
	Factual queries versus GUI commands
	Sequential dependencies
	Speech recognition
	Experimental evaluation
	Context-dependent semantic parsing
	Semantic parsing datasets
	Real interactions
	Artificial interactions
	Baseline models for semantic parsing
	Semantic parsing with multiple levels of attention and copying mechanism
	Token-level supervised learning: SPAAC-MLE
	Sequence-level reinforcement learning: SPAAC-RL
	Experimental evaluation
	Data augmentation
	Semantic parsing pipeline evaluation
	Related work
	Conclusion and future work

