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The mean flow in a turbulent boundary layer (TBL) deviates from the canonical law
of the wall (LoW) when influenced by a pressure gradient. Consequently, LoW-based
near-wall treatments are inadequate for such flows. Chen et al. (J. Fluid Mech., vol. 970,
2023, A3) derived a Navier–Stokes-based velocity transformation that accurately describes
the mean flow in TBLs with arbitrary pressure gradients. However, this transformation
requires information on total shear stress, which is not always readily available, limiting
its predictive power. In this work, we invert the transformation and develop a predictive
near-wall model. Our model includes an additional transport equation that tracks the
Lagrangian integration of the total shear stress. Particularly noteworthy is that the model
introduces no new parameters and requires no calibration. We validate the developed
model against experimental and computational data in the literature, and the results
are favourable. Furthermore, we compare our model with equilibrium models. These
equilibrium models inevitably fail when there are strong pressure gradients, but they prove
to be sufficient for boundary layers subjected to weak, moderate and even moderately high
pressure gradients. These results compel us to conclude that history effects in mean flow,
which negatively impact the validity of equilibrium models, can largely be accounted for
by the material time derivative term and the pressure gradient term, both of which require
no additional modelling.

Key words: turbulence modelling, turbulent boundary layers

1. Introduction

Turbulent boundary layers (TBLs), such as those found on the surfaces of aircraft,
underwater vehicles, turbines and propeller blades, are ubiquitous in engineering systems.
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A TBL comprises an inner layer and an outer layer. The inner layer is responsible for
most of the growth of the velocity from the wall value to the free stream value. As a result,
inner layer modelling has garnered considerable attention, as evidenced by numerous prior
studies (Piomelli & Balaras 2002; Kalitzin et al. 2005; Smits, McKeon & Marusic 2011;
Bose & Park 2018; Marusic & Monty 2019). Current models of the inner layer, including
the wall treatments in Reynolds-averaged Navier–Stokes (RANS) models and large-eddy
simulation (LES) wall models, are based on the following law of the wall (LoW) (Prandtl
1925; Marusic et al. 2013):

U+ = y+ for y+ < 5,

U+ = 1
κ

ln( y+) + B, for y+ � 30,

⎫⎬
⎭ (1.1)

where U is the mean streamwise velocity; the superscript + denotes normalization by the
wall units, uτ ≡ √

τw/ρ and δν ≡ ν/uτ ; τw is the wall-shear stress; ρ is the fluid density;
ν is the kinematic viscosity; κ ≈ 0.4 is the von Kármán constant; and B ≈ 5 is a constant.
The coordinate system is such that x is the streamwise direction, y is the wall-normal
direction and z is the transverse direction.

Take the algebraic equilibrium wall model (EWM) as an example. The model relies on
the LoW in (1.1) to compute the wall-shear stress as a function of the velocity at a distance
from the wall (Bou-Zeid, Meneveau & Parlange 2005; Yang, Park & Moin 2017):

τw/ρ =
[

κU‖
ln(hwm/yo)

]2

. (1.2)

Here, U‖ is the wall-parallel velocity at a distance hwm from the wall, and yo is a
viscous/roughness length scale. Another example is the Spalart–Allmaras (SA) model
(Spalart & Allmaras 1992), which is calibrated such that it is consistent with the following
eddy viscosity scaling:

νt = κyuτ D, (1.3)

where D is a damping function. While inner-layer models like the ones highlighted above
are extensively used in computational fluid dynamics, the LoW itself is, in principle, valid
under equilibrium conditions only. As a result, LoW-based models are, strictly speaking,
valid under equilibrium conditions only.

Previous studies have noted the limitations of the LoW and the models derived from it.
Studies such as those by Chen et al. (2023), among others (Bobke et al. 2017; Parthasarathy
& Saxton-Fox 2023), highlighted history effects, demonstrating that the velocity profiles
in a pressure-gradient (PG) TBL depend not only on the state of the local flow but also
on the history of the pressure gradient. For instance, imposing a favourable pressure
gradient causes the flow to accelerate. In this process, the turbulent production and the
wall-shear stress increase. However, it takes time before their values become those found
in a statistically steady flow. As another example, Rota et al. (2023) and Scarselli et al.
(2023) reported that under a special pulsatile driving force, turbulence will diminish even
when the Reynolds number is above the transition value.

The presence of such history effects limits the log law’s effectiveness in approximating
the mean flow in the presence of pressure gradient forces. Recent work by Hansen,
Yang & Abkar (2023) and Lozano-Durán et al. (2020) reported poor performance of the
LoW-based EWM in a three-dimensional boundary layer. Recognizing these deficiencies,
efforts have been made to enhance the LoW and its associated models (Kays, Crawford &
Weigand 2004; Knopp 2014; Knopp et al. 2015; Park & Moin 2014; Yang et al. 2015;
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Predictive modelling for pressure-gradient TBLs

Huang, Yang & Kunz 2019; Yang et al. 2020; Huang & Yang 2021; Fowler, Zaki &
Meneveau 2022; Hansen et al. 2023; Subrahmanyam et al. 2023). Here, we review some
of these studies. Kays et al. (2004) compiled existing data and proposed the following
empirical damping function:

Dk = 1 − exp
(−y+/A+

k
)
, A+

k = 25.0
cP+ + 1

, (1.4)

where P+ denotes the local pressure gradient (normalized with the wall shear stress τw and
the wall length δν), and c is an adjustable constant. Calibration against the experimental
data in Kays & Moffat (1975) yielded c = 30.175 for favourable pressure gradients and
c = 20.59 for adverse pressure gradients. Aside from the discontinuity in c, which is
unphysical, one criticism of the model is the implied immediate response of turbulence
to the pressure gradient. To account for the delayed response of turbulence to the pressure
gradient, Kays et al. (2004) further modified the damping constant as follows:

dA+
k,d

dt+
= A+

k − A+
k,d

C
, (1.5)

where C = 4000 is a model parameter. A similar approach was explored by Griffin, Fu
& Moin (2021), who varied the damping ‘constant’ A as a function of the shape factor.
Additionally, Yang et al. (2015) and Lv et al. (2021) augmented the LoW as follows:

U+ = 1
κ

ln( y+) + B + ay/δ, (1.6)

and exploited this augmented scaling for near-wall modelling. Here, a is a constant, and
δ is an outer length scale. The validity of the linear term was recently examined in
Monkewitz & Nagib (2023), and the data were favourable. The approach in Yang et al.
(2015) was further extended by Hansen et al. (2023). There, the authors invoked modes
from POD analysis to augment the logarithmic LoW. Modifications of the LoWs can also
be found in Knopp et al. (2015), Knopp (2022), Wei et al. (2023) and Wei & Knopp
(2023), although the efficacy of these modifications in the context of near-wall turbulence
modelling are yet to be consolidated. Along the same line, Fowler et al. (2022) proposed
Lagrangian relaxation towards equilibrium. The model has a component that accounts for
the laminar Stokes layer response in the viscous sublayer to fast-varying pressure gradients.
In summary, while the existing models have achieved many successes, the absence of a
robust velocity scaling for PG TBLs necessitates the reliance on empiricism, sometimes at
the price of many model parameters.

Having fewer parameters is almost always desirable. The objective of this work is to
develop a near-wall model without relying on heuristics and empiricism. This requires a
velocity scaling valid for flows with arbitrary pressure gradient forces. Such a velocity
scaling was recently developed by Chen et al. (2023),

y∗ =
∫ y

0

F( y∗)
F′( y∗)

[
1

τ+
∂τ+

∂y
− 1

1 + g
∂g
∂y

+ F′( y+
0 )

F( y+
0 )

dy+
0

dy

]
dy,

U∗ =
∫ U

0

ν

τxy

F( y∗)
F′( y∗)

[
1

τ+
∂τ+

∂y
− 1

1 + g
∂g
∂y

+ F′( y+
0 )

F( y+
0 )

dy+
0

dy

]
dU,

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

(1.7)

where the transformed velocity U∗ follows the established LoW as a function of y∗.
Here, τ+ = τxy/τxy,w, F(φ) = 1 + κφ(1 − exp(−φ/A))2 describe the behaviour of the
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Wall

x0

Equilibrium BL,
LoW applies

x
Non-equilibrium BL,
LoW does not apply

Free stream

Boundary layer

Figure 1. Schematic of the flow problem. The initial equilibrium boundary layer (BL) is subjected to some
arbitrary pressure gradients.

total shear stress in the inner layer of an equilibrium boundary layer; F′ is the derivative
of F, and g is the Lagrangian integration of the total shear stress

g = νF( y+
0 )

u2
τ,0

∫ t

0

∂2τxy

∂y2 Dt. (1.8)

This g accounts for the history effect. In the absence of any pressure gradient force, the
transformation degenerates to the LoW and y∗ = y+, U∗ = U+. In the presence of a
pressure gradient, the transformation provides a description of the mean flow in boundary
layers.

With the knowledge of the mean flow scaling, developing a wall model involves
inverting the mean flow scaling. This is often straightforward. For example, inverting
the LoW in (1.1) leads to the algebraic EWM in (1.2). Yang & Lv (2018), among others
(Chen et al. 2022; Griffin, Fu & Moin 2023; Hendrickson et al. 2023), have inverted
velocity and temperature transformations for wall modelling of high-Mach-number
boundary-layer flows. However, inverting the velocity transformation in Chen et al. (2023)
is highly non-trivial. Unlike the existing velocity transformations that rely solely on
local information, the velocity transformation in (1.7) requires the integration of the total
shear stress, which is non-local and not readily available. Due to the involvement of this
non-local information, the transformation in (1.7) was presented as a descriptive tool in
Chen et al. (2023). A primary objective of this work is to overcome this difficulty and
exploit the velocity transformation in (1.7) for predictive modelling. More specifically, we
will introduce a new transport equation, through which a new wall-normal coordinate is
defined. The use of this wall-normal coordinate in the eddy viscosity formulation gives
rise to a new closure for the Reynolds shear stress.

The rest of the paper is organized as follows. We present the flow problem, the governing
equation and the modelling objectives in § 2. In § 3, we present the details of our model,
along with a summary of four existing inner-layer models. In §§ 4 and 5, we provide
specifics about the validation data and the computational set-up. The results are presented
in § 6 with further discussion in § 7. Lastly, we conclude in § 8.

2. Flow problem, governing equation and modelling task

Consider the flow depicted in figure 1. We assume that the mean flow is two-dimensional
and remains attached to the wall, i.e. before incipient separation. There is a non-negligible
pressure gradient, but the flow is initially a fully developed TBL.
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Predictive modelling for pressure-gradient TBLs

The evolution of the mean flow is governed by the following ensemble-averaged
continuity and x-momentum equations:

∂U
∂x

+ ∂V
∂y

= 0, (2.1)

∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= − 1
ρ

∂P
∂x

+ ∂τxx

∂x
+ ∂τxy

∂y
, (2.2)

where

τxx = 2ν
∂U
∂x

− 〈
u′u′〉 , τxy = ν

(
∂U
∂y

+ ∂V
∂x

)
− 〈

u′v′〉 . (2.3a,b)

Here, U, V and W are the mean velocity in the three Cartesian directions, u′, v′ and w′ are
the velocity fluctuations, τ is the stress and 〈·〉 denotes ensemble averaging. Note that the
ensemble average allows us to keep the unsteady term without invoking any assumption
about the time scales involved in the flow.

Equations in (2.1), (2.2) and (2.3a,b) can be simplified by invoking the thin boundary
layer approximation:

∂V
∂x


 ∂U
∂y

,
∂τxx

∂x

 ∂τxy

∂y
. (2.4a,b)

It follows that
∂U
∂t

+ U
∂U
∂x

+ V
∂U
∂y

= − 1
ρ

∂P
∂x

+ ∂τxy

∂y
, (2.5)

τxy = ν
∂U
∂y

− 〈
u′v′〉 (2.6)

and
∂P
∂y

= 0. (2.7)

The Reynolds shear stress − 〈
u′v′〉 is the only unclosed term in (2.1), (2.5), (2.6) and

(2.7). We invoke the eddy viscosity νt and rewrite the Reynolds shear stress term as
follows:

− 〈
u′v′〉 = νt

∂U
∂y

. (2.8)

The modelling objective is to find the eddy viscosity νt.

3. Near-wall models

In addition to a near-wall model based on the velocity transformation in (1.7), which we
will elaborate in § 3.2, we will also examine four models in the existing literature: the
baseline SA model (Spalart & Allmaras 1992); the Wilcox k–ω model (Wilcox 1991); the
EWM; and the EWM with Kays’ empirical correction (Kays et al. 2004). The comparative
study will provide insights into the physics that is missing in the existing models and
identify scenarios where the missing physics makes a significant difference.

The SA model and the Wilcox k–ω model involve solving one and two additional
transport equations, respectively, alongside the RANS equations to determine the
eddy viscosity. These two models are extensively used in fluids engineering practice.
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Detailed documentation can be found on the Turbulence Modeling Resource website
(https://turbmodels.larc.nasa.gov/) and is not repeated here for brevity. The EWM and
Kays’ model are mixing-length-type models. We provide a succinct overview of these
two models in § 3.1.

3.1. Mixing-length-type models
The mixing-length model has roots tracing back to Prandtl (1925). It formulates the eddy
viscosity as

νt = l2
∂U
∂y

, (3.1)

where l is the mixing length. The mixing length is given by

l = min[lIL, lOL], (3.2)

where lIL is the inner-layer mixing length and lOL is the outer-layer mixing length. The
discussion here focuses on the inner layer lIL. For the outer layer, we adopt the value lOL =
0.085δ as from Kays et al. (2004), where δ is the outer length scale, i.e. the half-channel
height or the boundary layer thickness.

Several models have been proposed for lIL. The EWM models the lIL as

lIL = κyD, (3.3)

where D is a damping function, and a common choice is (Van Driest 1956)

Dv = 1 − exp(−y+/A+
VD), (3.4)

where A+
VD = 26. Kays et al. (2004) retained (3.3), but employed a PG-dependent damping

coefficient in (1.4). Note that (1.4) is calibrated for boundary layer flow configuration but
is also applicable to channel flow thanks to the universality of the inner layer. Equations
(3.1), (3.2), (3.3) and (3.4) constitute the EWM and (3.1), (3.2), (3.3) and (1.4) constitute
Kays’ model.

3.2. Present model
We invert the velocity transformation in (1.7) for wall modelling. To do that, we need
knowledge of the Lagrangian integration of the total shear stress. To that end, we define

φ ≡
∫ t

0

∂2τxy

∂y2 Dt. (3.5)

Taking the material derivative of the two sides of (3.5), we have

Dφ

Dt
= ∂2τxy

∂y2 , (3.6)

where the D/Dt is the material derivative, τxy is the total stress and is given by τxy =
(ν + νt)∂U/∂y according to (2.8). This yields a transport equation governing φ:

Dφ

Dt
= ∂2

∂y2

[
(ν + νt)

∂U
∂y

]
. (3.7)

Equation (3.7) yields the Lagrangian integration of the total shear stress. When combined
with (1.7), the two equations yield a value for y∗. The eddy viscosity ν+

t is a universal
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Predictive modelling for pressure-gradient TBLs

function of y∗ regardless of whether the boundary layer is subjected to a pressure gradient
or not (Chen et al. 2023). Therefore, (3.1), (3.2), (3.3) and (3.4) remain valid, with the only
modification being the replacement of y+ in (3.4) with y∗:

Ds = 1 − exp(−y∗/A+
VD), (3.8)

where A+
VD = 26 and does not change. To summarize, the knowledge of y∗ leads to a model

for νt and a closure of the Reynolds shear stress, thereby completing the model.
Compared with Kay’s augmentation, which is empirical and involves adjustable

parameters, the present model involves no additional adjustable parameters (other than
those already in the EWM). Besides, the simplicity of this derivation is worth noting.

4. Data

We will rely on the experimental data in Marusic & Perry (1995) and Volino (2020) and
the computational data in Bobke et al. (2017), Pozuelo et al. (2022) and Chen et al. (2023)
for validation. The data in Marusic & Perry (1995), Bobke et al. (2017), Pozuelo et al.
(2022) and Volino (2020) are boundary-layer data, and the data in Chen et al. (2023) are
channel-flow data. Figure 2 shows schematics of the flows in these references. Table 1
provides further details, where we list the range of Reτ = ρ1/2τ

1/2
w δ/μ, Reθ = ρUcθ/μ,

Π = (δ/τw) dP/dx, p+ = μ/(ρ1/2τ
3/2
w ) dP/dx and β = δ∗/τw dP/dx. Here, Uc is the free

stream velocity or the velocity at the channel centreline, μ is the viscosity, θ is the
momentum thickness and δ∗ is the displacement thickness. Here p+, Π and β all measure
the pressure gradient. Here, we prefer p+ because the inner layer of channel and boundary
layer flows are not fundamentally different. The nomenclature of the cases adheres to that
used in the original papers with the initials of the leading author placed at the front (see
table 1, first two columns). The two MI cases primarily differ in their Reynolds numbers.
The five BA cases differ mainly in the pressure gradients and the history of the pressure
gradients. The PR case has a similar set-up as BA-m16 with a larger domain and a larger
Reθ . The eight VR cases exhibit differences primarily in their pressure gradients with
case1 experiencing the strongest pressure gradient among the eight cases and case8 the
weakest. Lastly, the five CP cases differ in Reynolds numbers and pressure gradients.
The MI, BA, PR and VR cases and the cases CP-R5A1, CP-R5A10 and CP-R10A10 are
subjected to weak to moderate pressure gradients, where a log layer is still discernible. The
cases CP-R5A100 and CP-R10A100 are subjected to strong pressure gradients that break
the log law. The flows in all but Pozuelo et al. (2022) are rather typical. The boundary layer
flow in Pozuelo et al. (2022) features an overshoot of the mean velocity near the edge of
the boundary layer, and the velocity at δ is larger than that in the free stream. The non-zero
∂U/∂y is arguably physical and is due to the irrotational free stream ∂U/∂y − ∂V/∂x = 0
and a non-zero ∂V/∂x in a PG TBL (Griffin et al. 2021). Nonetheless, this effect is only
noticeable when the streamwise development length is long and the vertical domain size
is large, which is why most of the existing studies, including those referenced here, report
a single U∞ rather than the profile of the velocity in the free stream.

5. Details of the computational set-up

5.1. Boundary-layer cases
We solve the mean flow equations (2.1), (2.5), (2.6) and (2.7) on a two-dimensional
grid. Spatial discretization is based on a second-order central finite difference scheme.
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x

x

U∞

U∞

δ

δ

x

y

z

t = 0t > 0

t > 0: APG

(a) (b)

(c)

Figure 2. Schematics of the flows in (a) Marusic & Perry (1995), Bobke et al. (2017) and Pozuelo et al.
(2022), (b) Volino (2020) and (c) Chen et al. (2023). Here, APG stands for adverse pressure gradient.

Ref. Case name Reτ Reθ Π β p+ × 103

Marusic & Perry (1995) MI-A10 [1028, 1253] [2206, 7257] [0.0, 27.4] [0.0, 7.16] [0.0, 21.9]
MI-A30 [2257, 3515] [6430, 19133] [0.0, 26.6] [0.0, 6.07] [0.0, 7.55]

Bobke et al. (2017) BA-b1 [190, 862] [910, 3360] ≈ 4.11 ≈ 1 [5.1, 14.3]
BA-b2 [189, 910] [940, 4000] ≈ 7.55 ≈ 2 [10.6, 20.8]

BA-m13 [190, 896] [990, 3515] [3.80, 5.51] [0.86, 1.49] [5.0, 21.3]
BA-m16 [189, 934] [1010, 4000] [5.82, 8.67] [1.55, 2.55] [10.9, 27.7]
BA-m18 [192, 973] [990, 4320] [7.29, 12.5] [2.15, 4.07] [16.0, 33.6]

Volino (2020) VR-case1 [304, 651] [721, 3291] [−7.39, 22.2] [−0.91, 5.97] [−17.7, 34.8]
VR-case2 [592, 1132] [1583, 6255] [−8.35, 25.5] [−1.15, 6.60] [−11.6, 22.3]
VR-case3 [347, 651] [877, 2215] [−4.41, 5.55] [−0.57, 1.09] [−9.2, 8.4]
VR-case4 [570, 1072] [1578, 3846] [−4.66, 5.35] [−0.58, 1.02] [−6.2, 4.9]
VR-case5 [955, 1875] [2947, 7142] [−4.48, 6.02] [−0.65, 1.11] [−3.9, 3.2]
VR-case6 [260, 686] [673, 2122] [−2.15, 2.53] [−0.24, 0.46] [−4.8, 3.6]
VR-case7 [574, 1170] [1541, 3891] [−2.53, 2.71] [−0.28, 0.48] [−3.2, 2.3]
VR-case8 [931, 1901] [2765, 6386] [−2.45, 2.51] [−0.30, 0.42] [−1.9, 1.3]

Pozuelo et al. (2022) PR-b1.4 [800, 1900] [3700, 8700] [5.39, 6.49] [1.20, 1.65] [2.8, 8.1]
Chen et al. (2023) CP-R5A1 [544, 0] [1008, 143] [1, ∞] [0.13, ∞] [1.84, ∞]

CP-R5A10 [544, 0] [1008, 537] [10, ∞] [1.31, ∞] [18.4, ∞]
CP-R5A100 [544, 0] [1008, 957] [100, ∞] [19.9, ∞] [184, ∞]
CP-R10A10 [1000, 0] [1927, 1085] [10, ∞] [1.15, ∞] [10.0, ∞]

CP-R10A100 [1000, 0] [1927, 1777] [100, ∞] [11.5, ∞] [100, ∞]

Table 1. Details of the data in Marusic & Perry (1995), Bobke et al. (2017), Pozuelo et al. (2022), Volino
(2020) and Chen et al. (2023).
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Figure 3. Schematic of the computational domain.

Pseudo-time-stepping uses the forward Euler scheme. The grids are uniformly spaced
in the streamwise direction and stretched in the wall-normal direction. The first off-wall
grid is such that y+

w < 1, and the grid spacing in the outer layer is such that x+ <

104 and y+ < 22. The adequacy of the grid is validated through a grid convergence
study (not shown). Figure 3 is a schematic of the computational domain. The boundary
conditions are as follows. Profiles of a fully developed boundary layer are obtained from
separate zero-pressure-gradient TBL calculations and placed at the left-hand boundary.
The right-hand boundary is a non-reflective outlet. The top boundary is a zero-vorticity
one. Lastly, the bottom boundary is a no-slip, no-penetration wall. The domain size is as
follows. The streamwise size of the domain matches that in the original references. The
vertical size is adjusted such that Ly/δ matches that in the original paper at the left-hand
boundary.

Pressure gradient information is also needed. This information is directly available in
Bobke et al. (2017) and Pozuelo et al. (2022) but not in Marusic & Perry (1995) and Volino
(2020). Therefore, we must infer the pressure gradient from the measurements reported in
Marusic & Perry (1995) and Volino (2020). In Marusic & Perry (1995), the free stream
velocity was reported. Following Volino (2020) and applying Bernoulli’s equation in the
free stream gives

dP
dx

= −U∞
dU∞

dx
, (5.1)

which allows us to obtain the pressure gradient information. Equation (5.1) incurs
uncertainty when the vertical domain size is large (Pozuelo et al. 2022) but is sufficient
for the cases in Marusic & Perry (1995). As a validation of (5.1), figure 4 compares the
free stream velocity U∞(x) in our calculations with the values reported in the paper, and
there is a good agreement. Volino (2020) reported the parameter

K = ν

U2∞

dU∞
dx

, (5.2)

from which we can compute the pressure gradient. Figure 5 compares the resulting free
stream velocity U∞(x) in our calculation with the ones reported in Volino (2020) for the
VR-case1 – there is also a good agreement. The results in the other VR cases are similar
and are not reported here for brevity.

5.2. Channel flow case
The set-up of the channel flow cases is similar to that of the boundary layer cases except
that the flow is one-dimensional in space and evolves in time. The initial condition
corresponds to a fully developed channel and is obtained from a separate plane channel
calculation. The pressure gradient information is readily available in Chen et al. (2023).
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Figure 4. The free stream velocity in (a) MI-A10 and (b) MI-A30. The symbols are experimental data
reported in Marusic & Perry (1995), and the lines are results from the present calculations.
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Figure 5. The free stream velocity in VR-case1. The symbols are experimental data reported in Volino (2020)
and the line is from our calculation.

6. Results

We compare the model results with the data from the literature, focusing primarily on the
evolution of skin friction.

6.1. Boundary layer
Figure 6 displays the wall-shear stress results for the MI cases, and figure 7 presents
the results for the BA cases. Both the two RANS models significantly over-predict the
wall-shear stress with the SA model providing slightly more accurate results than the
Wilcox k–ω model for the MI cases and the Wilcox k–ω model providing slightly more
accurate results than the SA model for the BA cases. For both the two MI cases, the EWM,
Kays’ model and the present velocity-transformation-based model yield nearly identical
results. For BA cases, Kays’ model emerges as the most accurate, with the present model
and the EWM slightly under-predicting the wall-shear stress. Given the less-than-ideal
performance of the two RANS models, subsequent discussions will primarily focus on the
two mixing length models and the present velocity-transformation-based model.

Figure 8 presents the wall-shear stress for VR cases. For VR-case4 to case8, where the
pressure gradients are weak, all models yield essentially identical results. For case1 to
case3, Kays’ model closely follows the reference data. The EWM and the present model
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Figure 6. Wall-shear stress in (a) MI-A10 and (b) MI-A30. Here, normalization is relative to inlet values at
x = 0. The reference experimental data are from Marusic & Perry (1995).
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Figure 7. Wall-shear stress in (a) BA-b1, (b) BA-b2, (c) BA-m13, (d) BA-m16 and (e) BA-m18. The reference
LES data are from Bobke et al. (2017).

slightly over-predict the wall-shear stress in the favourable pressure gradient regions and
slightly under-predict the wall-shear stress in the adverse pressure gradient regions.

The results for the PR case are shown in figure 9(a). The results are similar to the
other boundary-layer cases, and all models perform well. Recall that the pressure gradient
information is directly available from the reference, but if this information was not
available, one would need to infer that from the free stream velocity, which varies as a
function of the distance from the wall above the edge of the boundary layer. Here, we study
how the choice of U∞ affects the results. Figure 9(b) depicts the pressure gradient when
we set U∞ to the edge velocity Ue or the velocity at the top of the computational domain
Utop. (Here, the edge velocity Ue is computed from the diagnostic plot method (Vinuesa
et al. 2016).) The resulting wall-shear stresses are shown in figure 9(a), and we see the
choice of U∞ has a significant impact on the wall-shear stress results. Specifically, taking
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Figure 8. The wall shear stress from (a) VR-case1, (b) VR-case2, (c) VR-case3, (d) VR-case4, (e) VR-case5,
( f ) VR-case6, (g) VR-case7 and (h) VR-case8. Experiment data are from Volino (2020).

U∞ = Utop leads to under-predictions of the wall-shear stress, whereas taking U∞ = Ue
leads to accurate predictions.

We summarize the results in this subsection. While the two RANS models prove to be
inaccurate, the two mixing length models and the present velocity-transformation-based
model provide accurate wall-shear stress estimates for the boundary layer cases in Marusic
& Perry (1995), Bobke et al. (2017), Volino (2020) and Pozuelo et al. (2022), where the
flows are subjected to weak to moderate pressure gradients.

6.2. Channel
Figure 10 shows the wall-shear stress for the CP cases. When there is a weak pressure
gradient, i.e. case R5A1 and figure 10(a), the two mixing length models and the present
velocity-transformation-based model all give accurate estimates of the wall-shear stress.
For moderate pressure gradients, i.e. cases R5A10 and R10A10 illustrated in figure 10(b,d),
Kays’ model slightly overestimates the wall-shear stress, while the EWM and the present
velocity-transformation-based model slightly underestimates with the present model being

993 A1-12

ht
tp

s:
//

do
i.o

rg
/1

0.
10

17
/jf

m
.2

02
4.

56
5 

Pu
bl

is
he

d 
on

lin
e 

by
 C

am
br

id
ge

 U
ni

ve
rs

ity
 P

re
ss

https://doi.org/10.1017/jfm.2024.565


Predictive modelling for pressure-gradient TBLs

1.0 10–2

10–4

10–6

0.5

0 1 2 0 1 2

LES

Kays

EWM

Present

x+
0

(×105) x+
0

(×105)

τ w
/τ

w
,0

Px

Px,r
Px,t
Px,e

(a) (b)

Figure 9. (a) The wall shear stress results in case PR-b1.4. The dashed lines result from taking U∞ = Utop,
the dash-dotted lines result from taking U∞ = Ue and the solid lines result from directly taking the pressure
gradient information from Pozuelo et al. (2022). Note that the solid lines and the dash-dotted lines collapse.
(b) The pressure gradient calculated from (5.1). Here Px,r is the pressure gradient reported in Pozuelo et al.
(2022); Px,t is the pressure gradient force when we take U∞ = Utop; and Px,e is the pressure gradient force
when we take U∞ = Ue. Note that the Px,e and Px,r lines collapse.
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Figure 10. The wall shear stress from (a) CP-R5A1, (b) CP-R5A10, (c) CP-R5A100, (d) CP-R10A10 and
(e) CP-R10A100. The direct numerical simulation (DNS) data are from Chen et al. (2023).

slightly more accurate than the EWM. We also see that Kays’ model predicts an overshoot
of the wall-shear stress near t = 0. This unphysical behaviour is due to the assumed
immediate response of turbulence to the imposed pressure gradient. Nonetheless, in cases
R5A10 and R10A10, this is but a minor issue. Lastly, figure 10(c,e) show the results for
cases R5A100 and R10A100, which involve strong pressure gradients. In these instances,
Kays’ model demonstrates an immediate response to the imposed pressure gradient,
resulting in a gross overshoot in the predicted wall-shear stress. On the other hand, the
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Case DNS Kays EWM Present

R5A1 6753 6822 (1.0 %) 6286 (−6.9 %) 6475 (−4.1 %)
R5A10 677 744 (9.9 %) 576 (−15 %) 633 (−6.5 %)
R5A100 22.6 44.6 (97 %) 19.2 (−15 %) 22.2 (−2.0 %)
R10A10 1465 1530 (4.4 %) 1252 (−15 %) 1355 (−7.5 %)
R10A100 70.0 96.2 (37 %) 51.4 (−27 %) 60.8 (−13 %)

Table 2. The time of incipient separation in δν,0/uτ,0. The errors in the models are also listed.

EWM and the present model underestimate the wall-shear stress with the present model
being more accurate.

In many engineering applications, one would be interested in incipient separation.
Table 2 lists the time it takes to reach incipient separation. These values offer an additional
metric for assessing the models’ accuracy. Upon close examination, it is evident that Kays’
model tends to overestimate the time required for incipient separation, particularly in the
presence of strong pressure gradients. In contrast, the EWM consistently underestimates
the time it takes for incipient separation. The present velocity-transformation-based model
also underestimates this time, but the error it incurs is notably smaller than the EWM.

In summary, Kays’ model demonstrates high accuracy under moderate pressure
gradients, i.e. within calibration conditions, but incurs significant error in the presence of
strong pressure gradients, i.e. outside calibration conditions. The EWM offers satisfactory
performance, especially considering its simplicity. The present model, on the other hand,
proves to be highly robust, consistently delivering accurate results regardless of the
imposed pressure gradient force.

7. Further discussion

7.1. On the flow quantities
Our discussion focuses on the wall-shear stress. This is because wall-shear stress is more
relevant to near-wall turbulence modelling than outer-layer quantities (Hansen et al. 2023).
To make this clear, we examine a few outer-layer quantities. Figure 11(a,b) depict the
velocity profiles in outer scales for case CP-R5A100 at times t+0 = 3 and 14. This case
is where the EWM, Kays’ model and the present velocity-transformation-based model
exhibit the most difference. However, we observe minimal disparity in the velocity profiles
in figure 11(a,b). Figure 11(c,d) illustrates the momentum thickness in VR-case1 and
VR-case8. Once again, we find no discernible distinction between the three models. These
results suggest that outer quantities do not provide good measures for the wall models.

7.2. Further discussions on Kays’ model
The results in § 6 favour Kays’ model for weak to moderately high pressure gradients, e.g.
in the BA cases. We attribute the good results to the calibration in Kays et al. (2004) rather
than the superiority of the model’s formulation. To clarify, we invoke a slightly different
calibration of the outer layer, i.e. the calibration in Clauser (1956) and Pirozzoli (2014),

νt = νto = Cμuτ δ, if y > η∗δ, (7.1)

where Cμ = 0.0902, δ = 1.6δ95 is an outer length scale, δ95 measures the height where the
mean velocity is 95 % of the edge velocity Ue and η∗ = 0.155. Figure 12 shows the results,
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Figure 11. Velocity profiles in outer scale in case CP-R5A100 at time (a) t+0 = 3 and (b) t+0 = 14.
Momentum thickness in (c) VR-case1 and (d) VR-case8.
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Figure 12. Wall shear stress in (a) BA-b2, (b) BA-m13 and (c) BA-m16. Here, the eddy viscosity in the outer
layer is modelled according to (7.1).

where we apply the outer-layer calibration in (7.1) together with the three inner-layer
models. The differences between Kays’ model, EWM, and the present model remain small,
but this calibration favours our model instead.

Besides, the results in § 6.2 show that Kays’ model does not perform well when there is
a high pressure gradient. This issue is due to the immediate response of the modelled eddy
viscosity to the imposed pressure gradient. Kays et al. (2004) acknowledged the issue,
and proposed a correction in (1.5) that delays the model’s response. Figure 13 compares
the delayed Kays’ model with EWM and the present model for cases R5A1, R5A10 and
R5A100. The delayed Kays’ model is slightly less accurate than the baseline Kays’ model
in R5A1, where the flow is subjected to a weak pressure gradient force. On the other hand,
in R5A10 and R5A100, where there is a moderately high and high pressure gradient force,
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Figure 13. Wall shear stress in (a) R5A1, (b) R5A10 and (c) R5A100. Here, delay-Kays refers to Kays’ model
with the correction in (1.5).
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Figure 14. Wall shear stress computed from an off-wall location according to the LoW: (a) R5A1;
(b) R5A100. Here hwm measures the distance from the off-wall location to the wall.

the delayed Kays’ model is more accurate than its baseline counterpart but still not more
accurate than the EWM. The results in other cases, i.e. R10A10 and R10A100, are similar
and are not shown here for brevity. Considering that EWM is simpler and contains fewer
parameters, one might prefer the EWM in engineering practice.

7.3. Accounting for history effects
Examining the results in § 6, an interesting observation is that the EWM provides
reasonably good wall-shear stress predictions even for moderately high and high pressure
gradient TBLs. This may appear counterintuitive since the LoW is a poor approximation
of the mean flow in a PG TBL. Indeed, computing the wall-shear stress directly from
an off-wall velocity according to the LoW incurs significant errors as we can see from
figure 14. There, the wall-shear stress is computed as follows:

τw/ρ =
[

UDNS,wm

LoW(h+
wm)

]2

, (7.2)

where UDNS,wm is the DNS velocity at the distance hwm from the wall, and the LoW
contains both the viscous layer and the logarithmic layer with (7.2) degenerating to (1.2)
in the log layer. An interesting question is why the algebraic model in (7.2) performs so
poorly yet the EWM, which is also rooted in the LoW, performs reasonably well.
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In order to answer this question, we must examine the equations. The algebraic model
in (7.2) is a direct consequence of the constant stress layer, namely

−∂
〈
u′v′〉
∂y

+ ν
∂2U
∂y2 = 0. (7.3)

In other words, (7.2) is a solution to (7.3). The EWM in this paper, on the other hand,
corresponds to (2.5). Comparing (7.3) and (2.5), the two equations differ in that (2.5)
contains the pressure gradient term dP/dx and the material time derivative term dU/dt.
This comparison compels us to conclude that much of the new physics in unsteady
wall-bounded turbulence with strong pressure gradients is captured by the material time
derivative of mean streamwise momentum and the pressure gradient term, neither of
which requires any modelling. Furthermore, by comparing the results of the present
velocity-transformation-based model that properly accounts for history effects in PG TBLs
and the EWM which neglects history effects in its turbulence closure, we conclude that
history effects are important to turbulence modelling only at extreme pressure gradient
conditions. Lastly, by comparing Kays’ model and the EWM, we may also conclude
that empirical corrections that aim to account for history effects might adversely affect
a model’s robustness, yielding grossly inaccurate results at extreme pressure gradient
conditions.

8. Conclusions

This work develops an inner-layer model for boundary-layer flows subjected to arbitrary
pressure gradients. The model is based on the velocity transformation in Chen et al. (2023).
It entails an additional transport equation that tracks the Lagrangian integration of the total
shear stress, a piece of information needed for the velocity transformation. The resulting
model is fully predictive yet introduces no new model parameters other than the ones in the
EWM. We compare our model with the EWM, Kays’ model, and two RANS models, SA
and Wilcox k–ω, for a wide range of flows in the literature. For the flows considered in this
study, the two RANS models prove to be quite inaccurate. The EWM, Kays’ model and
the present velocity-transformation-based model yield very similar results when there are
weak, moderate and moderately high pressure gradients, with Kays’ model being slightly
more accurate than the present model and the present model being slightly more accurate
than the EWM. However, when there is a strong pressure gradient, Kays’ model becomes
grossly inaccurate, whereas the present model remains accurate.

In addition to validating a new near-wall model, the comparative study here provides
new insights into the boundary-layer flow physics. First, comparing the algebraic wall
model in (7.2) and the EWM, we conclude that much of the new physics in PG TBLs
is contained in the material time derivative term and the pressure gradient term, both of
which require no modelling. Second, comparing the EWM and the present model, we
conclude that history effects do not significantly impact the validity of the mixing length
model except when there is an extremely high pressure gradient. Third, comparing the
EWM and Kays’ models, we conclude that empirical corrections that account for history
effects might compromise an otherwise robust model, yielding unphysical results outside
the calibration conditions.

We stress that the current conclusions are derived from the test cases of PG TBLs
discussed above. While a wide range of PG TBLs are considered, many other types of
PG TBLs are left out, e.g. TBLs recovering from a strong adverse pressure gradient
followed by a favourable pressure gradient, where the mean flow recovery is slowed down
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by the even slower turbulence recovery. In these flows, the turbulent stress would play a
significant role, and it is not clear if the EWM would still perform well. This calls for
additional validation and verification, which we leave for future investigation.
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