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1. Introduction

In this paper, we consider the energy equality for distributional solutions to the
following fractional Navier-Stokes equations⎧⎨

⎩
∂tu + u · ∇u + μ(−Δ)αu + ∇p = 0, x ∈ R3, t > 0
∇ · u = 0, x ∈ R3, t > 0
u|t=0 = u0(x), x ∈ R3

(1.1)

with μ > 0 is the kinematic viscosity, for simplicity, we set μ = 1 in the sequel. Here
u = u(x, t) ∈ R3 and p = p(x, t) ∈ R are non-dimensional quantities corresponding
to the flow velocity and the total kinetic pressure at the point (x, t), respectively.
u0(x) is the initial velocity field satisfying that ∇ · u0 = 0. We denote the Fourier
transform of the function f by f̂ , then fractional Laplacian is defined by

̂(−Δ)α
f(ξ) = |ξ|2αf̂(ξ),

more details on (−Δ)α can be found in [16], as a notation, we take Λ as (−Δ)
1
2 .

The fractional Navier-Stokes equations (1.1) were first considered by Lions [10],
they showed that if α � 5

4 , then equations (1.1) has a unique global smooth solution
for any smooth initial data (also see [19]). In [19], Wu showed that when α > 0,
equations (1.1) with u0 ∈ L2 possess a global weak solution and local in time strong
solution for given initial value u0 ∈ H1. Where, the weak solution means that (u, p)
satisfies (1.1) in the distribution sense and satisfies so-called energy inequality. Katz-
Pavlovié [7] showed that if 1 < α < 5

4 , the Hausdorff dimension of the singular
set at the time of first possible blow-up is at most (5 − 4α). Recently, Tang-Yu
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[17] studied the partial regularity of fractional Navier-Stokes equations (1.1) with
3
4 < α < 1, more precisely, they proved that the suitable weak solution is regular
away from a relatively closed singular set whose (5 − 4α)-dimensional Hausdorff
measure is zero. Further partial regularity results of equations (1.1), we refer readers
to [2, 15]. It is well-know that in case α < 5

4 , it remains unknown whether or not
the solution will preserve sufficiently smooth initial regularity. On the other hand,
for α � 5

4 , it is easy to prove that the Leray-Hopf weak solution of the fractional
Navier-Stokes equations is energy-conserved by a standard mollifying procedure,
and a taking limits argument. From this point of view, there is a rather subtle
relationship between energy equality and regularity for weak solutions. Therefore,
it is natural to consider the energy conservation problem of the weak solution to
the fractional Navier-Stokes equations and expect to have a better understanding
for the regularity of the equations (1.1).

When α = 1, equations (1.1) reduce to the classical incompressible Navier-Stokes
equations: ⎧⎨

⎩
∂tu + u · ∇u − Δu + ∇p = 0, x ∈ R3, t > 0
∇ · u = 0, x ∈ R3, t > 0
u|t=0 = u0(x), x ∈ R3.

(1.2)

It is well known since the work of Leray [9] and Hopf [6], that for any u0 ∈ L2
σ(R3)

one can construct a global weak solutions to (1.2), namely, a function u that, for
each T > 0, is in the class

u ∈ L∞(0, T ;L2
σ(R3)) ∩ L2(0, T ;H1(R3)) (1.3)

and solves (1.1) in a distributional sense. Here, L2
σ(R3) is the subspace of L2(R3) of

divergence-free vector functions. In addition, such a u satisfies the so-called energy
inequality:

‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(τ)‖2
L2 dτ � ‖u0‖2

L2 , ∀ t � 0. (1.4)

Much about the solutions of the Navier-Stokes equation is unknown, including
uniqueness and regularity. The main barrier is the fact that the energy equality,
which states that for any smooth solution u, it obeys the following basic energy
law:

‖u(t)‖2
L2 + 2

∫ t

0

‖∇u(τ)‖2
L2 dτ = ‖u0‖2

L2 , ∀ t � 0. (1.5)

In the context of weak solutions even in the class u ∈ L2H1, such a manipulation is
not feasible due to lack of sufficient regularity to integrate by parts. This leaves room
for additional mechanisms of energy dissipation due to the work of the nonlinear
term. A natural question that remains open is whether energy equality, which should
be expected from a physical point of view, is valid for weak solutions. Thus, an
interesting question is: how badly behaved u can keep the energy conservation. Lions
[11] and Ladyzhenskaya [8] proved independently that such solutions satisfy the
(global) energy equality (1.5) under the additional assumption u ∈ L4L4. Shinbrot
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[18] generalized the Lions-Ladyzhenskaya condition to

u ∈ Lr(0, T ;Ls(Rd)) with
2
r

+
2
s

� 1, s � 4. (1.6)

Yu in [20] given a new proof to the Shinbrot energy conservation criterion.
When considering distributional solutions (see definition 1.1) of 3D incompress-

ible Navier-Stokes equations (1.2), in this case there is not any available regularity
on velocity field u, apart the solution being in L2

loc(R
3 × [0, T )). The interest for

distributional solutions dates back to Foias [4], who proved their uniqueness under
the solution in Serrin class (i.e., u ∈ Lr(0, T ;Ls(Ω)) with 2

r + 3
s = 1, s > 3). Later,

Fabes, Jones and Riviere [3] proved the existence of distributional solutions for
the Cauchy problem, while the case of the initial-boundary value problem has been
studied mainly starting from the work of Amann [1]. Recently, The possible connec-
tion between distributional solutions and the energy equality has been considered
by Galdi [5], who proved that if distributional solution in L4(0, T ;L4(R3)), and with
initial data u0 in L2(R3), then energy equality (1.5) holds true. The key observa-
tion is the use of the duality argument and the above conditions to improve the
regularity of the solution (i.e., L∞(0, T ;L2(R3)) ∩ L2(0, T ;H1(R3))).

Inspired by the above mentioned works on energy conservation of classical Navier-
Stokes equations (1.2), the purpose of this note is to prove that, actually, for
generalize and extend Galdi’s energy conservation result of classical Navier-Stokes
equations to fractional Navier-Stokes equations (1.1). More precisely, setting

DT := {ϕ ∈ C∞
0 (R3 × [0, T )) : div ϕ = 0}.

Definition 1.1 Distributional solution. Let u0 ∈ L2(R3) with ∇ · u0 = 0, T > 0.
The function u ∈ L2

loc(R
3 × [0, T )) is a distributional solution to the fractional

Navier-Stokes equations (1.1) if

1. for any Φ ∈ DT , we have
∫ T

0

∫
R3

u · ∂tΦ − u · Λ2αΦ + u ⊗ u : ∇⊗ Φdx dt = −
∫

R3
u(x, 0) · Φ(x, 0) dx;

2. for any ϕ ∈ C∞
0 (R3), it holds that

∫
R3

u · ∇ϕ dx = 0,

for a.e. t ∈ (0, T ).

The main result of this paper is

Theorem 1.2. Suppose that 1 � α < ∞ and u ∈ L2
loc(R

3 × [0, T )) be a distribu-
tional solution in the sense of definition 1.1 to system (1.1). If

u ∈ L
4α

2α−1
(
0, T ;L4(R3)

)
,
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then ∫
R3

|u(t, x)|2 dx + 2
∫ t

0

∫
R3

|Λαu(x, τ)|2 dx dτ =
∫

R3
|u0|2 dx

for any t ∈ [0, T ].

Remark 1.3. This result extends the well-known Galdi’s energy conservation
criterion to fractional Navier-Stokes equations (1.1).

Remark 1.4. The non-uniqueness of weak solutions to the 3D Navier-Stokes
equations with fractional hyperviscosity (−Δ)α was showed in [13], where [1, 5

4 ).
However, theorem 1.2 reveals that this non-uniqueness mechanism is inhibited in the
class of L

4α
2α−1 (0, T ;L4(R3)). In other words, this non-uniqueness property destroys

the energy conservation of weak solutions. Here, the uniqueness property of weak
solutions refers to the identically vanishing solution.

2. Proof of theorem 1.2

This section is devoted to proof of theorem 1.2. For the sake of simplicity, we will
proceed as if the solution is differentiable in time. The extra arguments needed to
mollify in time are straightforward.

Let η : R3 → R be a standard mollifier, i.e., η(x) = Ce
1

|x|2−1 for |x| < 1 and
η(x) = 0 for |x| � 1, where constant C > 0 selected such that

∫
R3 η(x) dx = 1.

For any ε > 0, we define the rescaled mollifier ηε(x) = ε−3η(x
ε ). For any function

f ∈ L1
loc (R3), its mollified version is defined as

fε(x) = (f ∗ ηε) (x) =
∫

R3
ηε(x − y)f(y) dy.

If f ∈ W 1,p(R3), the following local approximation is well known

fε(x) → f in W 1,p
loc (R3) ∀p ∈ [1,∞).

The key ingredient to prove theorem 1.2 is the following several important lemmas.

Lemma 2.1 [12]. Let ∂ be a partial derivative in one direction. Let f, ∂f ∈ Lp(R+ ×
R3), g ∈ Lq(R+ × Rd) with 1 � p, q � ∞, and 1

p + 1
q � 1. Then, we have

‖∂(fg) ∗ ηε − ∂ (f(g ∗ ηε)) ‖Lr(R+×R3) � C‖∂f‖Lp(R+×Rd)‖g‖Lq(R+×R3)

for some constant C > 0 independent of ε, f and g, and with 1
r = 1

p + 1
q . In addition,

∂(fg) ∗ ηε − ∂ (f(g ∗ ηε)) → 0 in Lr
(
R+ × R3

)

as ε → 0, if r < ∞.
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Lemma 2.2 Gagliardo-Nirenberg inequality. [14] Let 0 � m,α � l, then we have

‖Λαf‖Lp(R3) � C ‖Λmf‖1−θ
Lq(R3)

∥∥Λlf
∥∥θ

Lr(R3)
,

where θ ∈ [0, 1] and α satisfies

α

3
− 1

p
=

(
m

3
− 1

q

)
(1 − θ) +

(
l

3
− 1

r

)
θ.

Here, when p = ∞, we require that 0 < θ < 1.

Lemma 2.3. Let u0 ∈ L2(R3) with ∇ · u0 = 0 and let u be a distributional solution
in the sense of definition 1.1 to system (1.1) and satisfies

u ∈ L
4α

2α−1
(
0, T ;L4(R3)

)
,

then we have

sup
t�0

‖uε(·, t)‖2
L2 +

∫ t

0

∫
R3

|Λαuε|2 dx dτ � C̃, ∀ t ∈ [0, T ],

where C̃ is a constant depending only on ‖u0‖L2 and
∫ T

0
‖u‖

4α
2α−1

L4 dt.

Remark 2.4. Lemma 2.3 shows that u can be identified with u ∈
L∞(0, T ;L2(R3)) ∩ L2(0, T ;Hα(R3)). This proves that u falls into the class of
Leray-Hopf weak solutions, we know that α � 5

4 implies energy equality to fractional
Navier-Stokes equations. Therefore, a natural question which arises is whether frac-
tional Navier-Stokes equations (1.1) with α � 5

4 is also satisfy energy equality for
distributional solutions.

Proof of lemma 2.3. By the definition of distributional solutions to (1.1), we obtain
that following identity∫

R3
u · ∂tΦε − u · Λ2αΦ

ε
+ u ⊗ u : ∇⊗ Φε dx =

d
dt

∫
R3

u(x, t) · Φε(x, t) dx,

for all Φε ∈ DT . Which in turn gives∫
R3

uε · ∂tΦ − uε · Λ2αΦ + (u ⊗ u)ε : ∇⊗ Φdx =
d
dt

∫
R3

uε(x, t) · Φ(x, t) dx.

Now, choosing Φ = uε in above identity, integrate by parts to find

1
2

d
dt

∫
R3

|uε|2 dx +
∫

R3
|Λαuε|2 dx =

∫
R3

(u ⊗ u)ε · ∇uε dx. (2.1)

Applying the Gagliardo-Nirenberg inequality and the Hölder inequality, one has∣∣∣∣
∫

R3
(u ⊗ u)ε · ∇uεdx

∣∣∣∣ � C‖(u ⊗ u)ε‖L2‖∇uε‖L2

� C‖(u ⊗ u)ε‖L2‖uε‖1− 1
α

L2 ‖Λαuε‖ 1
α

L2

� C‖(u ⊗ u)ε‖
2α

2α−1

L2 ‖uε‖
α−1
2α−1

L2 + ε‖Λαuε‖2
L2 . (2.2)

https://doi.org/10.1017/prm.2023.3 Published online by Cambridge University Press

https://doi.org/10.1017/prm.2023.3


206 F. Wu

Putting the above estimates (2.2) into (2.1), we get

d
dt

∫
R3

|uε|2 dx +
3
2

∫
R3

|Λαuε|2 dx � C‖(u ⊗ u)ε‖
2α

2α−1

L2 ‖uε‖
α−1
2α−1

L2

� C‖(u ⊗ u)ε‖
2α

2α−1

L2

(‖uε‖2
L2 + 1

)
. (2.3)

Next we apply Gronwall’s inequality to conclude that

sup
t�0

‖uε(·, t)‖2
L2 +

∫ t

0

∫
R3

|Λαuε|2 dx dτ � ‖u0‖2
L2 exp C

∫ t

0

‖(u ⊗ u)ε‖
2α

2α−1

L2 dτ

� C exp C

∫ t

0

‖u‖
4α

2α−1

L4 dτ

� C̃. (2.4)

for all t ∈ [0, T ], where C̃ is a constant depending only on viscosity u0 and∫ T

0
‖u‖

4α
2α−1

L4 dt. Let ε → 0 in (2.4), one has

sup
t�0

‖u(·, t)‖2
L2 +

∫ t

0

∫
R3

|Λαu|2 dx dτ � C, (2.5)

and this completes the proof of lemma 2.3. �

Proof of theorem 1.2. With lemmas 2.1 and 2.3 in hand, we are ready to prove our
main result. First, we define the function Ξ = uε and note that div uε = 0. Using
Ξε to test the first equation of system (1.1), one has∫

R3
Ξε (∂tu + u · ∇u + (−Δ)αu + ∇p) dx = 0, (2.6)

thus we have ∫
R3

uε (∂tu + u · ∇u + (−Δ)αu + ∇p)ε dx = 0. (2.7)

This yields

1
2

d
dt

∫
R3

|uε|2 dx +
∫

R3
|Λαuε|2 dx = −

∫
R3

div(u ⊗ u)ε · uε dx. (2.8)

Clearly,
∫

R3
|uε|2 dx −

∫
R3

|uε
0|2 dx + 2

∫ t

0

∫
R3

|Λαuε|2 dx dτ

= −2
∫ t

0

∫
R3

div(u ⊗ u)ε · uε dx dτ. (2.9)

Notice that

−2
∫ t

0

∫
R3

div(uε ⊗ uε) · uε dx dτ = 0,
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by using Höder’s equality and lemma 2.1, one has

− 2
∫ t

0

∫
R3

div(u ⊗ u)ε · uε − div(uε ⊗ uε) · uε dx dτ

= 2
∫ t

0

∫
R3

[(u ⊗ u)ε − (uε ⊗ uε)] · ∇uε dx dτ

� 2
∫ t

0

∫
R3

|(u ⊗ u)ε − uε ⊗ uε| |∇uε| dx dτ

� 2
∫ t

0

∫
R3

(|(u ⊗ u)ε − u ⊗ u| + |u ⊗ u − u ⊗ uε| + |u ⊗ uε − uε ⊗ uε|) |∇uε| dx dτ

� C ‖(u ⊗ u)ε − u ⊗ u‖
L

2α
2α−1 (0,T ;L2(R3))

‖∇uε‖L2α(0,T ;L2(R3))

+ C ‖u − uε‖
L

4α
2α−1 (0,T ;L4(R3))

‖u‖
L

4α
2α−1 (0,T ;L4(R3))

‖∇uε‖L2α(0,T ;L2(R3))

+ C ‖u − uε‖
L

4α
2α−1 (0,T ;L4(R3))

‖uε‖
L

4α
2α−1 (0,T ;L4(R3))

‖∇uε‖L2α(0,T ;L2(R3))

→ 0, as ε → 0, (2.10)

where we used the facts that
∫ T

0

‖∇uε‖2α
L2 dt � C

∫ T

0

‖uε‖2α−2
L2 ‖Λαuε‖2

L2 dt � C̃

and

u ∈ L
4α

2α−1
(
0, T ;L4(R3)

)
.

Letting ε goes to zero in (2.9), and using the facts (2.10), what we have proved is
that in the limit

∫
R3

|u(t, x)|2 dx + 2
∫ t

0

∫
R3

|Λαu(x, τ)|2 dx dτ =
∫

R3
|u0|2 dx.

This ends our proof of theorem 1.2. �
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