Computing level one Hecke eigensystems $(\bmod p)$

Craig Citro and Alexandru Ghitza

Abstract

We describe an algorithm for enumerating the set of level one systems of Hecke eigenvalues arising from modular forms $(\bmod p)$.

Supplementary materials are available with this article.

1. Introduction

One of the cornerstone results of the modern arithmetic theory of modular forms associates to every level one Hecke eigensystem $\bmod p$ a unique odd semisimple 2-dimensional Galois representation $(\bmod p)$ unramified outside p. This follows from the corresponding results of Deligne (and Serre, and Eichler-Shimura) for eigenforms over \mathbb{Z}; a more direct approach that avoids using the full machinery of Deligne's characteristic zero theorem can be found in [8, Proposition 11.1].

Serre's conjecture (now a theorem of Khare-Wintenberger) says that all Galois representations described above arise from level one eigensystems. In [14, §8], Khare recalls the well-known fact that the set of level one eigensystems $(\bmod p)$ is finite of cardinality $O\left(p^{3}\right)$ as $p \rightarrow \infty$, and he outlines an argument due to Serre showing that this cardinality is $\Omega\left(p^{2}\right)$ as $p \rightarrow \infty$. Khare adds that 'It will be of interest to get quantitative refinements of this', and guesses that the cardinality is in fact asymptotic to $p^{3} / 48$ as $p \rightarrow \infty$. In his PhD thesis, Centeleghe studies this question and proposes a precise conjecture for the asymptotic behavior of the number of representations of fixed conductor N (see [3, Conjecture 4.1.1]).

The present paper describes an efficient algorithm for enumerating the set of level one eigensystems $(\bmod p)$, and hence also the set of odd semisimple 2-dimensional Galois representations $(\bmod p)$ unramified outside of p. The theoretical framework underlying our approach is based on Tate's theory of theta cycles. We use two alternative computational methods: the Victor Miller basis for modular forms of level one and modular symbols over finite fields.

In a recent paper [4], Centeleghe attacks the problem of counting the number of irreducible Galois representations by an ingenious approach that requires computing with a single Hecke operator for each prime p. Unfortunately, this method only gives a lower bound on the number of representations. It is worth noting, however, that this lower bound is generally very close to the known upper bound, and in many cases (200 of the 374 cases considered in [4]) allows one to deduce the exact number. An unexpected result of our computations is that Centeleghe's lower bounds are equal to the exact numbers in many more cases; see $\S 8$ for more details.

We remark that our algorithm computes only as many traces of Frobenius as are needed to distinguish different representations. For the orthogonal problem of efficient computation of lots of traces of Frobenius for a given Galois representation, we refer the reader to the recent monograph [5].

[^0]
2. Review of modular forms mod p

We recall the definition of modular forms $\bmod p$ of level one and of their Hecke operators.
Let $M_{k}(\mathbb{C})$ denote the complex vector space of holomorphic modular forms of weight k and level one. There is a \mathbb{C}-linear map that associates to each modular form its q-expansion at the (only) cusp ∞ :

$$
Q: M_{k}(\mathbb{C}) \longrightarrow \mathbb{C}[[q]], \quad f \longmapsto f(q)=\sum_{n=0}^{\infty} a_{n} q^{n}
$$

By the q-expansion principle [12, Theorem 1.6.1], this map is injective. We let $S_{k}(\mathbb{C})$ denote the subspace of cusp forms, that is of forms f whose q-expansion has no constant term.

We define the \mathbb{Z}-module of forms with integer coefficients by

$$
M_{k}(\mathbb{Z})=Q^{-1}(\mathbb{Z}[[q]])
$$

and, for any \mathbb{Z}-module R, we define the R-module of forms with R-coefficients by

$$
M_{k}(R)=M_{k}(\mathbb{Z}) \otimes_{\mathbb{Z}} R
$$

In particular, we define ${ }^{\dagger}$ the space of modular forms mod p of level one and weight k to be $M_{k}=M_{k}\left(\overline{\mathbb{F}}_{p}\right)$. These are obtained by reducing modulo p the q-expansions of the modular forms with coefficients in the ring of algebraic integers.

In a similar way, we define the subspace $S_{k}=S_{k}\left(\overline{\mathbb{F}}_{p}\right)$ of cusp forms $\bmod p$ of level one and weight k.

2.1. Eisenstein series $\bmod p$

There are two normalizations for Eisenstein series in characteristic zero. The first makes the coefficient of q be one:

$$
\begin{equation*}
G_{k}=-\frac{B_{k}}{2 k}+\sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n}, \quad \text { where } \sigma_{i}(n)=\sum_{d \mid n} d^{i} \tag{2.1}
\end{equation*}
$$

The second makes the constant coefficient be one:

$$
\begin{equation*}
E_{k}=-\frac{2 k}{B_{k}} G_{k}=1-\frac{2 k}{B_{k}} \sum_{n=1}^{\infty} \sigma_{k-1}(n) q^{n} \tag{2.2}
\end{equation*}
$$

We define Eisenstein series $(\bmod p)$ by reducing the characteristic zero Eisenstein series modulo p. The first normalization is problematic for primes dividing the denominator of $B_{k} /(2 k)$; by the von Staudt-Kummer congruences (see [21, Lemma 4]), this happens if and only if k is a multiple of $p-1$.

Convention. To simplify notation, we will always write G_{k} to denote the Eisenstein series $(\bmod p)$ of weight k, keeping in mind that it is the reduction modulo p of the q-expansion in (2.1) if k is not a multiple of $p-1$, and the reduction modulo p of the q-expansion in (2.2) if k is a multiple of $p-1$.

Since we will soon restrict our attention to forms of weight at most $p+1$, the latter situation will only occur for the Hasse invariant A, which is the reduction modulo p of E_{p-1}. The von Staudt-Kummer congruences tell us that, apart from the constant coefficient, all coefficients of E_{p-1} are divisible by p, so the q-expansion of A is simply $A(q)=1 \in \overline{\mathbb{F}}_{p}[[q]]$.

[^1]
2.2. Operators

The spaces M_{k} are equipped with a number of interesting linear maps. We will define them in the most economical way, by describing their effect on q-expansions. Suppose that $f \in M_{k}$ has q-expansion

$$
f(q)=\sum_{n=0}^{\infty} a_{n} q^{n} .
$$

For every prime ℓ, there is a Hecke operator $T_{\ell}: M_{k} \longrightarrow M_{k}$ given by

$$
\left(T_{\ell} f\right)(q)=\sum_{n=0}^{\infty} a_{n \ell} q^{n}+\ell^{k-1} \sum_{n=0}^{\infty} a_{n} q^{n \ell} .
$$

A Hecke eigenform is an element $f \in M_{k}$ which is an eigenvector for T_{ℓ} for all primes ℓ.
An important map is multiplication by the Hasse invariant A, defined in $\S 2.1$. As we mentioned above, A has q-expansion $A(q)=1$. Multiplication by A is an injective linear map

$$
M_{k} \longrightarrow M_{k+(p-1)}, \quad f \longmapsto A f
$$

Of course, it behaves like the identity map on the level of q-expansions, and therefore commutes with the Hecke operators T_{ℓ}.

If f is a modular form $(\bmod p)$, its filtration is defined by

$$
w(f)=\min \left\{k \in \mathbb{N} \mid f=A^{i} g \text { for some } g \in M_{k}, i \in \mathbb{N}\right\}
$$

2.3. The algebra of modular forms

The product of a form of weight k_{1} and a form of weight k_{2} is a modular form of weight $k_{1}+k_{2}$. We take this multiplicative structure into account by setting

$$
M=\bigoplus_{k \in \mathbb{Z}} M_{k}
$$

This is a graded $\overline{\mathbb{F}}_{p}$-algebra of Krull dimension 2. The q-expansion map

$$
M \longrightarrow \overline{\mathbb{F}}_{p}[[q]], \quad f \longmapsto f(q)
$$

is an algebra homomorphism with kernel $(A-1) M$ (see [21, Theorem 2]).

2.4. The theta operator

There is a derivation on M, raising degrees by $p+1$:

$$
\vartheta: M_{k} \longrightarrow M_{k+(p+1)}, \quad f \longmapsto q \frac{d}{d q} f,
$$

whose effect on q-expansions is

$$
\begin{equation*}
(\vartheta f)(q)=\sum_{n=0}^{\infty} n a_{n} q^{n} . \tag{2.3}
\end{equation*}
$$

Katz gave a geometric construction of this operator and described some of its properties in [13]. Of these, we will need the following result.

Proposition 1 [13, Theorem (2) and Corollary (5)]. We have the following conditions.
(a) If $f \in M_{k}$ has filtration k and p does not divide k, then ϑf has filtration $k+p+1$.
(b) If $f \in M_{k}$ has $\vartheta(f)=0$, then f has a unique expression of the form

$$
f=A^{r} g^{p},
$$

where $0 \leqslant r \leqslant p-1, r+k \equiv 0(\bmod p), g \in M_{\ell}$ and $p \ell+r(p-1)=k$.

Another important feature of the theta operator is that it commutes with Hecke operators 'up to twist', that is $T_{\ell} \circ \vartheta=\ell \vartheta \circ T_{\ell}$ (see [8, equations (4.8)]).
We use these properties to find out whether an eigenform can be in the kernel of ϑ.
Proposition 2. If f is a Hecke eigenform and $\vartheta^{i}(f)=0$ for some i, then f is a scalar multiple of some power of the Hasse invariant A.

Proof. We start by proving the case $i=1$.
By equation (2.3), the q-expansion of $f \in \operatorname{ker} \vartheta$ is of the form

$$
f(q)=a_{0}+a_{p} q^{p}+a_{2 p} q^{2 p}+\ldots
$$

Since f is an eigenvector for T_{p} (say with eigenvalue $a(p)$), we have

$$
a(p) a_{0}+a(p) a_{p} q^{p}+\ldots=a(p) f(q)=\left(T_{p} f\right)(q)=a_{0}+a_{p} q+\ldots
$$

We conclude that $a_{p}=0$, but then $a_{n p}=0$ for all $n \geqslant 1$. So the q-expansion of f is actually constant $f(q)=a_{0}$. We normalize f so that $f(q)=1$. Then $A-f$ is in the kernel of the q-expansion homomorphism, so

$$
A-f=(A-1) h \quad \text { for some } h=\sum_{j=0}^{N} h_{j} \in M,
$$

where h_{j} is homogeneous of degree j.
We distinguish three possibilities.
(a) The weight of f is $p-1$. Then f and A are both in M_{p-1} and have the same q-expansion, so by the q-expansion principle $f=A$.
(b) The weight of f is less than $p-1$. Then comparing the highest degree terms in $A-f=A h-h$ we see that $A=A h_{N}$, which means that $h=1$ and $f=1$.
(c) The weight of f is greater than $p-1$. By looking at the highest degree terms in $-f+A=A h-h$ we get $f=-A h_{N}$. Note that $0=\vartheta(f)=\vartheta\left(h_{N}\right)$ and h_{N} is a Hecke eigenform with weight strictly less than the weight of f. We repeat the whole argument with f replaced by h_{N}, until we fall in one of the cases (a) or (b), and we are done since each step peels off a factor of $-A$.

To finish the proof, we need to consider the case $i>1$. So suppose that $\vartheta^{i}(f)=0$, and let $g=\vartheta^{i-1}(f)$. Suppose that $g \neq 0$, then g is a Hecke eigenform satisfying $\vartheta(g)=0$, so by the case $i=1$ proved above, we know that $g=c A^{n}$ for some c, n. However, since $i>1$, g is in the image of ϑ, hence $g=c A^{n}$ is a cusp form, which implies that $g=0$. We can therefore move all of the way down to $\vartheta(f)=0$, from which we conclude by using the case $i=1$.

2.5. Hecke eigensystems

In view of our interest in Galois representations unramified outside p, we define the (away-from- p) Hecke algebra by

$$
\mathscr{H}=\mathbb{Z}\left[T_{\ell} \mid \ell \neq p\right] .
$$

By a Hecke eigensystem we will mean a ring homomorphism

$$
\Phi: \mathscr{H} \longrightarrow \overline{\mathbb{F}}_{p}
$$

It is clear that the spaces M_{k} are $\overline{\mathbb{F}}_{p} \mathscr{H}$-modules. We say that an eigensystem Φ occurs in M_{k} if there exists a non-zero $f \in M_{k}$ such that

$$
T f=\Phi(T) f \quad \text { for all } T \in \mathscr{H} .
$$

We write Φ_{f} for the eigensystem given by the eigenform f.

If Φ is an eigensystem, we define the (first) twist of Φ by

$$
\Phi[1]: \mathscr{H} \longrightarrow \overline{\mathbb{F}}_{p}, \quad T_{\ell} \longmapsto \ell \Phi\left(T_{\ell}\right)
$$

It is clear that this operation can be repeated (at most) $p-1$ times before getting back to Φ. The resulting eigensystems are called the twists of Φ. The twisting operation has a modular interpretation: for any eigenform f we have

$$
\Phi_{f}[1]=\Phi_{\vartheta f}
$$

We will say that two eigensystems Φ and Ψ are equivalent (write $\Phi \sim \Psi$) if Φ is a twist of Ψ, that is if there exists i such that $\Phi=\Psi[i]$.

One of the crucial results for our computational work is due to Jochnowitz [10, Theorem 4.1] in the level one case, and to Ash and Stevens [1, Theorems 3.4, 3.5] in the general case. See also [6, Theorem 3.4].

Theorem 3. Every modular eigensystem has a twist that occurs in weight at most $p+1$.
This indicates that, instead of having to work with spaces of arbitrary weight, it suffices to restrict to weight at most $p+1$ and take twists.

2.6. The Sturm-Murty bound

We need to be able to decide whether two eigensystems are equal by comparing only finitely many of the eigenvalues. The following result (due to Sturm and revisited by Murty) solves this problem in the case of two eigenforms of the same weight.

Theorem 4 (Special case of [15, Theorem 1]). Let f and g be holomorphic modular forms of weight k and level one, with Fourier coefficients $a_{f}(n)$ and $a_{g}(n)$. Let $\beta(k)=k / 12$ and suppose that

$$
a_{f}(n)=a_{g}(n) \quad \text { for all } n \leqslant \beta(k)
$$

Then $f=g$.
The proof works in any characteristic; via the relation between Fourier coefficients and Hecke operators we arrive at the form in which we will use the following result.

Proposition 5. Let Φ and Ψ be eigensystems occurring in the same weight k and suppose that

$$
\Phi(\ell)=\Psi(\ell) \quad \text { for all primes } \ell \leqslant \beta(k)
$$

Then $\Phi=\Psi$.

3. Some consequences of the theory of theta cycles

Let f be a modular form which is not in the kernel of the theta operator. The ϑ-cycle of f is defined to be the $(p-1)$-tuple of integers

$$
\left(w(\vartheta f), w\left(\vartheta^{2} f\right), \ldots, w\left(\vartheta^{p-1} f\right)\right)
$$

It is clear from the effect of ϑ on q-expansions that $\vartheta^{p} f=\vartheta f$, which justifies the use of the word cycle. Note, however, that $\vartheta^{p-1} f=f$ only in special circumstances (when all of the Fourier coefficients of f of index divisible by p vanish), which explains why the cycle does not include $w(f)$ in general.

A lot is known about the structure of ϑ-cycles, which were introduced by Tate and appear for the first time in a paper of Jochnowitz [11]. For low weights, we will use the following classification given by Edixhoven (and based on Jochnowitz's analysis in [11, § 7]).

Figure 1. Theta cycles of ordinary forms: $4 \leqslant k \leqslant p-1$ (left, $k^{\prime}=p+1-k$) and $k=p+1$ (right). The lines correspond to applications of the theta operator: a solid line indicates that the filtration increases, while a dotted line indicates a drop in the filtration.

Proposition 6 (Edixhoven [6, Proposition 3.3]). Let $p \geqslant 5$ be prime. Let f be an eigenform $(\bmod p)$ of weight and filtration k, where $k \leqslant p+1$. Let $\left(a_{\ell}\right)$ denote the eigenvalues of f.
(1) If $a_{p} \neq 0$ (f is ordinary), then the ϑ-cycle of f is given by

weight	ϑ-cycle
$4 \leqslant k \leqslant p-1$	$(k+(p+1), \ldots, k+(p-k)(p+1)$,
$k=p+1$	$\left.k^{\prime}+(p+1), \ldots, k^{\prime}+(k-1)(p+1)\right)$
$k+1+(p+1), \ldots, p+1+(p-1)(p+1))$	

where $k^{\prime}=p+1-k$. See Figure 1.
(2) If $a_{p}=0$ (f is non-ordinary), then the ϑ-cycle of f is given by

weight	ϑ-cycle
$4 \leqslant k \leqslant p-1$	$\left(k+(p+1), \ldots, k+(p-k)(p+1), k^{\prime \prime}\right.$,
$k=p+1$	$\left.k^{\prime \prime}+(p+1), \ldots, k^{\prime \prime}+(k-3)(p+1), k\right)$
k	does not occur

where $k^{\prime \prime}=p+3-k$. See Figure 2.
Remark 7. We have extracted from the statement of [6, Proposition 3.3] only the parts that are relevant to level one. We have also eliminated the unnecessary requirement that f be a cusp form (see $[11, \S 7]$).

Lemma 8. Let f_{1} and f_{2} be eigenforms with equivalent eigensystems. Then the ϑ-cycles of f_{1} and f_{2} are the same up to a cyclic permutation.

Proof. We start by reducing to the case where neither f_{1} nor f_{2} is in the kernel of ϑ. Suppose that $f_{1} \in \operatorname{ker}(\vartheta)$, then by Proposition 2 we know that $f_{1}=c A^{n}$ for some c, n. Therefore, $\Phi_{f_{1}}=\Phi_{A}=\Phi_{G_{p+1}}[p-2]$, so we may replace f_{1} by G_{p+1}, which is not in the kernel of ϑ. The same goes for f_{2}.

Since the eigensystems are equivalent, there exists an integer i such that $\Phi_{f_{1}}=\Phi_{\vartheta^{i} f_{2}}$. In particular, the weight of f_{1} and the weight of $\vartheta^{i} f_{2}$ are congruent modulo $p-1$. We have that $\vartheta\left(f_{1}\right) \neq 0$ and $\vartheta\left(\vartheta^{i} f_{2}\right) \neq 0$, so $\vartheta\left(f_{1}\right)$ and $\vartheta^{i+1}\left(f_{2}\right)$ have the same q-expansion, and their weights

Figure 2. Theta cycle of a non-ordinary form: $4 \leqslant k \leqslant p-1$ and $k^{\prime \prime}=p+3-k$. The lines correspond to applications of the theta operator: a solid line indicates that the filtration increases, while a dotted line indicates a drop in the filtration.
are congruent modulo $p-1$. Without loss of generality, the weight of $\vartheta\left(f_{1}\right)$ is less than or equal to the weight of $\vartheta^{i+1}\left(f_{2}\right)$, so there exists j such that $A^{j} \vartheta\left(f_{1}\right)$ has the same weight as $\vartheta^{i+1}\left(f_{2}\right)$. These forms also have the same q-expansion, so they must be equal:

$$
A^{j} \vartheta f_{1}=\vartheta^{i+1} f_{2}
$$

But then for all $a \geqslant 1$ we have

$$
A^{j} \vartheta^{a} f_{1}=\vartheta^{i+a} f_{2}
$$

Since $w(A g)=w(g)$ for all modular forms g, we conclude that the ϑ-cycles of f_{1} and f_{2} are the same up to a cyclic permutation.

We use Edixhoven's result to determine when two eigensystems are equivalent, and to estimate the number of twists of a given eigensystem.

Theorem 9. For $i=1,2$, let f_{i} be an eigenform of weight and filtration k_{i}, where

$$
1 \leqslant k_{1} \leqslant k_{2} \leqslant p+1
$$

Suppose that the eigensystems of f_{1} and f_{2} are equal after a non-trivial twist, that is that $\Phi_{f_{1}}[x]=\Phi_{f_{2}}$ for some non-zero $x \in \mathbb{Z} /(p-1) \mathbb{Z}$. Then we must be in one of the following two situations:
(a) $a_{p}\left(f_{1}\right) \neq 0 \neq a_{p}\left(f_{2}\right), k_{1}+k_{2}=p+1$ and $x=p-k_{1}$;
(b) $a_{p}\left(f_{1}\right)=0=a_{p}\left(f_{2}\right), k_{1}+k_{2}=p+3$ and $x=p-k_{1}+1$.

Proof. By Lemma 8, the ϑ-cycles of f_{1} and f_{2} are the same up to a cyclic permutation. The two cases now follow by comparing the general shape and the low points of the cycles in Edixhoven's classification.

Remark 10. In relation to case (b) of Theorem 9 , note that if f_{1} is non-ordinary, that is $a_{p}\left(f_{1}\right)=0$, then there is always a form f_{2} of weight $p+3-k_{1}$ such that $\Phi_{f_{1}}\left[p-k_{1}+1\right]=\Phi_{f_{2}}$.

Proposition 11. Let f be an eigenform of weight and filtration k, where $1 \leqslant k \leqslant p+1$. Let $n\left(\Phi_{f}\right)$ denote the number of distinct twists of the corresponding eigensystem Φ_{f}. Then

$$
n\left(\Phi_{f}\right) \in\left\{\frac{p-1}{2}, p-1\right\} .
$$

The case $n\left(\Phi_{f}\right)=(p-1) / 2$ is only possible in the following situations:
(a) $a_{p} \neq 0$ and $k=(p+1) / 2($ so $p \equiv 3(\bmod 4))$;
(b) $a_{p}=0$ and $k=(p+3) / 2($ so $p \equiv 1(\bmod 4))$.

Moreover, case (b) never occurs.
Proof. Suppose that $n\left(\Phi_{f}\right) \neq p-1$. Then $n\left(\Phi_{f}\right)$ is a divisor of $p-1$, and the ϑ-cycle of f consists of copies of subcycles of length $n\left(\Phi_{f}\right)$.

Looking at the ϑ-cycle pictures (Figures 1 and 2), we note that the ordinary case with $k=p+1$ has only one low point, so here $n\left(\Phi_{f}\right)=p-1$; and the other two cases have two low points, so $n\left(\Phi_{f}\right) \geqslant(p-1) / 2$. In order to have equality, the two low points must agree, that is we must have either

$$
a_{p} \neq 0 \text { and } k+p+1=k^{\prime}+p+1=2 p+2-k, \text { so } k=\frac{p+1}{2},
$$

or

$$
a_{p}=0 \text { and } k=k^{\prime \prime}=p+3-k \text {, so } k=\frac{p+3}{2} .
$$

Since we do not use the last statement of the Proposition in our computations, we relegate its proof to $\S 9$.

Example 12. In § 4 we prove that if $p \equiv 3(\bmod 4), G_{(p+1) / 2}$ always has ϑ-cycle of length $(p-1) / 2$.

If f is a cusp form of weight $(p+1) / 2$, its ϑ-cycle length can be either $(p-1) / 2$ or $p-1$. We give an explicit example for each of these two cases.
(a) The smallest example of a cusp form of weight $(p+1) / 2$ with ϑ-cycle of length $(p-1) / 2$ is $\Delta \bmod 23$:

$$
\Delta(q)=q+22 q^{2}+22 q^{3}+q^{6}+q^{8}+22 q^{13}+22 q^{16}+q^{23}+22 q^{24}+q^{25}+O\left(q^{26}\right) .
$$

We claim that $\vartheta^{12} \Delta=A^{12} \vartheta \Delta$ and, hence, the ϑ-cycle of Δ has length 11 . This alleged equality takes place in weight 300 , where the Sturm bound is 25 , so it suffices to check it on q-expansions up to that precision:

$$
\begin{aligned}
& \left(\vartheta^{12} \Delta\right)(q)=q+21 q^{2}+20 q^{3}+6 q^{6}+8 q^{8}+10 q^{13}+7 q^{16}+22 q^{24}+2 q^{25}+O\left(q^{26}\right) \\
& \left(A^{12} \vartheta \Delta\right)(q)=q+21 q^{2}+20 q^{3}+6 q^{6}+8 q^{8}+10 q^{13}+7 q^{16}+22 q^{24}+2 q^{25}+O\left(q^{26}\right)
\end{aligned}
$$

(b) The smallest example of a cusp form of weight $(p+1) / 2$ with ϑ-cycle of length $p-1$ occurs for $p=43$. The space of cusp forms of weight 22 is one-dimensional; denote its normalized generator by Δ_{22} (an explicit expression for it is $\Delta_{22}=41 G_{4}^{4} G_{6}+18 G_{4} G_{6}^{3}$). The beginning of its q-expansion is

$$
\Delta_{22}(q)=q+13 q^{2}+27 q^{3}+41 q^{4}+39 q^{5}+O\left(q^{6}\right)
$$

The following shows that the ϑ-cycle length is not 21:

$$
\begin{aligned}
& \left(\vartheta^{22} \Delta_{22}\right)(q)=q+13 q^{2}+4 q^{3}+18 q^{4}+16 q^{5}+O\left(q^{6}\right), \\
& \left(A^{22} \vartheta \Delta_{22}\right)(q)=q+3 q^{2}+12 q^{3}+3 q^{4}+11 q^{5}+O\left(q^{6}\right) .
\end{aligned}
$$

4. Eigensystems coming from Eisenstein series

Proposition 13. Let $4 \leqslant k_{1}<k_{2} \leqslant p+1$ and let Φ_{1}, Φ_{2} denote the eigensystems of the Eisenstein series $G_{k_{1}}$ and $G_{k_{2}}$. Then $\Phi_{1} \sim \Phi_{2}$ if and only if $k_{1}+k_{2} \equiv 2(\bmod p-1)$. In this case, $\Phi_{2}=\Phi_{1}\left[p-k_{1}\right]$.

Proof. Suppose that $k_{1}+k_{2} \equiv 2(\bmod p-1)$. On the one hand we have

$$
\Phi_{1}\left[p-k_{1}\right]\left(T_{\ell}\right)=\ell^{p-k_{1}}\left(1+\ell^{k_{1}-1}\right)=\ell^{p-k_{1}}+1 .
$$

On the other hand, we have

$$
k_{1}+k_{2} \equiv 2 \quad(\bmod p-1) \Rightarrow k_{2} \equiv p+1-k_{1} \quad(\bmod p-1),
$$

so

$$
\Phi_{2}\left(T_{\ell}\right)=1+\ell^{k_{2}-1}=1+\ell^{p+1-k_{1}-1} .
$$

For the other implication, suppose that $\Phi_{2}=\Phi_{1}[i]$ for some i. This means that

$$
\ell^{i}+\ell^{i+k_{1}-1} \equiv 1+\ell^{k_{2}-1} \quad(\bmod p)
$$

for all primes $\ell \neq p$. Let a, b, c be the respective remainders of the division by $p-1$ of i, $i+k_{1}-1, k_{2}-1$. (In particular, $a, b, c<p-1$.) Then in \mathbb{F}_{p} we have

$$
\begin{equation*}
\alpha^{a}+\alpha^{b}=1+\alpha^{c} \quad \text { for all } \alpha \in \mathbb{F}_{p}^{\times} . \tag{4.1}
\end{equation*}
$$

Consider the polynomial

$$
f(x)=x^{a}+x^{b}-1-x^{c} \in \mathbb{F}_{p}[x] .
$$

The degree of f is at most $p-2$ (or f is the zero polynomial). If $f \neq 0$, then f has at most $p-2$ roots in \mathbb{F}_{p}. However, equation (4.1) implies that f has $p-1$ roots in \mathbb{F}_{p}, so we must have that $f=0$.

We have two possibilities: (i) $a=0$ and $b=c$, which implies $i=0$ and $k_{1}=k_{2}$, contradicting the assumption that $k_{1}<k_{2}$; (ii) $b=0$ and $a=c$, which implies

$$
k_{1}+k_{2} \equiv 2 \quad(\bmod p-1) \quad \text { and } \quad i \equiv k_{2}-1 \equiv p+k_{2}-2 \equiv p-k_{1} \quad(\bmod p-1) .
$$

Proposition 14. Let $4 \leqslant k \leqslant p+1$. The Eisenstein series G_{k} has $p-1$ twists, unless $p \equiv 3$ $(\bmod 4)$ and $k=(p+1) / 2$, in which case G_{k} has $(p-1) / 2$ twists.

Proof. We start by noting that Eisenstein series are always ordinary, so $a_{p} \neq 0$. So according to Proposition 11, the number of twists is $p-1$, except possibly if $p \equiv 3(\bmod 4)$ and $k=(p+1) / 2$. Suppose that we are in this case, and let Φ be the eigensystem of G_{k}. We easily see that

$$
\begin{gathered}
\Phi\left(T_{\ell}\right)=1+\ell^{(p+1) / 2-1}=1+\ell^{(p-1) / 2} \\
\Phi[(p-1) / 2]\left(T_{\ell}\right)=\ell^{(p-1) / 2}\left(1+\ell^{(p-1) / 2}\right)=\ell^{(p-1) / 2}+1,
\end{gathered}
$$

so Φ has $(p-1) / 2$ twists.
Corollary 15. The number of distinct eigensystems $(\bmod p)$ coming from Eisenstein series is $(p-1)^{2} / 4$.

Proof. This follows via simple arithmetic from Propositions 13 and 14.
We end this section by discussing the possibility that an Eisenstein series and a cuspidal eigenform of small weights have equivalent eigensystems.

Proposition 16. Let G_{k} be the Eisenstein series of weight $k \leqslant p+1$ and fix an even integer $k^{\prime} \neq 14$ with $12 \leqslant k^{\prime} \leqslant p+1$. A cuspidal eigenform f of weight k^{\prime} with $\Phi_{G_{k}} \sim \Phi_{f}$ exists if and only if $k^{\prime}=k$ and p divides the numerator of the k th Bernoulli number B_{k}.

Proof. The argument can be extracted from [18, proof of Theorem 10]; we include it here for completeness.

Suppose that there exists a form f with the given properties. Then there is some integer i such that $\Phi_{f}=\Phi_{G_{k}}[i]$, that is $\vartheta f=\vartheta^{i+1} G_{k}$. The conditions imposed on k^{\prime} exclude the possibility of it being divisible by p, therefore the filtration of ϑf is $k^{\prime}+p+1$. Similarly, the filtration of $\vartheta^{i+1} G_{k}$ is $k+(i+1)(p+1)$. Therefore,

$$
k^{\prime}+p+1=k+(i+1)(p+1)
$$

However, $k^{\prime} \leqslant p+1$ so $k^{\prime}+p+1 \leqslant 2(p+1)$, from which we conclude that $i=0$, so $k^{\prime}=k$.
Therefore, $\vartheta\left(f-G_{k}\right)=0$. Again since k is not divisible by p we get that $f=G_{k}$, in particular the constant term of G_{k} is zero; but this constant term is the reduction modulo p of $B_{k} /(2 k)$, therefore p must divide the numerator of $B_{k} /(2 k)$. Using one last time the condition $k \leqslant p+1$ we conclude that p divides the numerator of $B_{k} /(2 k)$ if and only if it divides the numerator of B_{k}.

5. Bounds on the number of eigensystems

In this section, we derive an explicit formula for the well-known upper bound on the number ${ }^{\dagger}$ $N(2, p)$ of level one Hecke eigensystems modulo p.

Let $N_{\text {twist }}(2, p)$ be the number of equivalence classes up to twist of level one Hecke eigensystems modulo p. We have seen that any eigensystem has at most $p-1$ twists, so we get the inequality

$$
N(2, p) \leqslant N_{\text {twist }}(2, p) \cdot(p-1)
$$

We know that each eigensystem occurs, up to twist, in weights at most $p+1$. Therefore we can bound $N_{\text {twist }}(2, p)$ by the sum of the dimensions of the spaces M_{k} for $k \leqslant p+1$:

$$
N_{\text {twist }}(2, p) \leqslant \sum_{k=4}^{p+1} \operatorname{dim} M_{k}
$$

We now use the classical dimension formulas (see, e.g., [22, Corollary 1 in $\S 1.3]$):

$$
\operatorname{dim} M_{k}= \begin{cases}0 & \text { if } k<0 \text { or } k \text { is odd } \\ \left\lfloor\frac{k}{12}\right\rfloor & \text { if } k \equiv 2 \quad(\bmod 12) \\ \left\lfloor\frac{k}{12}\right\rfloor+1 & \text { otherwise }\end{cases}
$$

After a straightforward calculation, we obtain the following expression for the sum of dimensions (write Q for the quotient of the integer division of $p+1$ by 12):

$$
\sum_{k=4}^{p+1} \operatorname{dim} M_{k}= \begin{cases}3 Q^{2}+4 Q & \text { if } p \equiv 1 \quad(\bmod 12) \\ 3 Q^{2}+6 Q+2 & \text { if } p \equiv 5 \quad(\bmod 12) \\ 3 Q^{2}+7 Q+3 & \text { if } p \equiv 7 \quad(\bmod 12) \\ 3 Q^{2}+3 Q & \text { if } p \equiv 11 \quad(\bmod 12)\end{cases}
$$

It remains to multiply this value by $p-1$ in order to obtain the desired upper bound on $N(2, p)$. Note that this upper bound is asymptotic to $p^{3} / 48$ as $p \rightarrow \infty$.

[^2]When $p \equiv 3(\bmod 4)$, it is possible to give a slightly lower, more precise upper bound, as we indicate at the end of $\S 9$.

6. Special features

Several factors can contribute to the number of eigensystems being smaller than the upper bound. We describe them here and explain how we detect their presence computationally. (We recall that $\beta(k)$ denotes the Sturm-Murty bound for the space of cusp forms of weight k.)

6.1. Eisenstein-cuspidal congruences (E)

We already discussed the possibility of an Eisenstein series mod p to be congruent to a cusp form in § 4. We detect this in our computation by using Serre's criterion from Proposition 16. More precisely, if Serre's criterion is satisfied in weight k (which can be checked very quickly), we know that such a cusp form f exists. Finding it requires checking Fourier coefficients up to precision $\beta(k)$.

These cusp forms give rise to reducible Galois representations.

6.2. Non-semisimple Hecke action (NS)

It can happen that the action of the Hecke operators on the spaces of cusp forms $(\bmod p)$ is not semisimple; in this case, a simple subspace of dimension d will contribute fewer than d eigensystems. The first time this phenomenon occurs in our computations is for $p=57$, weight $k=32$. The space S_{32} has dimension 2; with respect to the Victor Miller basis, the matrices of the first few Hecke operators are

$$
T_{2}=\left(\begin{array}{rr}
0 & 5 \\
1 & 28
\end{array}\right) \quad T_{3}=\left(\begin{array}{rr}
37 & 16 \\
30 & 6
\end{array}\right) \quad T_{5}=\left(\begin{array}{rr}
19 & 21 \\
31 & 16
\end{array}\right) \quad T_{7}=\left(\begin{array}{rr}
57 & 22 \\
58 & 6
\end{array}\right)
$$

with respective Jordan normal forms

$$
\left(\begin{array}{rr}
14 & 1 \\
0 & 14
\end{array}\right) \quad\left(\begin{array}{rr}
55 & 1 \\
0 & 55
\end{array}\right) \quad\left(\begin{array}{rr}
51 & 1 \\
0 & 51
\end{array}\right) \quad\left(\begin{array}{rr}
65 & 1 \\
0 & 65
\end{array}\right)
$$

This two-dimensional space contributes only one Hecke eigensystem.
We detect non-semisimple spaces during the decomposition of S_{k} into simple Hecke submodules.

6.3. Companion forms (\mathbf{C}, \mathbf{Q})

This is related to part (a) of Theorem 9. Suppose that f has weight $k \leqslant p+1$ and $a_{p}(f) \neq 0$. It can happen that f has a companion, that is a form g of weight $p+1-k$ such that

$$
\Phi_{g}=\Phi_{f}[p-k] .
$$

The system Φ_{g} appears in the space S_{p+1-k}, but it has already been counted as a twist of Φ_{f}. We check this by comparing ordinary forms f in weight k with ordinary forms of weight $p+1-k$, up to precision $\beta(k+p+1)$.

Here is the justification for the comparison bound: we have f of weight $k>(p+1) / 2$ and g of weight $p+1-k$. We want to check whether the q-expansions ϑf (in weight $k+p+1$) and $\vartheta^{k} g$ (in weight $k p+p+1$) are equal. A priori it seems that this must be checked in weight $k p+p+1$, where we are verifying the equality $A^{k} \vartheta f=\vartheta^{k} g$. However, as Buzzard pointed out to us, we can do much better by using ϑ-cycles. We are in the situation illustrated in Figure 1: ϑf is the first low point of the cycle, and ϑg is the second low point. Following the cycle, we see that $\vartheta^{k} g$ is back at the first low point, that is that $\vartheta^{k} g$ has filtration $k+p+1$. Therefore, it suffices to perform the comparison in weight $k+p+1$, checking q-expansions up to $\beta(k+p+1)$.

In the 'central' case $k=p+1-k$, there are two possibilities:
(a) $g=f$, in which case f has $(p-1) / 2$ twists and gives rise to a dihedral representation; this case is well-understood, as described in §9;
(b) $g \neq f$, in which case we count f with its $p-1$ twists and ignore g; in all such cases we observed, the Galois orbit of f has size 2 and the Galois conjugate of f is g, so that f and g are defined over the quadratic extension $\mathbb{F}_{p^{2}}$; we call the span of f and g a quadratic-twist eigenspace.
Companion forms give rise to Galois representations whose restriction to the decomposition subgroup at p is diagonalizable (see [8, Proposition 13.8]).

6.4. Non-ordinary forms (NO)

This is related to part (b) of Theorem 9. If f has weight $k \leqslant p+1$ and $a_{p}(f)=0$, then there exists a form g of weight $p+3-k$ such that

$$
\Phi_{g}=\Phi_{f}[p-k+1] .
$$

The system Φ_{g} appears in the space S_{p+3-k}, but it should be ignored, since it has already been counted as a twist of Φ_{f}. This includes the 'central' case $k=p+3-k$, where we check computationally that $f \neq g$ (this is mostly a sanity check, since $f=g$ never occurs in the non-ordinary case, as we see in Proposition 11 and § 9).

We find g computationally by checking coefficients up to precision $\beta(p+3-k)$.
Non-ordinary forms give rise to Galois representations whose restriction to the decomposition subgroup at p is irreducible.

7. Description of the algorithm

Step 1. Obtain the eigensystems coming from Eisenstein series

According to Proposition 13, the complete list of such eigensystems up to twist is G_{k} for $4 \leqslant k \leqslant(p+1) / 2$, together with G_{p+1}.

Step 2. Obtain the eigensystems coming from cusp forms of weight up to $p+1$
Fix a weight k with $12 \leqslant k \leqslant p+1$. We took two different approaches.
(1) Compute the (cuspidal) Victor Miller basis over \mathbb{F}_{p} of weight k up to and including the p th coefficient, then decompose the span of this basis into Hecke eigensystems.
(2) Compute the (cuspidal) modular symbols of weight k and sign -1 over \mathbb{F}_{p}, then decompose into Hecke eigenspaces.
Either of these gives us a list of cuspidal eigenforms f_{1}, \ldots, f_{n} with $n \leqslant \operatorname{dim} S_{k}$, for the spaces of cusp forms S_{k} of weight $k \leqslant p+1$.

Step 3. Remove duplicates (up to twist)
Check for the special circumstances listed in $\S 6$ and remove any eigensystems that have a twist already on the list.

We now have the list of all eigensystems up to twist.

8. Summary and discussion of results

We produced two distinct implementations of this algorithm, a higher-level one in Sage [20], and a lower-level one written in C and using the library FLINT2 [9] for arithmetic and factorization of polynomials over \mathbb{F}_{p}, and basic linear algebra $\bmod p$.

Figure 3. The relative difference (as a percentage) between the actual number of eigensystems and the upper bound, for all primes less than 2595. See also the file reldiff.out in the online supplementary material available for download from the publisher's website.

The table in the appendix records, for all the primes under 2595, the number of distinct nonEisenstein ${ }^{\dagger}$ eigensystems mod p, the upper bound on this number, as well as any interesting features that each prime might have: companion forms, Eisenstein-cuspidal congruence, nonordinary forms, non-semisimple Hecke module or a quadratic-twist. The raw data, as well as some results on primes above 2595, are available at
https://bitbucket.org/aghitza/eigensystems_data

The first explicit examples of companion forms appear in [8], resulting from computations performed by Elkies and Atkin. They focused on finding primes at which the reduction of the six cuspidal eigenforms with rational coefficients have companions. Higher-degree examples were given by Centeleghe in his thesis [3], going up to $p=619$. Our results extend this range to all $p<2595$.

Similarly, we find new examples of non-ordinary forms mod $p<2595$ of weight $k \leqslant p+1$, extending those listed in [3, Tables 5 and 6$]$ and the results of Gouvêa in [7].

It is interesting to compare our results with Centeleghe's table in [4]. Out of the 374 lower bounds he computes, 200 are marked with a star in his table, meaning that they are proved to give the actual number of representations. Our results indicate that a further 164 of his lower bounds coincide with the exact numbers, for a total of 364 out of 374 . We have marked with a star the 10 primes for which Centeleghe's lower bound is not equal to the actual number of eigensystems.

Finally, we note that the 'interesting' phenomena described above are quite rare, and the actual number of eigensystems deviates very little from the explicit upper bound given in $\S 5$. We have plotted the relative difference between the actual number and the upper bound in Figures 3 and 4 at two different zoom levels.

[^3]

Figure 4. The relative difference (as a percentage) between the actual number of eigensystems and the upper bound, for the primes between 1000 and 2595. See also the file reldiff.zoom in the online supplementary material.

9. The dihedral case

We recall the situation described in Proposition 11: let f be an eigenform of weight and filtration k with $1 \leqslant k \leqslant p+1$. Let Φ_{f} be the corresponding eigensystem and let $n\left(\Phi_{f}\right)$ denote the number of its distinct twists. We proved already that $n\left(\Phi_{f}\right)$ is either $p-1$ or $(p-1) / 2$, and the classification of ϑ-cycles tells us that the latter can occur only in the cases
(a) $a_{p} \neq 0$ and $k=(p+1) / 2($ so $p \equiv 3(\bmod 4))$;
(b) $a_{p}=0$ and $k=(p+3) / 2($ so $p \equiv 1(\bmod 4))$.

This section is dedicated to proving that case (b) never occurs and obtaining more precise information about case (a). We are indebted to T. Centeleghe and the anonymous referee for indicating how the proof goes.

Proposition 17. Let $p \geqslant 11$ be prime. Let f be a cuspidal eigenform $(\bmod p)$ of level one and weight k, where $2 \leqslant k \leqslant p+1$. Let $\Phi=\left(a_{\ell}\right)$ be the eigensystem of f, ρ the Galois representation $(\bmod p)$ attached to f, and $\tilde{\rho}$ the corresponding projective representation. Suppose that Φ has $(p-1) / 2$ twists.
(a) The image of $\tilde{\rho}$ is a dihedral group.
(b) We must have $p \equiv 3(\bmod 4), k=(p+1) / 2$ and $a_{p} \neq 0$.

Proof. (a) We start by noting that, under the assumptions, ρ cannot be reducible. If it were, then Φ would also be the eigensystem of the Eisenstein series G_{k}; but according to Proposition 14 the only Eisenstein series with $(p-1) / 2$ twists and $k \leqslant p+1$ is $G_{(p+1) / 2}$. By Proposition 16, p would have to divide the numerator of the Bernoulli number $B_{(p+1) / 2}$. It is however known (see [2, equation (5.2)]) that

$$
-2 B_{(p+1) / 2} \equiv h \quad(\bmod p)
$$

where h is the class number of $\mathbb{Q}(\sqrt{-p})$. By the von Staudt-Clausen congruence, p does not divide the denominator of $B_{(p+1) / 2}$, since $p-1$ does not divide $(p+1) / 2$. As $0<h<p$, we conclude that p also does not divide the numerator of $B_{(p+1) / 2}$, contradiction.
So ρ is an irreducible representation.
The assumption on the number of twists of Φ implies that

$$
\begin{array}{cl}
\quad\left(\ell^{(p-1) / 2}-1\right) a_{\ell}=0 & \text { for all } \ell \neq p \\
\Rightarrow \operatorname{trace}\left(\rho\left(\text { Frob }_{\ell}\right)\right)=a_{\ell}=0 & \text { for all } \ell \text { such that } \ell^{(p-1) / 2}=-1 \\
\Rightarrow \tilde{\rho}\left(\text { Frob }_{\ell}\right) \text { has order } 2 & \text { for all } \ell \text { such that } \ell^{(p-1) / 2}=-1
\end{array}
$$

where we used the fact that a trace zero element of PGL_{2} must have order two. We conclude that half of the elements of image ($\tilde{\rho}$) have order two. Therefore, this image is either $\mathbb{Z} / 2 \mathbb{Z}$ or a dihedral group D_{n} of order $2 n$ with $n \geqslant 2$.
If the image were $\mathbb{Z} / 2 \mathbb{Z}$, the action of $\operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q})$ is simply given by one trace zero element of PGL_{2}; but such an element is diagonalizable and hence fixes a line, contradicting the irreducibility of ρ.
(b) Fix a decomposition subgroup G_{p} at p and let ρ_{p} be the restriction of ρ to G_{p}. In the ordinary case $a_{p} \neq 0$, Deligne proved (see [8, Proposition 12.1]) that

$$
\rho_{p} \sim\left(\begin{array}{cc}
\chi^{k-1} \lambda\left(1 / a_{p}\right) & * \\
0 & \lambda\left(a_{p}\right)
\end{array}\right)
$$

where $\chi: G_{p} \longrightarrow \mathbb{F}_{p}^{\times}$is the $\bmod p$ cyclotomic character. But our assumption on the number of twists of Φ means that $\rho_{p} \otimes \chi^{(p-1) / 2} \cong \rho_{p}$, which forces $*$ above to be zero. In other words, ρ_{p} is a semisimple representation of G_{p}, which by a result of Serre (see [17, Proposition 4]) implies that ρ_{p} is tamely ramified.
In the non-ordinary case $a_{p}=0$, Fontaine proved (see $[\mathbf{6}, \S 6]$) that ρ_{p} is irreducible; in particular, ρ_{p} is semisimple and we can again conclude that it is tamely ramified.
Let K / \mathbb{Q} be the number field defined by the projective representation $\tilde{\rho}$. By part (a), K / \mathbb{Q} is a dihedral extension; since ρ is odd, complex conjugations act non-trivially so K is not a totally real field; since f has level one, ρ and K are unramified outside p; and we have just seen that K is tamely ramified at p.
We fix a decomposition subgroup D of K at p, and normal subgroups

$$
I^{w} \triangleleft I \triangleleft D
$$

where I is the inertia subgroup of D and let I^{w} is the wild inertia subgroup. It is known that the quotient I / I^{w} is a cyclic group (see [16, Corollaire 1 of Proposition IV.7]); but I^{w} is trivial since K is tamely ramified at p. Therefore, I is cyclic.
Let $\mathbb{Q}^{(p)}$ be the unique quadratic field unramified outside p. It must be ramified at p, so its discriminant is $\pm p$. Therefore,

$$
\mathbb{Q}^{(p)}=\left\{\begin{array}{lll}
\mathbb{Q}(\sqrt{p}) & \text { if } p \equiv 1 & (\bmod 4) \\
\mathbb{Q}(\sqrt{-p}) & \text { if } p \equiv 3 & (\bmod 4) .
\end{array}\right.
$$

We know that $\mathbb{Q}^{(p)}$ is contained in K (the $\operatorname{group} \operatorname{Gal}(K / \mathbb{Q})$ is dihedral so it surjects onto $\mathbb{Z} / 2 \mathbb{Z}$, so K contains a quadratic field; since K is ramified only at p, so is this quadratic field, which must then be isomorphic to $\mathbb{Q}^{(p)}$).

Under the composition

$$
I \hookrightarrow \operatorname{Gal}(K / \mathbb{Q}) \rightarrow \operatorname{Gal}\left(\mathbb{Q}^{(p)} / \mathbb{Q}\right)
$$

the cyclic group I surjects onto $\operatorname{Gal}\left(\mathbb{Q}^{(p)} / \mathbb{Q}\right) \cong \mathbb{Z} / 2 \mathbb{Z}$; since $I \subset \operatorname{Gal}(K / \mathbb{Q}) \cong D_{n}$ we conclude that $I \cong \mathbb{Z} / 2 \mathbb{Z}$.
Therefore, $\operatorname{Gal}\left(K / \mathbb{Q}^{(p)}\right)$ is unramified at \mathfrak{p}, where $p=\mathfrak{p}^{2}$ in $\mathbb{Q}^{(p)}$. (Because the ramification index of p is 2 , so all of the ramification above p happens in the quadratic extension $\mathbb{Q}^{(p)}$.) This means that $\operatorname{Gal}\left(K / \mathbb{Q}^{(p)}\right)$ is unramified at every finite place.
The order of $\operatorname{Gal}\left(K / \mathbb{Q}^{(p)}\right)$ must be odd; otherwise, $\operatorname{Gal}(K / \mathbb{Q})$ would have a quotient isomorphic to $(\mathbb{Z} / 2 \mathbb{Z})^{2}$, and a second quadratic extension unramified at p, non-isomorphic to $\mathbb{Q}^{(p)}$:

This is absurd, as it contradicts the uniqueness of $\mathbb{Q}^{(p)}$.
Since ρ is an odd representation, the image $c \in \operatorname{Gal}(K / \mathbb{Q})$ of a complex conjugation is nontrivial; since the order of $\operatorname{Gal}\left(K / \mathbb{Q}^{(p)}\right)$ is odd, we must have $c \notin \operatorname{Gal}\left(K / \mathbb{Q}^{(p)}\right)$, so c stays non-trivial in the quotient $\operatorname{Gal}\left(\mathbb{Q}^{(p)} / \mathbb{Q}\right)$. We conclude that $\mathbb{Q}^{(p)}$ is an imaginary quadratic field, so it must be $\mathbb{Q}(\sqrt{-p})$, so $p \equiv 3(\bmod 4)$ and $k=(p+1) / 2$.

Furthermore, it is known that every dihedral representation as described in Proposition 17 is induced from an unramified character of the quadratic field $\mathbb{Q}(\sqrt{-p})$, and therefore that the number of $(\bmod p)$ dihedral representations is $(h-1) / 2$, where h is the class number of $\mathbb{Q}(\sqrt{-p})$. The result goes back to Hecke; we refer the interested reader to [19, §8.1] or [3, Proposition 3.3.7]. This allows us to obtain a more precise upper bound on the number of eigensystems: in the case $p \equiv 3(\bmod 4)$, our estimate from $\S 5$ overcounts the contribution of the dihedral representations, so we need to refine it by subtracting $(p-1)(h-1) / 4$. It is this refined upper bound that we use in the table of results and in Figures 3 and 4.

Appendix. Table of results

The following table gives the exact number of eigensystems $\bmod p$, the refined upper bound on this number as described at the end of $\S 9$, and indicates the presence of the following special features:

- C: companion form;
- E: Eisenstein-cuspidal congruence;
- NO: non-ordinary form;
- NS: non-semisimple Hecke module;
- Q: quadratic-twist eigenspace (two companion forms that are Galois conjugate);
- *: number is strictly greater than Centeleghe's lower bound;
- (d) : corresponding eigenform is defined over $\mathbb{F}_{p^{d}}$ (omitted if $d=1$).

The interested reader can find the raw data that were used in constructing the table at
https://bitbucket.org/aghitza/eigensystems_data

p	Number	Bound	Special features
11	10	10	
13	12	12	
17	48	48	
19	72	72	
23	143	143	
29	336	336	
31	405	405	
37	720	756	E: 32
41	1080	1080	
43	1260	1260	
47	1656	1656	
53	2496	2496	
59	3393	3509	E: 44 NO: 16
61	3900	3900	
67	5148	5280	E: 58 NS: 32
71	6195	6265	NS: 54
73	6840	6912	NS: 40
79	8736	8814	NO: 38
83	10373	10373	
89	12848	12936	NS: 68
97	16896	16896	
101	19100	19200	E: 68
103	20196	20298	E: 24
107	22737	22949	C: $26 \mathrm{NO}: 28$
109	24300	24300	
113	27104	27216	NS: 84
127	38934	38934	
131	42510	42900	E: 22 NO: 40 NS: 28
137	49368	49368	
139	50991	51543	C: 20 NO: 36 NS: 28138
149	63788	63936	E: 130
151	66075	66375	C: $52 \mathrm{NO}: 60$
157	74256	75036	E: 62110 NS: 707074
163	83916	84240	NS: 80146
167	90387	90387	
173	100620	101136	C: 68 NO: 24 NS: 74
179	111784	112140	C: 30 NS: 70
181	115920	116100	NS: 38
191	136040	136420	C: 30 (2)
193	140928	141312	C: 48 NO: 72
197	150528	150528	
199	154836	154836	
211	185535	185535	
223	219225	219447	NO: 72
227	231424	231876	NS: 46220
229	237576	238260	C: 5858 NO: 116
233	250792	251256	E: 84 NS: 148
239	270725	270725	

p	Number	Bound	Special features
241	277680	278400	C: 98 NS: 96198
251	314875	314875	
257	337664	338688	E: 164 NO: 50100 Q: $130(2)$
263	362084	362608	E: 100 NO: 98
269	388332	389136	C: 84 NO: 78 NS: 114
271	396495	397305	C: 1840 E: 84
277	425040	425316	NO: 92
281	444360	444360	
283	452751	453879	C: 142 E: 20 NO: 7272
293	503408	504576	E: 156 NS: 76156266
307	580023	581247	C: 52 E: 88 NO: 78 NS: 88
311	602485	603415	C: 32126 E: 292
313	616200	616512	NO: 114
317	640532	640848	NS: 198
331	729135	730455	C: 164166 NO: 8484
337	771456	771456	
347	842164	842856	C: $74 \mathbf{E}$: 280
349	857472	857820	NS: 38
353	886336	888096	E: 186300 NO: 76(2) NS: 92
359	933127	933127	
367	998448	998448	
373	1049412	1049412	*
379	1099791	1101303	C: 20 E: 100174 NO: 56
383	1135686	1135686	
389	1190772	1191936	E: 200 NS: 124390
397	1266804	1267596	C: 16 NS: 358
401	1306000	1306800	E: 382 NS: 220
409	1386792	1387200	E: 126
419	1491006	1491842	NO: 106 NS: 258
421	1513260	1514100	C: 112 E: 240
431	1623250	1623680	C: 80
433	1646352	1648512	C: 188 E: 366 NS: 126322352
439	1716741	1717179	${ }^{*}$ C: 214
443	1766232	1766232	
449	1839040	1839936	NS: 108374
457	1939824	1940736	NS: 202266
461	1992260	1992720	E: 196
463	2017323	2018247	E: 130 NO: 182
467	2070205	2071603	E: 94194 NS: 376
479	2233694	2234650	* NO: 236 NS: 34
487	2351025	2351511	NS: 228
491	2406880	2410310	C: 124246 E: 292336338 NO: 124124
499	2530587	2531583	NO: 126 NS: 70
503	2590320	2591324	C: 162 NS: 204
509	2688336	2688336	
521	2883400	2884440	NS: 350358
523	2916414	2917458	E: 400 NS: 424
541	3231360	3231900	* E: 86

p	Number	Bound	Special features
547	3339609	3341247	E: 270486
557	3528376	3529488	E: 222 NS: 82
563	3643446	3644570	C: 282 NS: 476
569	3763000	3764136	C: 86 NS: 108
571	3803040	3803610	NS: 422
577	3924288	3926016	C: 54 E: 52 NO: 36
587	4132765	4134523	E: 9092 NS: 220
593	4263584	4264176	E: 22
599	4390516	4392310	* NO: 222 NS: 128388
601	4438800	4440000	NO: 136 NS: 528
607	4572876	4573482	E: 592
613	4712400	4713012	E: 522
617	4804184	4806648	E: 20174338 NS: 288
619	4851300	4853154	C: 158216 E: 428
631	5140170	5141430	E: 80226
641	5393280	5393280	
643	5443197	5443839	C: 322
647	5541065	5543649	E: 236242554 NO: 268
653	5701088	5703696	E: 48 NO: $66328(2)$
659	5861135	5861793	E: 224
661	5914260	5916900	NS: 92130312424
673	6245568	6246912	E: 408502
677	6357780	6359808	E: 628 NS: 64658
683	6529468	6530832	E: 32 NS: 280
691	6762000	6764070	E: 12200 NS: 214
701	7063700	7064400	NO: 268
709	7309392	7310100	NS: 174
719	7619057	7620493	NO: 358 NS: 570
727	7881456	7882182	E: 378
733	8080548	8082012	C: 184 NS: 332
739	8281836	8282574	NS: 692
743	8414280	8415764	C: 134 NS: 640
751	8690625	8692875	C: 158 E: 290
757	8904924	8906436	E: 514 NS: 750
761	9047800	9049320	E: 260 Q: $382(2)$
769	9337344	9338880	NO: 62 NS: 78
773	9484792	9486336	C: 280 E: 732
787	10012854	10012854	
797	10401332	10402128	E: 220
809	10878912	10881336	E: 330628 NS: 520
811	10958895	10961325	E: 544 NO: 140 NS: 244
821	11373400	11375040	E: 744 NS: 438
823	11457036	11457036	
827	11624711	11626363	E: 102 NS: 522
829	11712060	11712060	
839	12133402	12136754	E: 66 NO: 140 NS: 242738
853	12762960	12763812	NO: 68
857	12943576	12945288	C: 264 NS: 804

p	Number	Bound	Special features
859	13035165	13035165	
863	13215322	13216184	NS: 706
877	13874964	13876716	E: 868 NS: 100
881	14066800	14068560	E: 162 NS: 144
883	14163597	14164479	NO: 222
887	14352314	14353200	E: 418
907	15355341	15356247	NO: 228
911	15553265	15555085	C: 366 NS: 820
919	15970905	15972741	C: 120
929	16504480	16506336	E: 520820
937	16937856	16937856	
941	17156880	17156880	
947	17487756	17487756	
953	17822392	17824296	E: 156 NS: 268
967	18619167	18622065	C: 376378 NS: 362
971	18853405	18854375	E: 166
977	19210608	19210608	
983	19558985	19561931	C: 144 NS: 676742
991	20046510	20047500	C: 166
997	20418996	20418996	
1009	21164976	21168000	C: 126 NS: 38294
1013	21422016	21422016	
1019	21800470	21803524	C: 356 NS: 60952
1021	21935100	21935100	
1031	22580175	22580175	
1033	22720512	22720512	
1039	23113665	23114703	NS: 586
1049	23795888	23796936	NO: 426
1051	23931600	23932650	NO: 368
1061	24622740	24625920	E: 474 Q: $532(2) 532(2)$
1063	24758937	24761061	NO: 352 NS: 584
1069	25187712	25188780	NO: 280
1087	26484282	26485368	NO: 52
1091	26776940	26778030	E: 888
1093	26927628	26929812	C: 164460
1097	27224640	27227928	C: 324408 NS: 1010
1103	27672873	27672873	
1109	28134336	28134336	
1117	28747044	28749276	E: 794 NO: 476
1123	29214636	29215758	NO: 152
1129	29684448	29688960	E: 348 NO: 192 NS: 730 Q: 566(2)
1151	31449050	31453650	E: 534784968 NS: 1038
1153	31627008	31629312	E: 802 NS: 1136
1163	32459889	32461051	NS: 896
1171	33137325	33137325	
1181	33993440	33998160	* C: 360 NO: 182 NS: 9541008
1187	34513786	34518530	NO: 114254298 NS: 472
1193	35047184	35048376	E: 262

p	Number	Bound	Special features
1201	35756400	35760000	C: 460 E: 676 NS: 338
1213	36846012	36846012	
1217	37208384	37213248	E: 7848661118 NS: 492
1223	37757967	37757967	
1229	38325880	38328336	E: 784 NO: 616
1231	38506995	38508225	NO: 100
1237	39081084	39083556	E: 874 NS: 1094
1249	40234272	40235520	NO: 224
1259	41206419	41208935	NO: 316 NS: 36
1277	43008856	43011408	C: 540 NO: 532
1279	43205985	43207263	E: 518
1283	43618127	43619409	E: 510
1289	44237648	44238936	NS: 544
1291	44437920	44443080	E: 206824 NO: 324 NS: 308
1297	45067104	45069696	E: 202220
1301	45485700	45489600	E: 176 NS: 246728
1303	45694341	45696945	C: 410 NS: 1280
1307	46118125	46120737	E: 382852
1319	47392644	47395280	E: 304 NS: 1080
1321	47624280	47625600	* C: 168
1327	48273693	48275019	E: 466
1361	52097520	52097520	
1367	52778142	52783606	E: 234 NS: 84118266
1373	53486048	53491536	C: 344 NO: 444520 NS: 902
1381	54429960	54434100	E: 266 Q: 692(2) 692(2)
1399	56586147	56587545	
1409	57820928	57822336	E: 358
1423	59561892	59564736	NS: 1140
1427	60066685	60068111	NO: 358
1429	60321576	60325860	C: 94 E: 996 NS: 390
1433	60835656	60835656	
1439	61588821	61591697	E: 574 NO: 674
1447	62631321	62632767	NS: 792
1451	63159100	63159100	
1453	63423360	63424812	NO: 702
1459	64211049	64212507	NS: 234
1471	65808225	65809695	NS: 854
1481	67169800	67172760	NO: 530 NS: 202
1483	67440633	67443597	E: 224 NO: 694
1487	67980042	67981528	NS: 956
1489	68266464	68269440	NS: 252 Q: 746(2)
1493	68822976	68822976	
1499	69649510	69654004	E: 94 NS: 901366
1511	71329380	71330890	C: 498
1523	73062849	73064371	E: 1310
1531	74219535	74222595	NO: 252 NS: 1250
1543	75979737	75982821	C: 732 NS: 222
1549	76879872	76881420	C: 110

p	Number	Bound	Special features
1553	77474288	77480496	NO: 620 778(2) NS: 1034
1559	78363505	78365063	E: 862
1567	79594299	79594299	
1571	80206590	80206590	
1579	81442158	81443736	NO: 396
1583	82056758	82056758	
1597	84262416	84270396	C: 168196398 E: 842 NS: 1198
1601	84905600	84907200	NS: 798
1607	85857563	85857563	
1609	86185584	86188800	E: 1356 NS: 892
1613	86831992	86835216	E: 172 NS: 1146
1619	87799961	87804815	E: 560 NO: 406 NS: 1506
1621	88134480	88136100	E: 980
1627	89116995	89118621	NO: 644
1637	90775096	90778368	E: 718 NO: 714
1657	94151880	94153536	C: 176
1663	95171106	95176092	C: 396 E: 2701508
1667	95868304	95868304	
1669	96213576	96218580	C: 652 E: 3881086
1693	100438812	100438812	
1697	101152832	101154528	C: 432
1699	101508987	101508987	
1709	103315212	103320336	C: 72514 NS: 308
1721	105513400	105516840	E: 30 NS: 1514
1723	105880614	105884058	NO: 488 NS: 380
1733	107737328	107744256	E: 810942 NO: 868(2)
1741	109245900	109245900	
1747	110376882	110380374	NS: 442902
1753	111523560	111525312	E: 712
1759	112662309	112665825	E: 1520 NS: 720
1777	116175264	116178816	E: 1192 NS: 1682
1783	117353610	117355392	C: 762
1787	118144793	118153723	E: 1606 NO: 358498 NS: 2621372
1789	118546188	118553340	E: 8481442 NS: 568712
1801	120958200	120960000	C: 728
1811	122974115	122981355	E: 5506981520 NO: 824
1823	125433768	125437412	NS: 68
1831	127107225	127110885	E: 1274 NS: 532
1847	130463281	130468819	E: 95410161558
1861	133481040	133482900	NS: 274
1867	134777448	134779314	NS: 1564
1871	135629230	135631100	E: 1794
1873	136086912	136086912	
1877	136953628	136963008	C: 516 E: 1026 NO: 278 NS: 1161042
1879	137386029	137389785	E: 1260
1889	139610048	139611936	E: 242
1901	142291000	142294800	C: 476 E: 1722
1907	143639972	143643784	C: 368 NS: 106

p	Number	Bound	Special features
1913	145006080	145011816	C: 702 NO: 872 NS: 1210
1931	149133030	149142680	C: 296966 NO: 456484484
1933	149612148	149616012	E: 10581320
1949	153366040	153369936	C: 44170
1951	153821850	153827700	E: 1656 NS: 7161920
1973	159108848	159116736	C: 900 NO: 70248 NS: 1204
1979	160561183	160565139	E: 148 NS: 110
1987	162525303	162531261	C: 770 E: 510 NS: 1948
1993	164011320	164013312	E: 912
1997	164995348	165005328	E: 7721888 NO: 562 NS: 12981300
1999	165487347	165489345	NS: 992
2003	166490324	166496330	C: 350 E: 60600
2011	168501315	168503325	C: 100
2017	170019360	170021376	E: 1204
2027	172561511	172563537	NS: 156
2029	173069520	173079660	NO: 396 NS: 9141458 Q: 1016(2) 1016(2)
2039	175630764	175634840	* E: 1300 NS: 1980
2053	179299656	179305812	E: 1932 NO: 1028(2)
2063	181917888	181922012	C: 852 NO: 664
2069	183539136	183539136	
2081	186756960	186756960	
2083	187283187	187293597	C: 1042(2) NS: 90610881738
2087	188356413	188362671	E: 3761298 NO: 170
2089	188920152	188922240	Q: 1046(2)
2099	191642859	191644957	E: 1230
2111	194932350	194940790	E: 1038 NO: 98506 NS: 146
2113	195520512	195520512	
2129	200004336	200004336	
2131	200560800	200562930	NS: 1694
2137	202264248	202270656	E: 1624 NO: 798 NS: 1984
2141	203409140	203411280	C: 222
2143	203971950	203976234	E: 1916 NS: 258
2153	206854544	206856696	E: 1832
2161	209174400	209174400	
2179	214449147	214451325	NS: 384
2203	221626896	221629098	NO: 706
2207	222820339	222822545	C: 316
2213	224659568	224668416	C: 554554 E: 154 NO: 1108
2221	227117100	227117100	
2237	232065496	232069968	C: 340 NO: 88
2239	232668075	232674789	C: 898 E: 1826 NS: 512
2243	233929159	233938127	C: 2361122 NO: 562562
2251	236455875	236458125	NO: 918
2267	241531807	241543137	E: 2234 NO: 220 NS: 176020942224
2269	242186112	242188380	NO: 220
2273	243467520	243474336	E: 8762166 NS: 208
2281	246055320	246057600	NS: 622
2287	247992138	247992138	

p	Number	Bound	Special features
2293	249958644	249967812	E: 2040 NO: 842 1148(2)
2297	251278832	251281128	NS: 2058
2309	255239412	255246336	E: 16601772 NS: 1014
2311	255892560	255894870	C: 184
2333	263299124	263301456	NS: 678
2339	265331437	265331437	
2341	266020560	266022900	NS: 1914
2347	268075074	268075074	
2351	269416925	269416925	
2357	271521932	271524288	E: 2204
2371	276387030	276391770	E: 2422274
2377	278502840	278505216	E: 1226
2381	279911800	279916560	C: 868 E: 2060
2383	280599600	280606746	E: 8422278 NO: 722
2389	282748752	282751140	E: 776
2393	284174384	284176776	C: 126
2399	286286429	286288827	* NS: 946
2411	290627925	290635155	E: 2126 NO: 12 NS: 1192
2417	292821616	292826448	* NO: 896 NS: 146
2423	294987490	294997178	E: 290884 NS: 2482084
2437	300163920	300166356	NS: 2352
2441	301642560	301649880	E: 3661750 NS: 200
2447	303849458	303861688	C: 218430694868 NS: 1764
2459	308367161	308372077	NO: 1074 NS: 712
2467	311392917	311402781	NO: 372 NS: 226584640
2473	313684440	313686912	NO: 1236
2477	315212132	315214608	NS: 1490
2503	325244988	325247490	E: 1044
2521	332337600	332337600	
2531	336302780	336305310	NO: 286
2539	339506991	339512067	C: 1138 NS: 2426
2543	341104625	341107167	E: 2374
2549	343549388	343551936	C: 934
2551	344336700	344336700	
2557	346795524	346800636	C: 640 E: 1464
2579	355825872	355831028	E: 1730 NO: 606
2591	360797360	360805130	E: 8542574 NS: 448
2593	361672128	361677312	C: 180764

Acknowledgements. The authors wish to thank the referees for their thorough and insightful comments, in particular for pointing out a gap in the original version of the algorithm in § 7 and for suggesting the arguments given in $\S 9$, C. Khare for motivating and encouraging our work, W. Stein for suggesting the use of the Victor Miller basis and useful discussions about decompositions into Hecke eigenspaces, and K. Buzzard, T. Centeleghe and M. Flander for suggestions and corrections.

The collaboration on this project started during the Sage Days 7 workshop in February 2008, hosted by the Institute for Pure and Applied Mathematics (IPAM) at UCLA. The authors thank IPAM for facilitating this meeting.

References

1. A. Ash and G. Stevens, 'Cohomology of arithmetic groups and congruences between systems of Hecke eigenvalues', J. reine angew. Math. 365 (1986) 192-220.
2. L. Carlitz, 'The class number of an imaginary quadratic field', Comment. Math. Helv. 27 (1953) 338-345.
3. T. G. Centeleghe, 'A conjectural mass formula for mod p Galois representations'. PhD Thesis, University of Utah, May 2009.
4. T. G. Centeleghe, 'Computing the number of certain Galois representations mod p ', J. Théor. Nombres Bordeaux 23 (2011) no. 3, 603-627.
5. J-M. Couveignes and B. Edixhoven (eds), Computational aspects of modular forms and Galois representations (Princeton University Press, Princeton, NJ, 2011).
6. B. Edixhoven, 'The weight in Serre's conjectures on modular forms', Invent. Math. 109 (1992) no. 3, 563-594.
7. F. Q. Gouvêa, 'Non-ordinary primes: a story', Experiment. Math. 6 (1997) no. 3, 195-205.
8. B. H. Gross, 'A tameness criterion for Galois representations associated to modular forms (mod p)', Duke Math. J. 61 (1990) no. 2, 445-517.
9. W. Hart, 'Fast library for number theory: an introduction', Mathematical Software - ICMS 2010, Lecture Notes in Computer Science 6327 (Springer, Heidelberg, 2010) 88-91, http://www.flintlib.org/.
10. N. Jochnowitz, 'Congruences between systems of eigenvalues of modular forms', Trans. Amer. Math. Soc. 270 (1982) no. 1, 269-285.
11. N. Jochnowitz, 'A study of the local components of the Hecke algebra mod ℓ ', Trans. Amer. Math. Soc. 270 (1982) no. 1, 253-267.
12. N. M. KAtz, 'p-adic properties of modular schemes and modular forms', Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 69-190.
13. N. M. KATZ, 'A result on modular forms in characteristic p ', Modular functions of one variable, V (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976), Lecture Notes in Mathematics 601 (Springer, Berlin, 1977) 53-61.
14. C. Khare, 'Modularity of Galois representations and motives with good reduction properties', J. Ramanujan Math. Soc. 22 (2007) no. 1, 75-100.
15. M. Ram Murty, 'Congruences between modular forms', Analytic number theory (Kyoto, 1996), London Mathematical Society Lecture Note Series 247 (Cambridge University Press, Cambridge, 1997) 309-320.
16. J-P. Serre, 'Corps locaux'. Hermann, Paris, 1968. Deuxième édition, Publications de l'Université de Nancago, No. VIII.
17. J-P. Serre, 'Propriétés galoisiennes des points d'ordre fini des courbes elliptiques', Invent. Math. 15 (1972) no. 4, 259-331.
18. J-P. Serre, 'Congruences et formes modulaires [d'après H. P. F. Swinnerton-Dyer]', Séminaire Bourbaki, 24e année (1971/1972), Exp. No. 416, Lecture Notes in Mathematics 317 (Springer, Berlin, 1973) 319-338.
19. J-P. Serre, 'Modular forms of weight one and Galois representations', Algebraic number fields: L-functions and Galois properties (Proc. Sympos., Univ. Durham, Durham, 1975) (Academic Press, London, 1977) 193-268.
20. W. A. Stein et al., Sage Mathematics Software (Version 4.6.1). The Sage Development Team, 2011, http://www.sagemath.org.
21. H. P. F. SWinnerton-Dyer, 'On ℓ-adic representations and congruences for coefficients of modular forms', Modular functions of one variable, III (Proc. Internat. Summer School, Univ. Antwerp, 1972), Lecture Notes in Mathematics 350 (Springer, Berlin, 1973) 1-55.
22. D. Zagier, 'Elliptic modular forms and their applications', The 1-2-3 of modular forms, Universitext (Springer, Berlin, 2008) 1-103.
Craig Citro
Google
651 North 34th Street
Seattle, WA 98103
USA
craigcitro@gmail.com

Alexandru Ghitza
Department of Mathematics and Statistics
The University of Melbourne
Parkville, VIC, 3010
Australia
aghitza@alum.mit.edu

[^0]: Received 18 November 2011; revised 31 March 2013.
 2010 Mathematics Subject Classification 11 F 11 (primary), 11F25, 11F33, 11F80, 11Y40 (secondary).
 The first author was partially supported by NSF grant DMS-0713225. The second author was supported by an Early Career Researcher grant from the University of Melbourne and Discovery Grant DP120101942 from the Australian Research Council. Some of the computations described in this paper were performed on W. Stein's machines mod and geom, supported by NSF grant DMS-0821725.

[^1]: ${ }^{\dagger}$ Morally, the appropriate definition of modular forms mod p is intrinsic, as global sections of line bundles over the moduli stack of elliptic curves over $\overline{\mathbb{F}}_{p}$ (see $[12, \S 1.1],[8, \S 10]$, or $[6, \S 2.1]$). The naive definition we use is equivalent in level one for $p \geqslant 5$, by [12, Theorem 1.8.2, Remark 1.8.2.2].

[^2]: ${ }^{\dagger}$ We use Khare's notation, which is motivated by the fact that this is the number of continuous semisimple odd representations

 $$
 \rho: \operatorname{Gal}(\overline{\mathbb{Q}} / \mathbb{Q}) \longrightarrow \mathrm{GL}_{2}\left(\overline{\mathbb{F}}_{p}\right)
 $$

 that are unramified outside p. Note that we do not restrict our attention to irreducible representations here, but by Corollary 15 the difference is known to be $(p-1)^{2} / 4$.

[^3]: ${ }^{\dagger}$ We decided to exclude the Eisenstein eigensystems from the count in order to ease comparison with Centeleghe's results. As Corollary 15 indicates, the number of Eisenstein eigensystems $(\bmod p)$ is $(p-1)^{2} / 4$.

