ON SUMS INVOLVING THE EULER TOTIENT FUNCTION

ISAO KIUCHI and YUKI TSURUTA[™]

(Received 21 April 2023; accepted 31 May 2023; first published online 24 August 2023)

Abstract

Let $gcd(n_1, ..., n_k)$ denote the greatest common divisor of positive integers $n_1, ..., n_k$ and let ϕ be the Euler totient function. For any real number x > 3 and any integer $k \ge 2$, we investigate the asymptotic behaviour of $\sum_{n_1...,n_k \le x} \phi(gcd(n_1, ..., n_k))$.

2020 Mathematics subject classification: primary 11N37; secondary 11A25.

Keywords and phrases: gcd-sum function, Euler totient function, Dirichlet series, divisor function, Lindelöf hypothesis, asymptotic results on arithmetical functions.

1. Introduction and main results

Let $s = \sigma + it$ be the complex variable and let $\zeta(s)$ denote the Riemann zeta-function. For any positive integer $k \ge 2$, let τ_k denote the *k*-factors divisor function defined by $\mathbf{1} * \mathbf{1} * \cdots * \mathbf{1}$ and $\tau = \tau_2$. Here * denotes the Dirichlet convolution of arithmetic functions and $\mathbf{1}$ is given by $\mathbf{1}(n) = 1$ for any positive integer *n*. We define the error term $\Delta_k(x)$ in the generalised divisor problem by

$$\sum_{n \le x} \tau_k(n) = Q_k(\log x)x + \Delta_k(x), \tag{1.1}$$

where $Q_k(\log x) = \operatorname{Res}_{s=1} \zeta^k(s) x^{s-1}/s$ is a polynomial in $\log x$ of degree k - 1. The order of magnitude of $\Delta_k(x)$ as $x \to \infty$ is an open problem called the Piltz divisor problem and it has attracted much interest in analytic number theory. It has been conjectured that

$$\Delta_k(x) = O(x^{(k-1)/2k+\varepsilon}) \tag{1.2}$$

for any integer $k \ge 2$ and any $\varepsilon > 0$ (see Ivić [7, Chapter 13] or Titchmarsh [14]). Let μ denote the Möbius function defined by

 $\mu(n) = \begin{cases} 1 & \text{if } n = 1, \\ (-1)^k & \text{if } n \text{ is squarefree and } n = p_1 p_2 \dots p_k, \\ 0 & \text{if } n \text{ is not squarefree,} \end{cases}$

The first author is supported by JSPS Grant-in-Aid for Scientific Research (C)(21K03205).

[©] The Author(s), 2023. Published by Cambridge University Press on behalf of Australian Mathematical Publishing Association Inc.

and let $gcd(n_1, ..., n_k)$ denote the greatest common divisor of the positive integers $n_1, ..., n_k$ for any integer $k \ge 2$. For a real number x > 3, let $S_{f,k}(x)$ denote the summatory function

$$S_{f,k}(x) := \sum_{n_1...n_k \le x} f(\gcd(n_1, ..., n_k)),$$
 (1.3)

where *f* is any arithmetic function, by summing over the hyperbolic region $\{(n_1, \ldots, n_k) \in \mathbb{N}^k : n_1 \ldots n_k \le x\}$. In 2012, Krätzel *et al.* [10] showed that

$$S_{f,k}(x) = \sum_{n \le x} g_{f,k}(n),$$

where

$$g_{f,k}(n) = \sum_{n=m^k l} (\mu * f)(m)\tau_k(l)$$
(1.4)

(see also Heyman and Tóth [3], Kiuchi and Saad Eddin [8]). If f is multiplicative, then (1.4) is multiplicative. We use (1.4) to get the formal Dirichlet series

$$\sum_{n=1}^{\infty} \frac{g_{f,k}(n)}{n^s} = \frac{\zeta^k(s)}{\zeta(ks)} \sum_{n=1}^{\infty} \frac{f(n)}{n^{ks}},$$
(1.5)

which converges absolutely in the half-plane $\sigma > \sigma_0$, where σ_0 depends on f and k.

When f = id, it follows from (1.5) that

$$\sum_{n=1}^{\infty} \frac{g_{\mathrm{id},k}(n)}{n^s} = \frac{\zeta^k(s)\zeta(ks-1)}{\zeta(ks)} \quad \text{for } \mathrm{Re} \ s > 1.$$

Here the symbol id is given by id(n) = n for any positive integer *n*. For k = 2, Krätzel *et al.* [10] used the following three methods:

- (1) the complex integration approach (see [7, 14]);
- (2) a combination of fractional part sums and the theory of exponent pairs (see [2, 9]); and
- (3) Huxley's method (see [4–6]),

to prove

$$\sum_{ab \le x} \gcd(a, b) = P_2(\log x)x + O(x^{\theta}(\log x)^{\theta'}).$$
(1.6)

Here θ satisfies $\frac{1}{2} < \theta < 1$, θ' is some real number and P_2 is a certain quadratic polynomial with

$$P_2(\log x) = \operatorname{Res}_{s=1} \frac{\zeta^2(s)\zeta(2s-1)}{\zeta(2s)} \frac{x^{s-1}}{s}$$

They showed that methods (1), (2) and (3) imply the results $\theta = \frac{2}{3}$ and $\theta' = 16/9$, $\theta = 925/1392$ and $\theta' = 0$, and $\theta = 547/832$ and $\theta' = 26947/8320$, respectively. Let ϕ

I. Kiuchi and Y. Tsuruta

denote the Euler totient function defined by $\phi = id * \mu$. The Dirichlet series (1.5) with $f = \phi$ implies that

$$\sum_{n=1}^{\infty} \frac{g_{\phi,k}(n)}{n^s} = \frac{\zeta^k(s)\zeta(ks-1)}{\zeta^2(ks)} \quad \text{for Re } s > 1.$$
(1.7)

We consider some properties of the hyperbolic summation for the Euler totient function involving the gcd. The first purpose of this paper is to investigate the asymptotic behaviour of (1.3) with $f = \phi$ for k = 2. Applying fractional part sums and the theory of exponent pairs, we obtain the following result.

THEOREM 1.1. For any real number x > 3,

$$\sum_{ab \le x} \phi(\gcd(a, b)) = \frac{1}{4\zeta^2(2)} x \log^2 x + \frac{1}{\zeta^2(2)} \left(2\gamma - \frac{1}{2} - 2\frac{\zeta'(2)}{\zeta(2)} \right) x \log x + \frac{1}{2\zeta^2(2)} \left(5\gamma^2 + 6\gamma_1 - 4\gamma + 1 - 4(4\gamma - 1)\frac{\zeta'(2)}{\zeta(2)} - 4\frac{\zeta''(2)}{\zeta(2)} + 12\left(\frac{\zeta'(2)}{\zeta(2)}\right)^2 \right) x + O(x^{55/84+\varepsilon}),$$
(1.8)

where γ and γ_1 are the Euler constant and the first Stieltjes constant, respectively.

We note that the main term of (1.8) is given by (7.2) below.

REMARK 1.2. Note that $\frac{1}{2} < 55/84 = \frac{1}{2} + \frac{13}{84} < \frac{547}{832} = \frac{1}{2} + \frac{131}{832}$.

The summation for the arithmetic functions h(n) in the Dirichlet series

$$F_h(s) = \sum_{n=1}^{\infty} \frac{h(n)}{n^s} = \zeta^2(s)\zeta(2s-1)\zeta^M(2s)$$

for Re s > 1 and any fixed integer *M* was considered by Kühleitner and Nowak [11] in 2013. We use their results to show that the error term on the right-hand side of (1.8) is $\Omega(x^{1/2}\log^2 x/\log\log x)$ as $x \to \infty$. This suggests the following conjecture.

CONJECTURE 1.3. The order of magnitude of the error term on the right-hand side of (1.8) is $O(x^{1/2}(\log x)^A)$ with A > 2.

When k = 3, Krätzel *et al.* [10] also derived the formula

$$\sum_{abc \le x} \gcd(a, b, c) = M_3(x) + O(x^{1/2} (\log x)^5),$$

where

$$M_3(x) = \sum_{s_0=1,2/3} \operatorname{Res}_{s=s_0} \left(\frac{\zeta^3(s)\zeta(3s-1)}{\zeta(3s)} \frac{x^s}{s} \right)$$

= $x(0.6842 \dots \log^2 x - 0.6620 \dots \log x + 4.845 \dots) - 4.4569 \dots x^{2/3}.$

For k = 3, we derive an asymptotic formula for (1.3) with $f = \phi$ by using the complex integration approach.

THEOREM 1.4. For any real number x > 3,

$$\begin{split} \sum_{abc \leq x} \phi(\gcd(a, b, c)) \\ &= \frac{\zeta(2)}{2\zeta^2(3)} x \log^2 x + \frac{\zeta(2)}{\zeta^2(3)} \Big(3\gamma - 1 + 3\frac{\zeta'(2)}{\zeta(2)} - 6\frac{\zeta'(3)}{\zeta(3)} \Big) x \log x \\ &+ \frac{\zeta(2)}{\zeta^2(3)} \Big(3\gamma^2 + 3\gamma_1 - 3\gamma + 1 + 3(3\gamma - 1)\frac{\zeta'(2)}{\zeta(2)} - 6(3\gamma - 1)\frac{\zeta'(3)}{\zeta(3)} \Big) x \\ &+ \frac{\zeta(2)}{\zeta^2(3)} \Big(27 \Big(\frac{\zeta'(3)}{\zeta(3)}\Big)^2 + \frac{9}{2} \frac{\zeta''(2)}{\zeta(2)} - 9\frac{\zeta''(3)}{\zeta(3)} - 18\frac{\zeta'(2)}{\zeta(2)} \frac{\zeta'(3)}{\zeta(3)} \Big) x \\ &+ \frac{\zeta^3(\frac{2}{3})}{2\zeta^2(2)} x^{2/3} + O(x^{1/2} \log^5 x), \end{split}$$
(1.9)

where γ and γ_1 are the Euler constant and the first Stieltjes constant, respectively.

We note that the main term of (1.9) is given by (7.3) below.

For k = 4, we use the complex integration approach to calculate the asymptotic formula for (1.3) with $f = \phi$.

THEOREM 1.5. For any real number x > 3,

$$\sum_{abcd \le x} \phi(\gcd(a, b, c, d)) = x P_{\phi, 4}(\log x) + O(x^{1/2} \log^{17/3} x), \tag{1.10}$$

where $P_{\phi,4}(u)$ is a polynomial in u of degree three depending on ϕ .

For k = 5, from Ivić [7, Theorem 13.2], the error term $\Delta_5(x)$ is estimated by

$$\Delta_5(x) = O(x^{11/20+\varepsilon}) \tag{1.11}$$

for any $\varepsilon > 0$. We use an elementary method and (1.1) to obtain the following result.

THEOREM 1.6. For any real number x > 3,

$$\sum_{abcde \le x} \phi(\gcd(a, b, c, d, e)) = x P_{\phi, 5}(\log x) + \sum_{n \le x^{1/5}} (\mu * \mu)(n) \sum_{m \le x^{1/5}/n} m \Delta_5 \left(\frac{x}{m^5 n^5}\right), \quad (1.12)$$

where $P_{\phi,5}(u)$ is a polynomial in u of degree four depending on ϕ . In particular, it follows from (1.11) that the error term on the right-hand side of (1.12) is $O(x^{11/20+\varepsilon})$.

REMARK 1.7. If we can use Conjecture (1.2) with k = 5, then the error term on the right-hand side of (1.12) becomes $O(x^{2/5+\varepsilon})$.

Assuming Conjecture (1.2), it is easy to obtain an asymptotic formula for $S_{\phi,k}(x)$ for any integer $k \ge 5$.

PROPOSITION 1.8. Assume Conjecture (1.2). With the previous notation,

$$\sum_{n_1 n_2 \dots n_k \le x} \phi(\gcd(n_1, n_2, \dots, n_k)) = x P_{\phi, k}(\log x) + O(x^{(k-1)/2k+\varepsilon})$$

for any real number x > 3, where $P_{\phi,k}(u)$ $(k \ge 5)$ is a polynomial in u of degree k - 1 depending on ϕ .

Notation. We denote by ε an arbitrary small positive number which may be different at each occurrence.

2. Auxiliary results

We will need the following lemma.

LEMMA 2.1. For $t \ge t_0 > 0$, uniformly in σ ,

$$\zeta(\sigma + it) \ll \begin{cases} t^{(3-4\sigma)/6} \log t & \text{if } 0 \le \sigma \le 1/2, \\ t^{(1-\sigma)/3} \log t & \text{if } 1/2 \le \sigma \le 1, \\ \log t & \text{if } 1 \le \sigma < 2, \\ 1 & \text{if } \sigma \ge 2. \end{cases}$$

PROOF. The lemma follows from Tenenbaum [13, Theorem II.3.8]; see also Ivić [7] or Titchmarsh [14].

3. Proof of Theorem 1.1

Our main work is to evaluate the sum $A(x) = \sum_{mnl^2 \le x, m, n, l>0} l$. We utilise [10, Section 3.2] to derive the formula

$$A(x) = M_1(x) + \Delta(x),$$

where the error term $\Delta(x)$ is estimated by $O(x^{1/4+(\alpha+\beta)/2})$. Here (α,β) is an exponent pair (see [2, 7]) and $M_1(x)$ is the main term given by

$$M_1(x) = \operatorname{Res}_{s=1} \zeta^2(s) \zeta(2s-1) \frac{x^3}{s}.$$

From (1.7), this gives

$$\sum_{ab \le x} \phi(\gcd(a, b)) = \sum_{l \le \sqrt{x}} (\mu * \mu)(l) A\left(\frac{x}{l^2}\right) = M_2(x) + O(x^{1/4 + (\alpha + \beta)/2 + \varepsilon}),$$
(3.1)

where the main term $M_2(x)$ is given by

$$\begin{split} M_2(x) &= \operatorname{Res}_{s=1} \frac{\zeta^2(s)\zeta(2s-1)}{\zeta^2(2s)} \frac{x^s}{s} \\ &= \frac{1}{4\zeta^2(2)} x \log^2 x + \frac{1}{\zeta^2(2)} \left(2\gamma - \frac{1}{2} - 2\frac{\zeta'(2)}{\zeta(2)} \right) x \log x \\ &+ \frac{1}{2\zeta^2(2)} \left(5\gamma^2 + 6\gamma_1 - 4\gamma + 1 - 4(4\gamma - 1)\frac{\zeta'(2)}{\zeta(2)} - 4\frac{\zeta''(2)}{\zeta(2)} + 12\left(\frac{\zeta'(2)}{\zeta(2)}\right)^2 \right) x \end{split}$$

by (7.2) below. Choosing, in particular, the exponent pair

$$(\alpha,\beta) = (\frac{13}{84} + \varepsilon, \frac{55}{84} + \varepsilon),$$

[5]

491

discovered by Bourgain [1, Theorem 6], we obtain the order of magnitude $O(x^{55/84+\varepsilon})$ of the error term on the right-hand side of (3.1). This completes the proof of Theorem 1.1.

4. Preparations for the proof of Theorems 1.4 and 1.5

In order to derive the formulas (1.9) and (1.10), we use the following notation. Let k be any integer such that $k \ge 3$ and let $\sigma_0 = 1 + 1/k + \varepsilon$. Consider the estimation of the error terms of Perron's formula (see [12, Theorem 5.2 and Corollary 5.3]) for (1.4) with $f = \phi$. The estimation of $g_{\phi,k}(n)$ is given by

$$g_{\phi,k}(n) = \sum_{n=m^{k}l} (\operatorname{id} * \mu * \mu)(m)\tau_{k}(l) = \sum_{n=d^{k}m^{k}l} d(\mu * \mu)(m)\tau_{k}(l)$$
$$\ll n^{1/k} \sum_{n=d^{k}m^{k}l} \tau(m)\tau_{k}(l) \ll n^{1/k+\varepsilon}.$$

In Perron's formula,

$$R \ll x^{1/k+\varepsilon} \left(1 + \frac{x}{T} \sum_{1 \le k \le x} \frac{1}{k} \right) + \frac{(4x)^{\sigma_0}}{T} \left| \frac{\zeta^k(\sigma_0)\zeta(k\sigma_0 - 1)}{\zeta^2(k\sigma_0)} \right| \ll \frac{x^{\sigma_0}}{T}$$

for $T \leq x$. Hence, from Perron's formula and (1.7),

$$S_{\phi,k}(x) = \frac{1}{2\pi i} \int_{\sigma_0 - iT}^{\sigma_0 + iT} \frac{\zeta^k(s)\zeta(ks-1)}{\zeta^2(ks)} \frac{x^s}{s} \, ds + O\left(\frac{x^{\sigma_0}}{T}\right)$$

for any real number x > 3. When k = 3, we move the line of integration to Re $s = \frac{1}{2}$ and consider the rectangular contour formed by the line segments joining the points $c_0 - iT$, $c_0 + iT$, $\frac{1}{2} + iT$, $\frac{1}{2} - iT$ and $c_0 - iT$ in the anticlockwise sense. We observe that the integrand has a triple pole at s = 1 and a simple pole at $s = \frac{2}{3}$. Thus, we obtain the main term from the sum of the residues coming from the poles at s = 1 and $\frac{2}{3}$. Hence, using the Cauchy residue theorem,

$$S_{\phi,3}(x) = J_3(x,T) + I_{3,1}(x,T) + I_{3,2}(x,T) - I_{3,3}(x,T) + O\left(\frac{x^{4/3+\varepsilon}}{T}\right),\tag{4.1}$$

where

$$J_3(x,T) = \left(\operatorname{Res}_{s=1} + \operatorname{Res}_{s=\frac{2}{3}}\right) \frac{\zeta^3(s)\zeta(3s-1)}{\zeta^2(3s)} \frac{x^s}{s}.$$
 (4.2)

. ...

Here the integrals are given by

$$I_{3,1}(x,T) = \frac{1}{2\pi i} \int_{1/2+iT}^{4/3+\varepsilon+iT} \frac{\zeta^3(s)\zeta(3s-1)}{\zeta^2(3s)} \frac{x^s}{s} \, ds,\tag{4.3}$$

$$I_{3,2}(x,T) = \frac{1}{2\pi i} \int_{1/2-iT}^{1/2+iT} \frac{\zeta^3(s)\zeta(3s-1)}{\zeta^2(3s)} \frac{x^s}{s} \, ds, \tag{4.4}$$

$$I_{3,3}(x,T) = \frac{1}{2\pi i} \int_{1/2 - iT}^{4/3 + \varepsilon - iT} \frac{\zeta^3(s)\zeta(3s-1)}{\zeta^2(3s)} \frac{x^s}{s} \, ds.$$

Similarly,

$$S_{\phi,4}(x) = J_4(x,T) + I_{4,1}(x,T) + I_{4,2}(x,T) - I_{4,3}(x,T) + O\left(\frac{x^{5/4+\varepsilon}}{T}\right),$$

where

$$J_4(x,T) = \operatorname{Res}_{s=1} \frac{\zeta^4(s)\zeta(4s-1)}{\zeta^2(4s)} \frac{x^s}{s},$$
(4.5)

$$I_{4,1}(x,T) = \frac{1}{2\pi i} \int_{1/2+a+iT}^{5/4+\varepsilon+iT} \frac{\zeta^4(s)\zeta(4s-1)}{\zeta^2(4s)} \frac{x^s}{s} \, ds,\tag{4.6}$$

$$I_{4,2}(x,T) = \frac{1}{2\pi i} \int_{1/2+a-iT}^{1/2+a+iT} \frac{\zeta^4(s)\zeta(4s-1)}{\zeta^2(4s)} \frac{x^s}{s} \, ds,$$

$$I_{4,3}(x,T) = \frac{1}{2\pi i} \int_{1/2+a-iT}^{5/4+\varepsilon-iT} \frac{\zeta^4(s)\zeta(4s-1)}{\zeta^2(4s)} \frac{x^s}{s} \, ds$$

with $a = 1/\log T$ for any large number T(> 5).

5. Proofs of Theorems 1.4 and 1.5

5.1. Proof of the formula (1.9). Consider the estimate $I_{3,1}(x, T)$. We use Lemma 2.1 and (4.3) to deduce the estimation

$$\begin{split} I_{3,1}(x;T) &= \frac{1}{2\pi i} \int_{1/2}^{4/3+\varepsilon} \frac{\zeta(\sigma+iT)^3 \zeta(3\sigma-1+3iT)}{\zeta(3\sigma+3iT)^2(\sigma+iT)} x^{\sigma+iT} \, d\sigma \\ &\ll \frac{1}{T} \Big(\int_{1/2}^{2/3} + \int_{2/3}^1 + \int_{1}^{4/3+\varepsilon} \Big) |\zeta(\sigma+iT)|^3 |\zeta(3\sigma-1+3iT)| x^{\sigma} \, d\sigma \\ &\ll T^{2/3} \log^4 T \int_{1/2}^{2/3} \Big(\frac{x}{T^2} \Big)^{\sigma} \, d\sigma + \log^4 T \int_{2/3}^1 \Big(\frac{x}{T} \Big)^{\sigma} \, d\sigma + \frac{\log^4 T}{T} \int_{1}^{4/3+\varepsilon} x^{\sigma} \, d\sigma \\ &\ll \frac{x^{4/3+\varepsilon}}{T} \log^4 T. \end{split}$$

Similarly, the estimation of $I_{3,3}(x, T)$ is of the same order. Hence, taking T = x in the estimations of $I_{3,1}(x, T)$ and $I_{3,3}(x, T)$, we find that the total contribution of the horizontal lines in absolute value is

$$\ll x^{1/3+\varepsilon}.$$
 (5.1)

[7]

Now we estimate $I_{3,2}(x,T)$. We use (4.4), the estimate $\zeta(\frac{3}{2} + it) \approx 1$ for $t \ge 1$, the well-known estimate

$$\int_{1}^{T} \frac{|\zeta(\frac{1}{2} + iu)|^{4}}{u} \, du \ll \log^{5} T \tag{5.2}$$

for any large T and the Hölder inequality to obtain the estimate

$$I_{3,2}(x,T) = \frac{1}{2\pi} \int_{-T}^{T} \frac{\zeta^{3}(\frac{1}{2} + it)\zeta(\frac{1}{2} + 3it)}{\zeta^{2}(\frac{3}{2} + 3it)} \frac{x^{1/2+it}}{\frac{1}{2} + it} dt$$

$$\ll x^{1/2} + x^{1/2} \int_{1}^{T} \frac{|\zeta(\frac{1}{2} + it)|^{3}}{|\zeta(\frac{3}{2} + 3it)|^{2}} \cdot \frac{|\zeta(\frac{1}{2} + 3it)|}{t} dt$$

$$\ll x^{1/2} \Big(\int_{1}^{T} \frac{|\zeta(\frac{1}{2} + it)|^{4}}{t} dt \Big)^{3/4} \Big(\int_{1}^{T} \frac{|\zeta(\frac{1}{2} + 3it)|^{4}}{3t} dt \Big)^{1/4}$$

$$\ll x^{1/2} \log^{5} T.$$
(5.3)

Taking T = x in (5.1), (5.3) and (4.1) with k = 3, and substituting the above and the residue (4.2) into (4.1) with k = 3, we obtain the formula (1.9).

5.2. Proof of the formula (1.10). Let $a = 1/\log T$ ($T \ge 5$). From (4.5) with k = 4,

$$J_4(x,T) = x P_{\phi,4}(\log x), \tag{5.4}$$

since s = 1 is a pole of $\zeta^4(s)$ of order four, where $P_{\phi,4}(u)$ is a polynomial in *u* of degree three depending on ϕ . Consider the estimate $I_{4,1}(x, T)$. From (4.6) and Lemma 2.1,

$$\begin{split} I_{4,1}(x,T) &\ll \frac{1}{T} \bigg(\int_{1/2+a}^{1} + \int_{1}^{5/4+\varepsilon} \bigg) |\zeta(\sigma+iT)|^{4} |\zeta(4\sigma-1+4iT)| x^{\sigma} \, d\sigma \\ &\ll T^{1/3} \log^{5} T \int_{1/2+a}^{1} \bigg(\frac{x}{T^{4/3}} \bigg)^{\sigma} \, d\sigma + \frac{\log^{5} T}{T} \int_{1}^{5/4+\varepsilon} x^{\sigma} \, d\sigma \\ &\ll x^{1/2+a} \frac{\log^{5} T}{T^{1/3}} + x^{5/4+\varepsilon} \frac{\log^{5} T}{T}. \end{split}$$

Similarly, the estimation of $I_{4,3}(x, T)$ is of the same order. Hence, taking T = x in the estimations $I_{4,1}(x, T)$ and $I_{4,3}(x, T)$, we find that the total contribution of the horizontal lines in absolute value is

$$\ll x^{1/4+\varepsilon}.$$
(5.5)

We use (5.2) and the estimation $\zeta(1 + it) \ll \log^{2/3} t$ for $t \ge t_0$ (see [7, Theorem 6.3]) to obtain the estimation

$$I_{4,2}(x,T) \ll x^{1/2+a} + x^{1/2+a} \log^{2/3} T \int_{1}^{T} \frac{|\zeta(\frac{1}{2}+it)|^4}{t} dt \ll x^{1/2} \log^{17/3} T.$$
(5.6)

We take T = x in (5.4), (5.5), (5.6) and (4.1) with k = 4 to complete the proof of the formula (1.10).

6. Proof of Theorem 1.6

We use (1.4) with k = 5 to deduce that

$$\sum_{abcde \le x} \phi(\gcd(a, b, c, d, e)) = \sum_{lm^5 n^5 \le x} (\mu * \mu)(n) m \tau_5(l) = \sum_{n \le x^{1/5}} (\mu * \mu)(n) B\left(\frac{x}{n^5}\right), \quad (6.1)$$

where $B(x) := \sum_{lm^{5} \le x} m\tau_{5}(l)$. From (1.1),

$$B(x) = \sum_{m \le x^{1/5}} m \sum_{n \le x/m^5} \tau_5(n)$$

= $\sum_{m \le x^{1/5}} m \left(A_1 \frac{x}{m^5} \log^4 \frac{x}{m^5} + \dots + A_5 \frac{x}{m^5} + \Delta_5 \left(\frac{x}{m^5} \right) \right)$
= $\widetilde{Q_4}(\log x)x + \sum_{m \le x^{1/5}} m \Delta_5 \left(\frac{x}{m^5} \right),$ (6.2)

where $\widetilde{Q}_4(u)$ is a polynomial in u of degree four and A_1, A_2, \ldots, A_5 are computable constants. Inserting (6.2) into (6.1),

$$\sum_{abcde \le x} \phi(\gcd(a, b, c, d, e)) = x P_{\phi, 5}(\log x) + \sum_{n \le x^{1/5}} (\mu * \mu)(n) \sum_{m \le x^{1/5}/n} m \Delta_5 \left(\frac{x}{m^5 n^5}\right).$$

Hence, we obtain the formula (1.12).

7. Appendix

To calculate the main terms of Theorems 1.1 and 1.4, we use the Laurent expansion of the Riemann zeta-function at s = 1: that is,

$$\zeta(s) = \frac{1}{s-1} + \gamma + \gamma_1(s-1) + \gamma_2(s-1)^2 + \gamma_3(s-1)^3 + \cdots$$
(7.1)

as $s \to \infty$, where γ is the Euler constant and γ_k (k = 1, 2, 3, ...) are the Stieltjes constants,

$$\gamma_k := \frac{(-1)^k}{k!} \lim_{N \to \infty} \Big(\sum_{m \le N} \frac{\log^k m}{m} - \frac{\log^{k+1} N}{k+1} \Big).$$

We need the following residues.

$$\begin{split} M_{2}(x) &:= \operatorname{Res}_{s=1} \frac{\zeta^{2}(s)\zeta(2s-1)}{\zeta^{2}(2s)} \frac{x^{s}}{s} \\ &= \frac{1}{4\zeta^{2}(2)} x \log^{2} x + \frac{1}{\zeta^{2}(2)} \left(2\gamma - \frac{1}{2} - 2\frac{\zeta'(2)}{\zeta(2)} \right) x \log x \\ &+ \frac{1}{2\zeta^{2}(2)} \left(5\gamma^{2} + 6\gamma_{1} - 4\gamma + 1 - 4(4\gamma - 1)\frac{\zeta'(2)}{\zeta(2)} - 4\frac{\zeta''(2)}{\zeta(2)} + 12\left(\frac{\zeta'(2)}{\zeta(2)}\right)^{2} \right) x, \end{split}$$

$$(7.2)$$

[10]

$$J_{3}(x,T) := \left(\underset{s=1}{\operatorname{Res}} + \underset{s=2/3}{\operatorname{Res}}\right) \frac{\zeta^{3}(s)\zeta(3s-1)}{\zeta^{2}(3s)} \frac{x^{s}}{s}$$

$$= \frac{\zeta(2)}{2\zeta^{2}(3)} x \log^{2} x + \frac{\zeta(2)}{\zeta^{2}(3)} \left(3\gamma - 1 + 3\frac{\zeta'(2)}{\zeta(2)} - 6\frac{\zeta'(3)}{\zeta(3)}\right) x \log x$$

$$+ \frac{\zeta(2)}{\zeta^{2}(3)} \left(3\gamma^{2} + 3\gamma_{1} - 3\gamma + 1 + 3(3\gamma - 1)\frac{\zeta'(2)}{\zeta(2)} - 6(3\gamma - 1)\frac{\zeta'(3)}{\zeta(3)}\right) x$$

$$+ \frac{\zeta(2)}{\zeta^{2}(3)} \left(27\left(\frac{\zeta'(3)}{\zeta(3)}\right)^{2} + \frac{9}{2}\frac{\zeta''(2)}{\zeta(2)} - 9\frac{\zeta''(3)}{\zeta(3)} - 18\frac{\zeta'(2)}{\zeta(2)}\frac{\zeta'(3)}{\zeta(3)}\right) x + \frac{\zeta(\frac{2}{3})^{3}}{2\zeta^{2}(2)}x^{2/3}.$$
(7.3)

PROOF. Suppose that g(s) is regular in the neighbourhood of s = 1 and f(s) has only a triple pole at s = 1. Then the Laurent expansion of f(s) implies that

$$f(s) := \frac{a}{(s-1)^3} + \frac{b}{(s-1)^2} + \frac{c}{s-1} + h(s),$$

where h(s) is regular in the neighbourhood of s = 1 and a, b, c are computable constants. We use the residue calculation to deduce that

$$\operatorname{Res}_{s=1} f(s)g(s) = \frac{a}{2}g''(1) + bg'(1) + cg(1).$$

To prove (7.3), we use (7.1) to deduce that

$$\zeta^3(s) = \frac{1}{(s-1)^3} + \frac{3\gamma}{(s-1)^2} + \frac{3\gamma^2 + 3\gamma_1}{s-1} + O(1) \quad \text{as } s \to 1.$$

Setting

$$g(s):=\frac{\zeta(3s-1)}{\zeta^2(3s)}\cdot\frac{x^s}{s},$$

we have

$$g(1) = \frac{\zeta(2)}{\zeta^2(3)}x, \quad g'(1) = \frac{\zeta(2)}{\zeta^2(3)} \Big(\log x + 3\frac{\zeta'(2)}{\zeta(2)} - 6\frac{\zeta'(3)}{\zeta(3)} - 1\Big)x,$$

$$g''(1) = \frac{\zeta(2)}{\zeta^2(3)} x \log^2 x + \frac{2\zeta(2)}{\zeta^2(3)} \Big(3\frac{\zeta'(2)}{\zeta(2)} - 6\frac{\zeta'(3)}{\zeta(3)} - 1 \Big) x \log x$$
$$+ \frac{2\zeta(2)}{\zeta^2(3)} \Big(1 + 6\frac{\zeta'(3)}{\zeta(3)} - 3\frac{\zeta'(2)}{\zeta(2)} + 27 \Big(\frac{\zeta'(3)}{\zeta(3)}\Big)^2 \Big) x$$
$$+ \frac{2\zeta(2)}{\zeta^2(3)} \Big(\frac{9}{2} \frac{\zeta''(2)}{\zeta(2)} - 9\frac{\zeta''(3)}{\zeta(3)} - 18\frac{\zeta'(2)}{\zeta(2)} \frac{\zeta'(3)}{\zeta(3)} \Big) x.$$

Hence,

$$\left(\operatorname{Res}_{s=1} + \operatorname{Res}_{s=2/3} \right) \frac{\zeta^3(s)\zeta(3s-1)}{\zeta^2(3s)} \frac{x^s}{s}$$

= $\frac{1}{2}g''(1) + 3\gamma g'(1) + 3(\gamma_1 + \gamma^2)g(1) + \frac{\zeta^3(\frac{2}{3})}{2\zeta^2(2)}x^{2/3}.$

Hence, we obtain the stated identity. To prove (7.2), we use

$$\zeta^{2}(s)\zeta(2s-1) = \frac{\frac{1}{2}}{(s-1)^{3}} + \frac{2\gamma}{(s-1)^{2}} + \frac{\frac{5}{2}\gamma^{2} + 3\gamma_{1}}{s-1} + O(1) \quad \text{as } s \to 1.$$

The proof of (7.2) is similar to that of (7.3).

Acknowledgement

The authors would like to thank the referee for many valuable suggestions and remarks.

References

- [1] J. Bourgain, 'Decoupling, exponential sums and the Riemann zeta-function', *J. Amer. Math. Soc.* **30** (2017), 205–224.
- [2] S. W. Graham and G. Kolesnik, Van der Corput's Method of Exponential Sums, London Mathematical Society Lecture Note Series, 126 (Cambridge University Press, Cambridge, 1991).
- [3] R. Heyman and L. Tóth, 'Hyperbolic summation for functions of the GCD and LCM of several integers', *Ramanujan J.*, to appear. Published online (28 December 2022).
- [4] M. N. Huxley, 'Exponential sums and lattice points. III', Proc. Lond. Math. Soc. (3) 87 (2003), 591–609.
- [5] M. N. Huxley, 'Exponential sums and the Riemann zeta-function. V', Proc. Lond. Math. Soc. (3) 90 (2005), 1–40.
- [6] M. N. Huxley and N. Watt, 'Exponential sums and the Riemann zeta-function', Proc. Lond. Math. Soc. (3) 57 (1988), 1–24.
- [7] A. Ivić, The Riemann Zeta-Function: Theory and Applications (Dover, Mineola, NY, 1985).
- [8] I. Kiuchi and S. Saad Eddin, 'On sums of arithmetic functions involving the greatest common divisor', Preprint, 2021, arxiv:2102.03714v1.
- [9] E. Krätzel, *Lattice Points*, Mathematics and its Applications. East European Series, 33 (Kluwer, Dordrecht, 1988).
- [10] E. Krätzel, W. G. Nowak and L. Tóth, 'On certain arithmetic functions involving the greatest common divisor', *Cent. Eur. J. Math.* 10 (2012), 761–774.
- [11] M. Kühleitner and W. G. Nowak, 'On a question of A. Schinzel: omega estimate for a special type of arithmetic functions', *Cent. Eur. J. Math.* 11 (2013), 477–486.
- [12] H. L. Montgomery and R. C. Vaughan, *Multiplicative Number Theory I. Classical Theory*, Cambridge Studies in Advanced Mathematics, 97 (Cambridge University Press, Cambridge, 2007).
- [13] G. Tenenbaum, Introduction to Analytic and Probabilistic Number Theory, Graduate Studies in Mathematics, 163 (American Mathematical Society, Providence, RI, 2008).
- [14] E. C. Titchmarsh, *The Theory of the Riemann Zeta-function*, revised by D. R. Heath-Brown (Oxford University Press, Oxford, 1986).

https://doi.org/10.1017/S0004972723000825 Published online by Cambridge University Press

[11]

ISAO KIUCHI, Department of Mathematical Sciences, Faculty of Science, Yamaguchi University, Yoshida 1677-1, Yamaguchi 753-8512, Japan e-mail: kiuchi@yamaguchi-u.ac.jp

YUKI TSURUTA, Graduate School of Engineering, Oita University, 700 Dannoharu, Oita 870–1192, Japan e-mail: v23f2002@oita-u.ac.jp