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A REGULAR SUMMABILITY METHOD WHICH SUMS
THE GEOMETRIC SERIES TO ITS PROPER VALUE
IN THE WHOLE COMPLEX PLANE

BY
LUDWIG TOMM

ABSTRACT. In this paper an explicit regular sequence-to-
sequence summability method is presented which sums the geomet-
ric series to the value 1/(1-2z) in all of C\{1} and to infinity at the
point 1. The method also provides compact convergence in C\[1, )
and therefore improves well-known results by Le Roy, Lindel6f and
Mittag-Leffier.

Several authors (Le Roy [1], Lindelof [2], Mittag-Leffler [3]) have given
explicit regular summability methods which sum the geometric series to the
function 1/(1-2z) in its Mittag-Leffler star C\[1, «).

In this paper we present a regular method which sums the geometric series to
the value 1/(1—z) in all of C\{1} and to infinity at the point 1. The method
described in the following theorem provides compact convergence in
C\[1, )—so0 do the methods in [1], [2], [3]—, and pointwise convergence in all
of C\{1}. Moreover we get uniform convergence on every compact subset of
H={x+iy: x>1,y=0}L

THEOREM. The continuous method defined by®

(1) (%)= _105 X grkiiosk—im (x> k=0,1,..))

is regular, and the transform

oo

() o ()= Y a(x)-Q+z+---+2z%  (zeC,x>1)

k=0

of the geometric series has the following properties.

3) lim o,(z) = uniformly on every compact subset

1_
z of C\[1,) resp. H={x+iy|x>1,y=0}

@) lim 0, (1) =°.
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REMARKS

(a) In (1) we might replace = by any function f:(1,)—[0,%) which
satisfies the conditions (i) f(x)=o(logx) as x—>, and (ii)
lim inf,_,., f(x) > /2, and still o,(z) would have the properties (3) and
(4). A proof to this more general version of the above theorem—without
(4)—is given in [4].

(b) From (1) we can also obtain a discrete row-finite method A = (a1 )ni-o
with the same summation properties, e.g. by defining

logn _ —i .
_—g e (k/n){ogk—im) if n= 2, 3, ...and k= n",
An i n

0 else.

The A-transform o,(z) of the geometric series also satisfies (3). The
simple proof to this can be found in [4].

Proof to the Theorem
1. At first we show that ¢, (x) is regular by checking the Toeplitz conditions.

Clearly lim,_,., ¢ (x) =0 for k=0, 1,.... It remains to prove that
(5) lim Y ¢(x)=1
X7 k=0

and that the series ) x—, |cc(x)| are uniformly bounded for x >1. We will also
show that

©) lim ¥ le (o)l =1.

X~»%0 k=0

(It is easily seen that the series in (6) converge for x > 1.) We define for x >1

H(x)= z e (x)],

O=k=x/J/(log x)

Rx)= Y la®l
k>x//(log x)

Then we obtain that

2 lec()l=H(x)+ R(x),

exp (lk—w) -1
x

and—since

=0(1)

max
0=k =x//(log x)
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as X — oo—

=<} 1 .
Y a(x)= Hx)+28% exp( - 222K)
k=0 X Oska/\/(log x) X

x (exp(i—')‘ci’)— 1>+ O(R(x))

=H((x)(1+0(1))+ O(R(x)) as x—oo.
In order to complete the proof for regularity we need to show that

@) H(x)—>1 as x—x,
(8) R(x)—>0 as x-—>o, and that
9) H(x), R(x) are uniformly bounded for x >1.

As to (9) we observe that the expressions exp [ —(k/x)log(k/x)] are uniformly
bounded by a constant K for x >1, k =0. Therefore both H(x) and R(x) are

bounded by
log x ( k > ( k k) log x
Z ——1 ——log—)=K
. _Oexp _ log x Jexp| ——log .

% (exp( 105 x)) log x/x

1—exp(—log x/x)

which is bounded for x >1. Thus (9) is proved.
To show (8) we use the estimate

logx ( k ) ( k k) log x
_= —_ Moo =
|R(x)|=—— . Z exp xlogx exp xlogx =K

k>x/+/(log x) X
log x))k log x/x
X ex (— =
k>x/JZ(log x) ( P X 1 —exp(—log X/x)

which converges to 0 as x — oo,
For (7) we can use the relation

exp(—+/(log x))

1l=0(1) as x—> .

k k
max  |exp —;log; -

O0=k=x/(log x)
We get

H(x)=lO£C Z exp(—flog x)<1+(exp(—flog %)—1))

X 0=k=x/V(log x)
1 1
X5 (exp(-12)) (vorry
X 0=k=x/J(log x) X
log x/x

— J(logx)
1—exp(—log x/x) (1+0(e” )

=1+0(1) as x-—>ox.
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2. Our next aim is to show (4), which will be done by proving that

(10) lim i k¢ (x)=0o.
k=1

X—>00

(Hence (4) is obtained by adding up the limits in (5) and (10).)
Like in 1. we write

1 k
c(x) =£exp(—,—< log x) . exp(—E log,—<+ iq-r—)
X x X "x x

and use the fact that
k k k
exp(—-—log—+ iw—) =14+0(1) as x—>»
X X X
uniformly for k=x/\/(logx) (x>1), and that the same term is uniformly

bounded for x>1, keN,.
From this it follows that

(<) l [e <]
(11 Z kck(x)=% Z kexp(—,—clogx>(1+o(1))
k=1 X k=1 X
+ O(lOg x Y ok exp(—k log x))
X k>x/J(log x) x
as x —>oo,

The first term on the right hand side of (11) is equal to

1
LY e torx)/x(] — g=(or0)/x)=2.. (1 4 o(1)) = X (1+0(1))
X log x

and the O-term is

log x ¢ ( X ) _ _ )
+ . '(logx) (u/x)logx
O( X Z H V(log x) ¢ ¢

n=1

= O(e—J(Ing)COf g (1 _ e—(logX)/x)—z +J(log x)(l _ e—(logx)/x)—1>>
which is o(x/log x). Thus we have

—~ X
k; ke (x) gl (1+0(1)

which implies (10).

3. In order to prove (3) we now derive an ‘“‘integral representation” for the
transform 7,(z) =Yx_o c(x)z* of the sequence (z")nen,. Namely if

z=pe®,  p>0, 0=0<2m and x>—0b
27m—0
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then we have

12)  r(z)=il08X

—where

Q@=A(p+5——)

and A is a uniform constant not depending on p, 6 or x.
To show (12) we consider the curves vy, = yP+y?+y® +
with the parametrisations

1

y“)(t)=§e_", —gstsg

1 1

(2) =—i —<t<n+-

(1 2<t<n >
N 1 i T T
)= 2 e", _EStsi
Y1) =—it, —<n+%)sts—%

Also we define

(13) exp(u(log p+i0)—§(Log u—iw))

F(u)= -
(u) eZ-mu -1

With the residue theorem we obtain

n

(14) Y a(x)zk=

k=1 Yn

log x

There is some positive constant K such that

J _‘(°+"/2’°)exp( l-lOg(t/p")) dt+—== lo
1/2

X

Q(z)

(4) (n 0 1

for u¢(—oo, 0JUN.
IF(u)du for n=1,2,....

v=2,3,4,

183

)

n=0,1,....

1
(15) |W|SK and ‘f—ﬂjr;‘ K for ueyﬁl),
For n=0,1,... we have
1 /2 1 ) .
(16) j F(u) du = i(n +—) . J F((n +—)e")e" dt.
v 2 —r/2 2

If u=(n+3e" 0=<t=m/2, then the modulus of the integrand of the last

integral is equal to

|e21-riu _ 1
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which is not greater than

1 P
K exp((n +§) - cos t log W)’

and for

it is equal to

1 p Tt )
exp((n +§)(cos tlog W) - (0 + ~ 2w>sm t)

which also doesn’t exceed

e o8 )
+= — )
Kexp((n > costlog(n_l_%)l,x

Therefore we get the following estimate for the integral in (16).

1— e—21-riu

/2
17 J F(u) dul=(2n+1K e st dt
v
where
1 + x
2 [

If n>p*, then « is positive and we can write

/2 /2 3
j e—acost dt =.[ e—asint dt SJ e—2at/-rr dt =£_

o (\ 0 2a

Hence for n>p* we have

2n+1)K +1/2)V*
j Flu) du‘s(_"___)_ﬂz Knflog "2
v 2a [
from which it follows that
(18) lim j F(u) du =0.
n—co ,Y(S)
Substituting n =0 in (17) we obtain for y=—y§

/2
= KL (21/xp)(cost)/2 dt

w2 1 (cos t)/2
=K 2 ( + )) dt.

After omitting the exponent (cos t)/2 and evaluating the last integral we obtain

J(U F(u) du

(19)

I F(u) du Ssz(p+

277—0)
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In order to show (12) we still have to consider the integrals {,» and f,«. We
shall now give an estimate for the integrals [, F(u) du = —if}5/> F(~it) dt. For
l<t=n+1 we have

|F(—it)| = # CXP(“(Z" -0 _;_:))

which doesn’t exceed

4

27—0°

5
— (" —_ >
—— exp( 3 t2m 0)) for x

Therefore, as n — o, { o F(u) du approaches a number the modulus of which is

less than
1 J""’ ( 5 ) 8 1
——tR2w—0))dt= . .
e ), P\ gm0 di=g— = 5
Hence
. 2 1
(20) rltl—I>n°° I(z; F(u) du Sl_e_." 27—6 )

Yn

We complete the proof for (12) by considering the integrals

n+1/2

I F(u) du = —i[ F(it) dt = i(I{(n)+ I,(n))

12

—where
n+1/2

t
L(n) =I e"(“+“’2")exp(—i; log(t/p")> d,

1/2

+1/2
n+1/ ar

.t .
Zx)_lx log(t/p )) dt.

L(n)= J =2 exp(—t(Zw +0+

1/2
The Weierstra3 M-test shows that the limits lim,,_,., I,(n), lim,_,. I,(n) both
exist. The integral I,(n) approaches the integral in (12) as n — . And for I,(n)
we can give the estimate

1 1
L(n)|= =
|Lo(m) J; 1—e™ ¢ 2m(l—e™)

These two results together with (18), (19) and (20) show that we may take the
limit as n — « in (14) to obtain (12).

4. With the help of (12) we are now able to prove (3). It is easy to verify the
identity 1

1-z

o, (2)= (1:(1)—z7(2)) for z#1,

and the Toeplitz condition (5) implies that lim,_,. 7,(1)=1. Therefore it
suffices to show that

(21) li_l,g 7(2)=0
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uniformly on all compact sets described in (3). In fact it even suffices to show
that (21) holds
(a) uniformly on every disc D,:={z: |z|=r} with 0<r<1,
(b) uniformly on every sector A(6,, R):={pe: 3=p=<R, 0,=2m — 0.} with
R>1, 0<6,<m, and
(c) uniformly on every sector D(r, R):={pe”: r=p=R,0=0=mx/2} with
1<r<R.
ad (a): If 0<r<1 and x>1, then we have uniformly on D,

ln@l= Y la@lrf= Y la®l+ Y laG)r™
k=0

O=k=.x k>.x
log x -
s—;cg——(1+\/x)+r‘/" Z lek (x).
k=0

Because of (6) and 0<r<1 the last expression approaches zero as x — «
which proves (21) for the case (a).

ad (b): Let R>1 and 0<6y<. For x>4m/0, we may use the ‘“integral
representation” (12) for all elements z =pe® of A(6y, R), and by taking
absolute values in (12) we obtain the inequality

ln(l)lslo%cj e 1012 dt+lo%xA<p+2 ! 0)510%’1; e dt
1/2 o —

+
Llogx xA(R +l> _logx (AR LA 1).
x 6, X 6,

This estimate for |7.(z)| implies (21) for the case (b).
ad (c): Let 1<r<R. Again, if

4
>—
27 —w/2

X 8
3 2

we may use the “integral representation” (12) for all elements z =pe®® of
D(r, R). After cutting the integral in (12) into three parts we obtain the

inequality
22) e =X (1 +]1/+ 11+ Q2))
where

o

Vx x2
t
I,= I e"“’*"’z")exp(—-i; log(t/p")) dt, I,= I . A :J
1 x x

/2 2

Now we can use the inequality in (12) for |Q(z)| and give trivial estimates for I,
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and I; to obtain

IQ(z)lsA(R +577—1—1r/§)

(23) L] <Jx

© 2x
lI3‘ SI e t(ar/2x) dt === e—(fr/2)x.
x2 m™

Also we have

x2 1 ) t
il, = X[/x m d exp(—l ; log(t/p"))

where
G(1) =" > (log(p*/t) — 1).

As r>1, there exists a constant x, >% (depending on r) such that x*><r*/e for
x =x,, and hence G(t) is positive throughout the interval [/x, x?] if x =x,. The
derivative G'(t) in this interval is given by

Gl(t):et(0+‘rr/2x)(0 _+_lr_>g(t)
2x

where

* 1 * 2
g(t)=log%————zlogr 2x

T
+.__‘
t<6 2x)

Since this lower bound for g(¢) in [\/x, x?] tends to infinity as x — o, there
exists a constant x,=x; such that for x = x, g(t)—and therefore also G'(t)—is
positive in this interval. Thus, if x =x,, the function 1/G(t) is positive and
decreasing in [/x, x*] and we may apply the second mean value theorem to the
real and imaginary part of I,, which yields

4x 4
asx— Jogr’

x%e m

L] = 4x -
= =
G
=) eXp(L)(log(r*/\/x) -1
2%
Therefore there exists a constant x;3=x, such that |L,|=5/logr for x=x;.
Inserting this inequality and (23) in (22) we obtain the estimate

og x 5

!
h—x(z)[ ST(\/X +10g r+2—x e_”"/2+2AR>
m

which holds uniformly for x = x5 and z € D(r, R). This implies (21) for the case
(c) which completes the proof to our theorem.
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