Stoichiometry of Nanocrystalline VO_x Thin Films Determined by Electron Energy Loss Spectroscopy

J. Li,* B. D. Gauntt,† J. Kulik,* and E. C. Dickey*†

- * Materials Research Institute, Pennsylvania State University, University Park, PA 16802
- † Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA 16802

Rocksalt-structured vanadium oxide VO_x (x = 0.8 - 1.3) nanocrystal thin films are used in infrared imaging devices due to its high temperature coefficient of resistance (TCR). The stoichiometry of VO_x is closely related with the defects in the crystalline lattice, which influence the TCR. However, it is very difficult to quantify the stoichiometry of VO_x by energy-dispersive x-ray spectroscopy because of energy overlap and strong absorption of the low-energy V-L and O-K peaks. In general, electron energy loss spectroscopy (EELS) is useful for determining the stoichiometry and valence of transition metal oxides by using 1) the k-factor method, 2) the ratio of the L_3/L_2 white line intensities or 3) the normalized white line intensity in reference to the continuum. But for VO_x , the energy of the O-K edge is very close to that of the V-L edge. Consequently, EELS quantification techniques are still problematic due to difficulty of separating the O-K signal from the V-L signal. The energy loss near edge structure (ELNES) of the oxygen K-edge of vanadium oxides reflects the local density of states (DOS) at the oxygen site and can be taken as "finger print" of the oxidation states [1,2]. Also, there is a relative chemical shift between oxygen K-edge and vanadium L_3 edge caused by systematic change of the V valence [2,3].

Four single-phase vanadium oxides VO, V_2O_3 , VO_2 , V_2O_5 have been used as standards for EELS. The relative chemical shift was verified (Figs. 1a, 1b). The four standards have similar local symmetry in their crystal structures - VO_6 type octahedron structures around V atom [1], therefore have similar energy levels right above the Fermi level – two $t_{2g}+e_g$ branches in DOS due to the V 3d - O 2p hybridization [1,2]. The change in the ELNES of oxygen K-edge when going from VO to V_2O_5 (Fig. 1a) is due to the increased contribution from t_{2g} peak to oxygen K-edge.

Close comparison of EEL spectra of VO and V_2O_3 standards (Fig. 1c) reveals also an increased energy "span" (ΔE_2 in Fig. 1c) of the O pre-edge peak when changing from VO to V_2O_3 . This is because with decreasing vanadium valence (going from V_2O_3 to VO), the DOS above the Fermi level also decreases; thus it appears that the DOS of the t_{2g} energy level is "truncated" by the Fermi level [1]. As the result, the energy "span" of $t_{2g}+e_g$ branches decreases and energy width of O pre-edge peak decreases.

Fig. 2a shows a comparison of EEL spectra from an ion-beam sputtered VO_x nanocrystalline thin film with that of VO and V_2O_3 standards and indicates that VO_x thin films have both a ΔE_1 and a ΔE_2 very similar to those of the VO standard. This reveals that the VO_x nanocrystal thin film has stoichiometry very close to VO (V^{2+}). Additional EELS data reveals that the same VO_x thin film has spatial inhomogeneity in the stoichiometry. Fig. 2b shows a comparison of EEL spectra from different areas in the VO_x thin film. The two spectra show differences both in chemical shift (ΔE_1) and in the energy width of O pre-edge peak (ΔE_2), corresponding to VO (area 1) and V_2O_3 (area 2), respectively. Also, the V-L₃, L₂ peaks exhibit broadening in the spectra from "area 2" suggesting

that the electron beam had passed through an area with overlapping of VO and V_2O_3 type stoichiometries in the sample. Structural models correlated with local high V vacancy concentration to explain observed stoichiometry inhomogeneity will be discussed.

References

- [1] C. Hebert et al., Eur. Phys. J. B 28 (2002) 407.
- [2] X.W. Lin et al., *Physical Review B* 47 (1993) 3477.
- [3] M. Willinger, *Dissertation*, Technische Universität Wien, Wien, Austria, (2001).
- [4] This research was sponsored by the U.S. Army Research Office and U.S. Army Research Laboratory under Cooperative Agreement Number W911NF-0-2-0026.

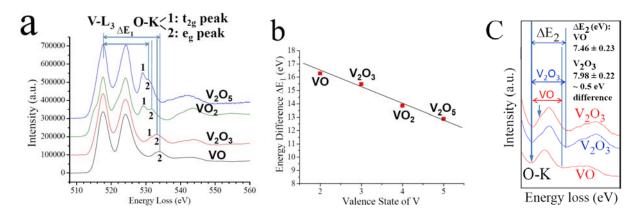


Fig. 1. (a) EEL spectra of vanadium oxides standards showing relative chemical shift (decreased ΔE_1 when going from VO to V_2O_5) between V-L₃ edge and O-K edge (e_g peak as reference). (b) A plot for ΔE_1 for 4 standards in Fig. 1a. (c) EEL spectra of O-K edge of VO and V_2O_3 standards, aligned to the minima before the O t_{2g} peak, showing increased energy "span" (ΔE_2) of the O pre-edge peak for V_2O_3 standard. The small vertical blue arrow indicates a small shoulder for V_2O_3 from the contribution of the t_{2g} peak.

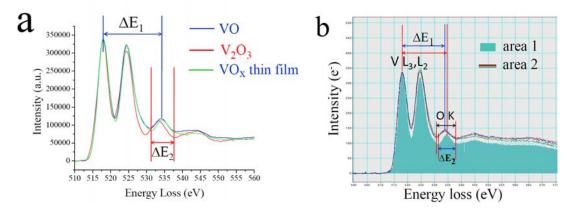


Fig. 2. (a) Comparison of EEL spectra of a VO_x nanocrystal thin film with that of VO and V_2O_3 standards, indicating that the VO_x thin film has stoichiometry very close to VO. (b) Comparison of two types of typical EEL spectra from different areas in VO_x thin film. The two spectra show differences both in chemical shift (ΔE_1) and energy width of O pre-edge peak (ΔE_2). Also, the V-L₃, L₂ peaks exhibit broadening for the spectra from "area 2".