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Abstract

Let gcd(n1, . . . , nk) denote the greatest common divisor of positive integers n1, . . . , nk and let φ be the Euler
totient function. For any real number x > 3 and any integer k ≥ 2, we investigate the asymptotic behaviour
of
∑

n1 ...nk≤x φ(gcd(n1, . . . , nk)).
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1. Introduction and main results

Let s = σ + it be the complex variable and let ζ(s) denote the Riemann zeta-function.
For any positive integer k ≥ 2, let τk denote the k-factors divisor function defined
by 1 ∗ 1 ∗ · · · ∗ 1 and τ = τ2. Here ∗ denotes the Dirichlet convolution of arithmetic
functions and 1 is given by 1(n) = 1 for any positive integer n. We define the error
term Δk(x) in the generalised divisor problem by∑

n≤x

τk(n) = Qk(log x)x + Δk(x), (1.1)

where Qk(log x) = Ress=1 ζ
k(s)xs−1/s is a polynomial in log x of degree k − 1. The order

of magnitude of Δk(x) as x→ ∞ is an open problem called the Piltz divisor problem
and it has attracted much interest in analytic number theory. It has been conjectured
that

Δk(x) = O(x(k−1)/2k+ε) (1.2)

for any integer k ≥ 2 and any ε > 0 (see Ivić [7, Chapter 13] or Titchmarsh [14]). Let μ
denote the Möbius function defined by

μ(n) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if n = 1,
(−1)k if n is squarefree and n = p1 p2 . . . pk,
0 if n is not squarefree,
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[2] Sums involving the Euler totient function 487

and let gcd(n1, . . . , nk) denote the greatest common divisor of the positive integers
n1, . . . , nk for any integer k ≥ 2. For a real number x > 3, let S f ,k(x) denote the
summatory function

S f ,k(x) :=
∑

n1...nk≤x

f (gcd(n1, . . . , nk)), (1.3)

where f is any arithmetic function, by summing over the hyperbolic region
{(n1, . . . , nk) ∈ Nk : n1 . . . nk ≤ x}. In 2012, Krätzel et al. [10] showed that

S f ,k(x) =
∑
n≤x

g f ,k(n),

where

g f ,k(n) =
∑

n=mkl

(μ ∗ f )(m)τk(l) (1.4)

(see also Heyman and Tóth [3], Kiuchi and Saad Eddin [8]). If f is multiplicative, then
(1.4) is multiplicative. We use (1.4) to get the formal Dirichlet series

∞∑
n=1

g f ,k(n)
ns =

ζk(s)
ζ(ks)

∞∑
n=1

f (n)
nks , (1.5)

which converges absolutely in the half-plane σ > σ0, where σ0 depends on f and k.
When f = id, it follows from (1.5) that

∞∑
n=1

gid,k(n)
ns =

ζk(s)ζ(ks − 1)
ζ(ks)

for Re s > 1.

Here the symbol id is given by id(n) = n for any positive integer n. For k = 2, Krätzel
et al. [10] used the following three methods:

(1) the complex integration approach (see [7, 14]);
(2) a combination of fractional part sums and the theory of exponent pairs (see [2,

9]); and
(3) Huxley’s method (see [4–6]),

to prove ∑
ab≤x

gcd(a, b) = P2(log x)x + O(xθ(log x)θ
′
). (1.6)

Here θ satisfies 1
2 < θ < 1, θ′ is some real number and P2 is a certain quadratic

polynomial with

P2(log x) = Res
s=1

ζ2(s)ζ(2s − 1)
ζ(2s)

xs−1

s
.

They showed that methods (1), (2) and (3) imply the results θ = 2
3 and θ′ = 16/9,

θ = 925/1392 and θ′ = 0, and θ = 547/832 and θ′ = 26947/8320, respectively. Let φ
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denote the Euler totient function defined by φ = id ∗ μ. The Dirichlet series (1.5) with
f = φ implies that

∞∑
n=1

gφ,k(n)
ns =

ζk(s)ζ(ks − 1)
ζ2(ks)

for Re s > 1. (1.7)

We consider some properties of the hyperbolic summation for the Euler totient
function involving the gcd. The first purpose of this paper is to investigate the
asymptotic behaviour of (1.3) with f = φ for k = 2. Applying fractional part sums and
the theory of exponent pairs, we obtain the following result.

THEOREM 1.1. For any real number x > 3,∑
ab≤x

φ(gcd(a, b)) =
1

4ζ2(2)
x log2 x +

1
ζ2(2)

(
2γ − 1

2
− 2
ζ′(2)
ζ(2)

)
x log x

+
1

2ζ2(2)

(
5γ2 + 6γ1 − 4γ + 1 − 4(4γ − 1)

ζ′(2)
ζ(2)

− 4
ζ′′(2)
ζ(2)

+ 12
(
ζ′(2)
ζ(2)

)2)
x

+ O(x55/84+ε), (1.8)

where γ and γ1 are the Euler constant and the first Stieltjes constant, respectively.

We note that the main term of (1.8) is given by (7.2) below.

REMARK 1.2. Note that 1
2 < 55/84 = 1

2 + 13/84 < 547/832 = 1
2 + 131/832.

The summation for the arithmetic functions h(n) in the Dirichlet series

Fh(s) =
∞∑

n=1

h(n)
ns = ζ

2(s)ζ(2s − 1)ζM(2s)

for Re s > 1 and any fixed integer M was considered by Kühleitner and Nowak [11] in
2013. We use their results to show that the error term on the right-hand side of (1.8) is
Ω(x1/2log2 x/log log x) as x→ ∞. This suggests the following conjecture.

CONJECTURE 1.3. The order of magnitude of the error term on the right-hand side of
(1.8) is O(x1/2(log x)A) with A > 2.

When k = 3, Krätzel et al. [10] also derived the formula∑
abc≤x

gcd(a, b, c) = M3(x) + O(x1/2(log x)5),

where

M3(x) =
∑

s0=1,2/3

Res
s=s0

(
ζ3(s)ζ(3s − 1)
ζ(3s)

xs

s

)

= x(0.6842 . . . log2 x − 0.6620 . . . log x + 4.845 . . .) − 4.4569 . . . x2/3.

For k = 3, we derive an asymptotic formula for (1.3) with f = φ by using the complex
integration approach.
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THEOREM 1.4. For any real number x > 3,∑
abc≤x

φ(gcd(a, b, c))

=
ζ(2)

2ζ2(3)
x log2 x +

ζ(2)
ζ2(3)

(
3γ − 1 + 3

ζ′(2)
ζ(2)

− 6
ζ′(3)
ζ(3)

)
x log x

+
ζ(2)
ζ2(3)

(
3γ2 + 3γ1 − 3γ + 1 + 3(3γ − 1)

ζ′(2)
ζ(2)

− 6(3γ − 1)
ζ′(3)
ζ(3)

)
x

+
ζ(2)
ζ2(3)

(
27
(
ζ′(3)
ζ(3)

)2
+

9
2
ζ′′(2)
ζ(2)

− 9
ζ′′(3)
ζ(3)

− 18
ζ′(2)
ζ(2)

ζ′(3)
ζ(3)

)
x

+
ζ3( 2

3 )

2ζ2(2)
x2/3 + O(x1/2 log5 x), (1.9)

where γ and γ1 are the Euler constant and the first Stieltjes constant, respectively.

We note that the main term of (1.9) is given by (7.3) below.
For k = 4, we use the complex integration approach to calculate the asymptotic

formula for (1.3) with f = φ.

THEOREM 1.5. For any real number x > 3,∑
abcd≤x

φ(gcd(a, b, c, d)) = xPφ,4(log x) + O(x1/2 log17/3 x), (1.10)

where Pφ,4(u) is a polynomial in u of degree three depending on φ.

For k = 5, from Ivić [7, Theorem 13.2], the error term Δ5(x) is estimated by

Δ5(x) = O(x11/20+ε) (1.11)

for any ε > 0. We use an elementary method and (1.1) to obtain the following result.

THEOREM 1.6. For any real number x > 3,∑
abcde≤x

φ(gcd(a, b, c, d, e)) = xPφ,5(log x) +
∑

n≤x1/5

(μ ∗ μ)(n)
∑

m≤x1/5/n

mΔ5

( x
m5n5

)
, (1.12)

where Pφ,5(u) is a polynomial in u of degree four depending on φ. In particular, it
follows from (1.11) that the error term on the right-hand side of (1.12) is O(x11/20+ε).

REMARK 1.7. If we can use Conjecture (1.2) with k = 5, then the error term on the
right-hand side of (1.12) becomes O(x2/5+ε).

Assuming Conjecture (1.2), it is easy to obtain an asymptotic formula for Sφ,k(x) for
any integer k ≥ 5.

PROPOSITION 1.8. Assume Conjecture (1.2). With the previous notation,∑
n1n2...nk≤x

φ(gcd(n1, n2, . . . , nk)) = xPφ,k(log x) + O(x(k−1)/2k+ε)
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for any real number x > 3, where Pφ,k(u) (k ≥ 5) is a polynomial in u of degree k − 1
depending on φ.

Notation. We denote by ε an arbitrary small positive number which may be different
at each occurrence.

2. Auxiliary results

We will need the following lemma.

LEMMA 2.1. For t ≥ t0 > 0, uniformly in σ,

ζ(σ + it) 	

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
t(3−4σ)/6 log t if 0 ≤ σ ≤ 1/2,
t(1−σ)/3 log t if 1/2 ≤ σ ≤ 1,
log t if 1 ≤ σ < 2,
1 if σ ≥ 2.

PROOF. The lemma follows from Tenenbaum [13, Theorem II.3.8]; see also Ivić [7]
or Titchmarsh [14]. �

3. Proof of Theorem 1.1

Our main work is to evaluate the sum A(x) =
∑

mnl2≤x, m,n,l>0 l. We utilise [10, Section
3.2] to derive the formula

A(x) = M1(x) + Δ(x),

where the error term Δ(x) is estimated by O(x1/4+(α+β)/2). Here (α, β) is an exponent
pair (see [2, 7]) and M1(x) is the main term given by

M1(x) = Res
s=1
ζ2(s)ζ(2s − 1)

xs

s
.

From (1.7), this gives∑
ab≤x

φ(gcd(a, b)) =
∑
l≤
√

x

(μ ∗ μ)(l)A
( x
l2

)
= M2(x) + O(x1/4+(α+β)/2+ε), (3.1)

where the main term M2(x) is given by

M2(x) = Res
s=1

ζ2(s)ζ(2s − 1)
ζ2(2s)

xs

s

=
1

4ζ2(2)
x log2 x +

1
ζ2(2)

(
2γ − 1

2
− 2
ζ′(2)
ζ(2)

)
x log x

+
1

2ζ2(2)

(
5γ2 + 6γ1 − 4γ + 1 − 4(4γ − 1)

ζ′(2)
ζ(2)

− 4
ζ′′(2)
ζ(2)

+ 12
(
ζ′(2)
ζ(2)

)2)
x

by (7.2) below. Choosing, in particular, the exponent pair

(α, β) = ( 13
84 + ε,

55
84 + ε),

https://doi.org/10.1017/S0004972723000825 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000825


[6] Sums involving the Euler totient function 491

discovered by Bourgain [1, Theorem 6], we obtain the order of magnitude O(x55/84+ε)
of the error term on the right-hand side of (3.1). This completes the proof of
Theorem 1.1.

4. Preparations for the proof of Theorems 1.4 and 1.5

In order to derive the formulas (1.9) and (1.10), we use the following notation. Let
k be any integer such that k ≥ 3 and let σ0 = 1 + 1/k + ε. Consider the estimation of
the error terms of Perron’s formula (see [12, Theorem 5.2 and Corollary 5.3]) for (1.4)
with f = φ. The estimation of gφ,k(n) is given by

gφ,k(n) =
∑

n=mkl

(id ∗ μ ∗ μ)(m)τk(l) =
∑

n=dkmkl

d(μ ∗ μ)(m)τk(l)

	 n1/k
∑

n=dkmkl

τ(m)τk(l) 	 n1/k+ε.

In Perron’s formula,

R 	 x1/k+ε
(
1 +

x
T

∑
1≤k≤x

1
k

)
+

(4x)σ0

T

∣∣∣∣∣ζk(σ0)ζ(kσ0 − 1)
ζ2(kσ0)

∣∣∣∣∣ 	 xσ0

T

for T ≤ x. Hence, from Perron’s formula and (1.7),

Sφ,k(x) =
1

2πi

∫ σ0+iT

σ0−iT

ζk(s)ζ(ks − 1)
ζ2(ks)

xs

s
ds + O

(xσ0

T

)
for any real number x > 3. When k = 3, we move the line of integration to Re s = 1

2
and consider the rectangular contour formed by the line segments joining the points
c0 − iT , c0 + iT , 1

2 + iT , 1
2 − iT and c0 − iT in the anticlockwise sense. We observe that

the integrand has a triple pole at s = 1 and a simple pole at s = 2
3 . Thus, we obtain the

main term from the sum of the residues coming from the poles at s = 1 and 2
3 . Hence,

using the Cauchy residue theorem,

Sφ,3(x) = J3(x, T) + I3,1(x, T) + I3,2(x, T) − I3,3(x, T) + O
(x4/3+ε

T

)
, (4.1)

where

J3(x, T) =
(
Res
s=1
+ Res

s= 2
3

) ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s
. (4.2)

Here the integrals are given by

I3,1(x, T) =
1

2πi

∫ 4/3+ε+iT

1/2+iT

ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s
ds, (4.3)

I3,2(x, T) =
1

2πi

∫ 1/2+iT

1/2−iT

ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s
ds, (4.4)
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I3,3(x, T) =
1

2πi

∫ 4/3+ε−iT

1/2−iT

ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s
ds.

Similarly,

Sφ,4(x) = J4(x, T) + I4,1(x, T) + I4,2(x, T) − I4,3(x, T) + O
(x5/4+ε

T

)
,

where

J4(x, T) = Res
s=1

ζ4(s)ζ(4s − 1)
ζ2(4s)

xs

s
, (4.5)

I4,1(x, T) =
1

2πi

∫ 5/4+ε+iT

1/2+a+iT

ζ4(s)ζ(4s − 1)
ζ2(4s)

xs

s
ds, (4.6)

I4,2(x, T) =
1

2πi

∫ 1/2+a+iT

1/2+a−iT

ζ4(s)ζ(4s − 1)
ζ2(4s)

xs

s
ds,

I4,3(x, T) =
1

2πi

∫ 5/4+ε−iT

1/2+a−iT

ζ4(s)ζ(4s − 1)
ζ2(4s)

xs

s
ds

with a = 1/log T for any large number T(> 5).

5. Proofs of Theorems 1.4 and 1.5

5.1. Proof of the formula (1.9). Consider the estimate I3,1(x, T). We use Lemma 2.1
and (4.3) to deduce the estimation

I3,1(x; T) =
1

2πi

∫ 4/3+ε

1/2

ζ (σ + iT)3ζ(3σ − 1 + 3iT)
ζ (3σ + 3iT)2(σ + iT)

xσ+iT dσ

	 1
T

( ∫ 2/3

1/2
+

∫ 1

2/3
+

∫ 4/3+ε

1

)
|ζ (σ + iT)|3|ζ(3σ − 1 + 3iT)|xσ dσ

	 T2/3 log4 T
∫ 2/3

1/2

( x
T2

)σ
dσ + log4 T

∫ 1

2/3

( x
T

)σ
dσ +

log4 T
T

∫ 4/3+ε

1
xσ dσ

	 x4/3+ε

T
log4 T .

Similarly, the estimation of I3,3(x, T) is of the same order. Hence, taking T = x in
the estimations of I3,1(x, T) and I3,3(x, T), we find that the total contribution of the
horizontal lines in absolute value is

	 x1/3+ε. (5.1)
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Now we estimate I3,2(x, T). We use (4.4), the estimate ζ( 3
2 + it) � 1 for t ≥ 1, the

well-known estimate ∫ T

1

|ζ( 1
2 + iu)|4

u
du 	 log5 T (5.2)

for any large T and the Hölder inequality to obtain the estimate

I3,2(x, T) =
1

2π

∫ T

−T

ζ3( 1
2 + it)ζ( 1

2 + 3it)

ζ2( 3
2 + 3it)

x1/2+it

1
2 + it

dt

	 x1/2 + x1/2
∫ T

1

|ζ( 1
2 + it)|3

|ζ( 3
2 + 3it)|2

·
|ζ( 1

2 + 3it)|
t

dt

	 x1/2
( ∫ T

1

|ζ( 1
2 + it)|4

t
dt
)3/4( ∫ T

1

|ζ( 1
2 + 3it)|4

3t
dt
)1/4

	 x1/2 log5 T . (5.3)

Taking T = x in (5.1), (5.3) and (4.1) with k = 3, and substituting the above and the
residue (4.2) into (4.1) with k = 3, we obtain the formula (1.9).

5.2. Proof of the formula (1.10). Let a = 1/log T (T ≥ 5). From (4.5) with k = 4,

J4(x, T) = xPφ,4(log x), (5.4)

since s = 1 is a pole of ζ4(s) of order four, where Pφ,4(u) is a polynomial in u of degree
three depending on φ. Consider the estimate I4,1(x, T). From (4.6) and Lemma 2.1,

I4,1(x, T) 	 1
T

( ∫ 1

1/2+a
+

∫ 5/4+ε

1

)
|ζ (σ + iT)|4|ζ(4σ − 1 + 4iT)|xσ dσ

	 T1/3 log5 T
∫ 1

1/2+a

( x
T4/3

)σ
dσ +

log5 T
T

∫ 5/4+ε

1
xσ dσ

	 x1/2+a log5 T
T1/3 + x5/4+ε log5 T

T
.

Similarly, the estimation of I4,3(x, T) is of the same order. Hence, taking T = x in the
estimations I4,1(x, T) and I4,3(x, T), we find that the total contribution of the horizontal
lines in absolute value is

	 x1/4+ε. (5.5)

We use (5.2) and the estimation ζ(1 + it) 	 log2/3 t for t ≥ t0 (see [7, Theorem 6.3]) to
obtain the estimation

I4,2(x, T) 	 x1/2+a + x1/2+a log2/3 T
∫ T

1

|ζ( 1
2 + it)|4

t
dt 	 x1/2 log17/3 T . (5.6)

We take T = x in (5.4), (5.5), (5.6) and (4.1) with k = 4 to complete the proof of the
formula (1.10).
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6. Proof of Theorem 1.6

We use (1.4) with k = 5 to deduce that∑
abcde≤x

φ(gcd(a, b, c, d, e)) =
∑

lm5n5≤x

(μ ∗ μ)(n)mτ5(l) =
∑

n≤x1/5

(μ ∗ μ)(n)B
( x
n5

)
, (6.1)

where B(x) :=
∑

lm5≤x mτ5(l). From (1.1),

B(x) =
∑

m≤x1/5

m
∑

n≤x/m5

τ5(n)

=
∑

m≤x1/5

m
(
A1

x
m5 log4 x

m5 + · · · + A5
x

m5 + Δ5

( x
m5

))

= Q̃4(log x)x +
∑

m≤x1/5

mΔ5

( x
m5

)
, (6.2)

where Q̃4(u) is a polynomial in u of degree four and A1, A2, . . . , A5 are computable
constants. Inserting (6.2) into (6.1),∑

abcde≤x

φ(gcd(a, b, c, d, e)) = xPφ,5(log x) +
∑

n≤x1/5

(μ ∗ μ)(n)
∑

m≤x1/5/n

mΔ5

( x
m5n5

)
.

Hence, we obtain the formula (1.12). �

7. Appendix

To calculate the main terms of Theorems 1.1 and 1.4, we use the Laurent expansion
of the Riemann zeta-function at s = 1: that is,

ζ(s) =
1

s − 1
+ γ + γ1(s − 1) + γ2(s − 1)2 + γ3(s − 1)3 + · · · (7.1)

as s→ ∞, where γ is the Euler constant and γk (k = 1, 2, 3, . . .) are the Stieltjes
constants,

γk :=
(−1)k

k!
lim

N→∞

(∑
m≤N

logk m
m
− logk+1 N

k + 1

)
.

We need the following residues.

M2(x) := Res
s=1

ζ2(s)ζ(2s − 1)
ζ2(2s)

xs

s

=
1

4ζ2(2)
x log2 x +

1
ζ2(2)

(
2γ − 1

2
− 2
ζ′(2)
ζ(2)

)
x log x

+
1

2ζ2(2)

(
5γ2 + 6γ1 − 4γ + 1 − 4(4γ − 1)

ζ′(2)
ζ(2)

− 4
ζ′′(2)
ζ(2)

+ 12
(
ζ′(2)
ζ(2)

)2)
x,

(7.2)

https://doi.org/10.1017/S0004972723000825 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972723000825


[10] Sums involving the Euler totient function 495

and

J3(x, T) :=
(
Res
s=1
+ Res

s=2/3

) ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s

=
ζ(2)

2ζ2(3)
x log2 x +

ζ(2)
ζ2(3)

(
3γ − 1 + 3

ζ′(2)
ζ(2)

− 6
ζ′(3)
ζ(3)

)
x log x

+
ζ(2)
ζ2(3)

(
3γ2 + 3γ1 − 3γ + 1 + 3(3γ − 1)

ζ′(2)
ζ(2)

− 6(3γ − 1)
ζ′(3)
ζ(3)

)
x

+
ζ(2)
ζ2(3)

(
27
(
ζ′(3)
ζ(3)

)2
+

9
2
ζ′′(2)
ζ(2)

− 9
ζ′′(3)
ζ(3)

− 18
ζ′(2)
ζ(2)

ζ′(3)
ζ(3)

)
x +
ζ( 2

3 )3

2ζ2(2)
x2/3.

(7.3)

PROOF. Suppose that g(s) is regular in the neighbourhood of s = 1 and f (s) has only
a triple pole at s = 1. Then the Laurent expansion of f (s) implies that

f (s) :=
a

(s − 1)3 +
b

(s − 1)2 +
c

s − 1
+ h(s),

where h(s) is regular in the neighbourhood of s = 1 and a, b, c are computable
constants. We use the residue calculation to deduce that

Res
s=1

f (s)g(s) =
a
2

g′′(1) + bg′(1) + cg(1).

To prove (7.3), we use (7.1) to deduce that

ζ3(s) =
1

(s − 1)3 +
3γ

(s − 1)2 +
3γ2 + 3γ1

s − 1
+ O(1) as s→ 1.

Setting

g(s) :=
ζ(3s − 1)
ζ2(3s)

· xs

s
,

we have

g(1) =
ζ(2)
ζ2(3)

x, g′(1) =
ζ(2)
ζ2(3)

(
log x + 3

ζ′(2)
ζ(2)

− 6
ζ′(3)
ζ(3)

− 1
)
x,

g′′(1) =
ζ(2)
ζ2(3)

x log2 x +
2ζ(2)
ζ2(3)

(
3
ζ′(2)
ζ(2)

− 6
ζ′(3)
ζ(3)

− 1
)
x log x

+
2ζ(2)
ζ2(3)

(
1 + 6

ζ′(3)
ζ(3)

− 3
ζ′(2)
ζ(2)

+ 27
(
ζ′(3)
ζ(3)

)2)
x

+
2ζ(2)
ζ2(3)

(9
2
ζ′′(2)
ζ(2)

− 9
ζ′′(3)
ζ(3)

− 18
ζ′(2)
ζ(2)

ζ′(3)
ζ(3)

)
x.
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Hence,

(
Res
s=1
+ Res

s=2/3

) ζ3(s)ζ(3s − 1)
ζ2(3s)

xs

s

=
1
2

g′′(1) + 3γg′(1) + 3(γ1 + γ
2)g(1) +

ζ3( 2
3 )

2ζ2(2)
x2/3.

Hence, we obtain the stated identity. To prove (7.2), we use

ζ2(s)ζ(2s − 1) =
1
2

(s − 1)3 +
2γ

(s − 1)2 +

5
2γ

2 + 3γ1

s − 1
+ O(1) as s→ 1.

The proof of (7.2) is similar to that of (7.3). �
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