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Abstract. We present estimates of cosmological parameters from the applica-
tion of the Karhunen-Loeve transform to the analysis of the 3D power spectrum
of density fluctuations using Sloan Digital Sky Survey galaxy redshifts. We use
Omh and fb = Ob/Om to describe the shape of the power spectrum, atg for
the (linearly extrapolated) normalization, and f3 to parametrize linear theory
redshift space distortions. On scales k ::; 0.16hMpc- 1 , our maximum likelihood
values are Omh = 0.264 ± 0.043, fb = 0.286 ± 0.065, atg = 0.966 ± 0.048,
and f3 = 0.45 ± 0.12. When we take a prior on Ob from WMAP, we find
Omh = 0.207 ± 0.030, which is in excellent agreement with WMAP and 2dF.
This indicates that we have reasonably measured the gross shape of the power
spectrum but we have difficulty breaking the degeneracy between Omh and fb
because the baryon oscillations are not resolved in the current spectroscopic
survey window function.

1. Introduction

Redshift surveys are an extremely useful tool to study the large scale distribution
of galaxies. Of the many possible statistical estimators, the power spectrum of
the density fluctuations has emerged as one of the easiest to connect to theories
of structure formation in the Universe, especially in the limit of Gaussian fluctu-
ations where the power spectrum is the complete statistical description. There
are several ways to measure the power spectrum (for a comparison of techniques
see Tegmark et al. 1998). Over the last few years, the Karhunen-Loeve method
(Vogeley & Szalay 1996; hereafter VS96) has been recognized as the optimal way
to build an orthogonal basis set for likelihood analysis, even if the underlying
survey has a very irregular footprint on the sky. A variant of the same technique
is used for the analysis of CMB fluctuations (Bond et al. 2000).

129

https://doi.org/10.1017/S0074180900196561 Published online by Cambridge University Press

https://doi.org/10.1017/S0074180900196561


130 Szalay et al.

The shape of the power spectrum is well described by a small set of parame-
ters (Eisenstein & Hu 1998). For redshift surveys, it is of particular importance
to consider the large-scale anisotropies caused by infall (Kaiser 1987). Using
a forward technique that compares models directly to the data, like the KL-
transform, enables us to easily consider these anisotropies in full detail. Here we
present results of a parametric analysis of the shape of the fluctuation spectrum
for the SDSS galaxy catalog.

2. Data

2.1. Sloan Digital Sky Survey

The Sloan Digital Sky Survey (SDSS; York et al. 2000, Stoughton et al. 2002)
plans to map nearly one quarter of the sky using a dedicated 2.5 meter telescope
at Apache Point Observatory in New Mexico. A drift-scanning CCD camera
(Gunn et al. 1998) is used to image the sky with a custom set of 5 filters (ugriz;
Fukugita et al. 1996 Smith et al. 2002) to a limiting Petrosian (1976) magni-
tude of m; f'.J 22.5. Observations are calibrated using a 0.5 meter photometric
telescope (Hogg et al. 2001). After a stripe of sky has been imaged, reduced,
and astrometrically calibrated (Pier et al. 2003), additional automated software
selects potential targets for spectroscopy. These targets are assigned to 3° diam-
eter (possibly overlapping) circles on the sky called tiles (Blanton et al. 2003a).
Aluminum plates drilled from the tile patterns hold optical fibers that feed into
the SDSS spectrographs (Uomoto et al. 1999). The SDSS Main Galaxy Sample
(MGS; Strauss et al. 2002) will consist of spectra of nearly one million low red-
shift ((z) f'.J 0.1) galaxies creating a three dimensional map of local large scale
structure.

2.2. Large Scale Structure Sample

Considerable effort has been invested in preparing SDSS MGS redshift data for
large scale structure studies. The first task is to correct for fiber collisions.
The minimum separation between optical fibers is 55" which causes a corre-
lated loss of redshifts in areas covered by a single plate. Galaxy targets that
were not observed due to collisions are assigned the redshift of their nearest
neighbor. Next the sky is divided into unique regions of overlapping spectro-
scopic plates called sectors. The angular completeness is calculated for each
sector as if the collided galaxies had been successfully measured. Galaxy mag-
nitudes are extinction-corrected with the (Schlegel et al. 1998) dust maps, then
k-corrections are applied and rest frame colors and luminosities are calculated
(Blanton et al. 2003b). Subsamples are created by making appropriate cuts in
luminosity, color, and/or flux. A luminosity function is then calculated for each
subsample (Blanton et al. 2003c) and used to create a radial selection function
assuming Om = 0.3 and OA = 0.7 cosmology.

This analysis considers two samples of SDSS data, which we will label sam-
ple 10 and sample 12. Both samples were prepared in similar manners, al-
though using different versions of software. Sample 12 represents a later state
of the survey and the sample 10 area is contained in sample 12. Sample 10 rep-
resents 1983.39 completeness-weighted square degrees of spectroscopically ob-
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served SDSS data and 165,812 MGS redshifts. Sample 12 has 205,484 redshifts
over 2406.74 square degrees. Both samples are larger than the 1360 square de-
grees of spectroscopy in data release 1 (DR1; Abazajian et al. 2003) of the SDSS.
The geometry of the samples and DR1 are qualitatively similar, consisting of
two thick slices in the northern cap of the survey and three thin stripes in the
south. The samples used have a luminosity cut of -19 ~ M; ~ -22, where
h = 1.0 and M* = -20.44 (Blanton et al. 2003c). Rest frame quantities (ie
absolute magnitudes) are given for the SDSS filters at z=O.l, the median depth
of the MGS. In a study of the two point correlation function of SDSS galaxy
redshifts, Zehavi et al. (2002) ·found that the bias relative to M* galaxies varies
from 0.8 for galaxies with M = M* + 1.5 to 1.2 for galaxies with M = M* -1.5.
Norberg et al. (2001) found similar results for the 2dF, with the trend becoming
more pronounced at luminosities significantly greater than L*. The dependence
of clustering strength on luminosity could induce an extra tilt in the power spec-
trum because more luminous galaxies contribute more at large scales and less
luminous galaxies contribute more at small scales due to the number of available
baselines. We minimize this effect by staying within M = M*± rv 1.5. A uni-
form flux limit of m; S 17.5 was applied, leaving 110,345 redshifts for sample 10
and 134,141 for sample 12. Although there are luminosity limits for this sample,
it is essentially a flux-limited sample with a (slowly) varying selection function.
We used galaxies in the redshift range 0.05 S z S 0.17.

3. Algorithm

3.1. The Karhunen-Loeve Eigenbasis

Following the strategy described in VS96, the first step in a Karhunen-Loeve
(KL) eigenmode analysis of a redshift survey is to divide the survey volume into
cells and use the vector of galaxy counts within the cells as our data. This allows
a large compression in the size of the dataset without a loss of information on
large scales. Our data vector of fluctuations d is defined as

di = Ci/ni - 1 (1)

where Ci is the observed number of galaxies in the i t h cell and ru = (Ci) is
its expected value, calculated from the angular completeness and radial selec-
tion function. The data is "whitened" by the factor l/ni to control shot noise
properties in the transform (VS96). We call this the "overdensity" convention.

The KL modes are the solutions to the eigenvalue problem RW n = An\lin
with the correlation matrix of the data given by

~j = (didj) = ~ij + ~ij/ni + 'TJij/(ninj) (2)

where ~ij is the cell-averaged correlation matrix, 8i j / n i is the shot noise term,
and 'TJij/(ninj) can be used to account for correlated noise (not used in this
analysis). The most obvious source of correlated noise in the MGS would be
differences in photometric zero points between different SDSS imaging runs,
which would result in "zebra stripe" patterns of density fluctuations. The MGS
selection has a magnitude limit; but no color selection terms, so the variation
in target density depends only linearly on the photometric calibration. The r
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band zero point variation is 0.02 mag rms (Abazajian et al. 2003), indicating
that the density variation should be ~ 2%. The transformed data vector B is
the expansion of d over the KL modes \I1n :

(3)
n

The KL basis is defined by two properties: orthonormality of the basis vectors,
\11m . \11n = 8mn, and statistical orthogonality of the transformed data, (BmBn) =
(B;)8mn.

3.2. The Correlation Function in Redshift Space

In order to directly compare cosmological models to our redshift data using
a two point statistic we must calculate the redshift space correlation function
~(s)(ri, rj), where r, and rj describe positions in the observable angles and red-
shift. The infall onto large scale structures affects the velocities of galaxies
leading to an anisotropy in redshift space for a power spectrum that is isotropic
in real space (Kaiser 1987). Szalay et al. (1998) derived an expansion of the cor-
relation function that accounts for this anisotropy in linear theory for arbitrary
angles. The expansion is

(s) ( ) (0) (0) (0)
~ ri, rj = COO~O + C02~2 + C04~4 + ...,
d,n)(r) =~ jdkk2k-njL(kr)P(k)

27r

(4)

(5)

where the CnL coefficients are polynomials of f3 and functions of the relative
geometry of the two points. The quantity f3 relates infall velocity to matter
density and is well approximated by the fitting formula f3 = n~6 jb where b
is the bias parameter. Further terms in Eq. (4) are negligible as long as 2 +
8In¢(r)j8Inr (where r is the distance to the cell and ¢(r) is the radial selection
function) does not significantly differ (i.e. orders of magnitude) from unity. For
the redshift range considered in this analysis 12+8In¢(r)j8Inrl ~ 4. When using
counts-in-cells, we must calculate the cell-averaged correlation matrix

(6)

where Wi(y) is the cell window function and Xi is the position of the i t h cell.
To be precise, Wi (y) should describe the shape of the cell in redshift space.
Numerical calculation of this multi-dimensional integral can be computationally
expensive. However, for the case of spherically symmetric cells we can change
the order of integration and perform the redshift space integrals in Eq. (6) an-
alytically before the k-space integral in Eq. (5). If both cells have the same
window function, we can use Eq. (4) as our cell-averaged correlation function
(with ri and rj indicating the cell positions) if we replace P(k) with P(k)W2(k)

in Eq. (5) where W(k) is the Fourier transform of the cell window function. This
results in a oile dimensional numerical integral. The full technical details of our
method will be presented in Matsubara et al. (2004).
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We used hard spheres as our cell shape and placed them in a hexagonal
closest packed (the most efficient 3D packing, with a 74% space-filling factor)
arrangement. The current slice-like survey geometry and packing arrangement
causes some spheres to partially protrude outside the survey. The effective
fraction of the sphere that is sampled is also affected by the angular completeness
of our survey (which averages rv 97%). We calculate our expected counts as if
the sphere was entirely filled and multiply the observed galaxy counts by 1/Ii
where Ii is the fraction of the ith sphere's volume that was effectively sampled.
This sparser sampling also increases the shot noise by a factor of 1/Ii. Cells
with Ii < 0.65 were rejected as too incomplete. We found that a 6h-1Mpc
sphere radius allowed us to fill the survey volume with a computationally feasible
number of cells without the spheres protruding too much out of the survey, while
smoothing on sufficiently small length scales so that we do not lose information
in the linear regime (21r/k ~ 40h-1 Mpc). We used 14,194 cells for sample 10
and 16,924 for sample 12.

The calculation of the sampling fraction for each cell is difficult due to the
complicated shapes of the sectors (§2.2.). We created a high resolution angular
completeness map in a SQL Server database using 107 random angular points
over the entire sky. Each point was assigned a completeness weighting by finding
which sector contained the point or setting the completeness to zero for points
outside the survey area. We used a Hierarchical Triangular Mesh (HTM; Kunszt
et al. 2001) spatial indexing scheme to find all points in the completeness map
that pierce a cell and calculate the volume weighted completeness for that cell.

3.3. Eigenmode Selection

The KL transform is linear, so there is no loss of information if we use all of
the eigenmodes. However, if we perform a truncated expansion we can use
the KL transform for compression and filtering. The difference between the
original data vector and a truncated reconstruction, d = Ef!:fN B(Wi, where
we use only M out of a possible N modes can be related to the eigenvalues of
the excluded modes by (d - d)2 = E~M+l Ai. The error is minimized (in a
squared sense) when we retain modes with larger eigenvalues and drop modes
with smaller eigenvalues, which is sometimes called optimal subspace filtering
(Therrien 1992).

The eigenvalue of a KL mode is also related to the range in k-space sampled
by that mode. Our models assume that linear theory is a good approximation,
which is only valid on larger scales. Consequently we only wish to use KL modes
that fall inside a "Fermi sphere" whose radius is set by our cutoff wavenumber k],
If we sort modes by decreasing eigenvalue, they will densely pack k-space starting
from the origin. The modes resist overlapping in k-space due to orthogonality.
The shape of a KL mode in k-space resembles the Fourier transform of the survey
window function. This means that the number of KL modes within the "Fermi
sphere" depends mostly on the survey window function and does not drastically
change if we change the size of our cells, as long as we have significantly more
cells than modes (which means that our cells must be smaller than the cutoff
wavelength). In a fully three dimensional survey the modes would fill k-space
roughly spherically and M ex: kJ. However, the current SDSS geometry resembles
several two dimensional slices, resulting in KL modes that resemble cigars in k-
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space. These modes pack layer-by-layer into spherical shells whose diameters
are integer multiples of the long axis of the mode. See Figure 5 in (Szalay et al.
2003) for a visualization. This results in a scaling more like M <X kJ.

In choosing the number of KL modes to use in our analysis we try to keep
as many modes as possible for better constraints on our parameter values while
requiring that our modes are consistent with linear theory. We have developed
a convenient method for determing the range in k-space probed by each KL
mode. We separate the integral in Eq. (5) into bandpowers in k. This allows us
to determine how strongly each mode couples to each bandpower, which shows
a coarse picture of the spherically averaged position of the mode in k-space.
Figure 1 shows a grayscale image of how the modes couple to the bandpowers.
Once we choose a value for the cutoff wavenumber kf, we truncate our expansion
at the mode where wavenumbers larger than kf start to dominate.

Figure 1. Grayscale image of wave number vs. mode number. The horizon-
tal line indicates k f == O.16k Mpc- 1 . The vertical line indicates the truncated
number of modes used for likelihood analysis.

We can use the statistical properties of the transformed data to check
that we are avoiding non-linearities. A rescaled version of the KL coefficients
b., == Bn/~ should be normally distributed. Non-linear effects would cause
skewness and kurtosis in the distribution of bn . We do not see evidence of non-
linear effects when we use kf ~ 0.16h Mpc"! (corresponding to length scales
21r/kf 2:: 40h-1 Mpc). This value for the cutoff wavenumber leaves us with 1500
modes for sample 10 and 1850 modes for sample 12.
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We estimate cosmological parameters by performing maximum likelihood anal-
ysis in KL space. The likelihood of the observed data given a model m is

(7)

where C m is the covariance matrix and can be calculated as the projected model
correlation matrix,

(8)

Our method is based upon a linear comparison of models to data, thus the
Rm (and Cm) model matrices only contain second moments of the density field.
This linear estimator is computationally more expensive than quadratic or higher
order estimators, but the results are less sensitive to non-linearities. For a com-
parison of different estimation methods, see Tegmark et al. (1998).

In practice we must decide on an explicit parametrization. We construct a
power spectrum assuming a primordial spectrum of fluctuations with a spectral
index n; = 1. We use a fitting formula from Eisenstein & Hu (1998) to char-
acterize the transfer function, including the baryon oscillations. We fit for Omh
and fb = Ob/Om while taking a prior of Ho = 72 ± 8 km s-1 from the Hubble
key project (Freedman et al. 2001) and fixing TCMB = 2.728K (Fixsen et al.
1996). We fit the linearly extrapolated akg for normalization, where akg = basm
and b is the bias. Linear theory redshift-space distortions are characterized by
/3 (see §3.2.).

In order to search an appreciable portion of parameter space we have de-
veloped efficient methods to calculate the model covariance matrices Cm. The
straightforward approach would be to calculate the model correlation matrix for
a set of parameters and then project into the KL basis and calculate a likelihood,
but this is computationally expensive. The covariance matrix can easily be writ-
ten as a linear combination of matrices and powers of akg and /3 (see §3.2.), so
we can project pieces of the correlation matrix and add them in the appropriate
proportions for those parameters. However, the shape of the power spectrum
depends on Om, fb, and Ho in a non-trivial way. We project each bandpower
of the correlation matrix (see §3.3.) separately and add the pieces of the covari-
ance matrix together with appropriate weighting to represent different power
spectrum shapes. This alleviates the need for further projections. We must be
careful when choosing our bandpowers so that we retain sufficient resolution to
accurately mimic power spectrum shapes (especially baryon oscillations), but
we must also be careful that our k ranges are large enough that the integrals
converge correctly.

Note that a non-optimal choice of fiducial parameters does not bias our
results, but it can result in non-minimal error bars. This procedure can be
iterated if necessary.
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4. Results and Discussion

Our best-fit maximum-likelihood parameter values for samples 10 and 12 are
presented in Table 1. Results are given for the priors described in §3.4. and
also when using the additional prior 0b = 0.047 ± 0.006 from WMAP (Spergel
et al. 2003). We show the results of sample 10 and 12 to give some indication
of sample variance, although sample 10 is a subset of sample 12.

The middle column of Figure 2 shows the marginalized one-dimensional and
two-dimensional confidence regions for the power spectrum shape parameters
Omh and Ib for sample 10 without the additional prior on 0b. There is a strong
correlation between Omh and lb. The gross shape of the power spectrum (Le.
ignoring the baryon oscillations and concentrating on the position of the peak
and slope of the tail) is nearly constant along the ridge of this correlation due
to a degeneracy between shifting the position of the peak with Omh and adding
power to the peak with lb. However, the strength of the baryon oscillations varies
significantly over this range. Table 1 shows that our estimates of Omh agree well
with the WMAP value of 0.194 ± 0.04 (Spergel et al. 2003) and the 2dF value
of 0.20 ± 0.03 (Percival et al. 2001) when we use the additional prior on f!b, and
the associated confidence regions are shown in the left column of Figure 2. The
results with the f!b prior indicate that the gross shape of the power spectrum we
measure is consistent with WMAP and 2dF, as can be seen in Figure 3 which
shows the (isotropic) real-space power spectra inferred from the cosmological
parameter estimates from the three surveys. However, the results without the
0b prior show that we have difficulty breaking the degeneracy between Omh and
fb because the baryon oscillations are not resolved due to the current state of
the SDSS window function.

Table 1. Maximum likelihood parameter values and 68% confidences
(marginalized over all other parameters). Ob indicates that a WMAP prior
was used.

Paramo 10 10 + Ob 12 12 +Ob

Omh 0.264 ± 0.043 0.207 ± 0.030 0.270 ± 0.057 0.229 ± 0.029
fb 0.286 ± 0.065 0.163 ± 0.031 0.233 ± 0.088 0.149 ± 0.026

L 0.966 ± 0.048 0.971 ± 0.049 0.978 ± 0.043 0.980 ± 0.043(J'Sg

(3 0.45 ± 0.12 0.44 ± 0.12 0.44 ± 0.11 0.43 ± 0.11

The right column of Figure 2 shows the marginalized one-dimensional and
two-dimensional confidence regions for akg (normalization) and (3 (distortions)
for sample 10. Again there is a strong correlation between these parameters,
which is expected from their dependence on b. Our constraint on akg is strong,
but we can only measure (3 to rv 20% which limits our ability to perform an
independent estimate of b. We can compare our results to WMAP by examining
the combination of parameters akg(3 = akmO~6, for which we obtain the value
0.44±0.12, in excellent agreement with the WMAP result of 0.44±0.10 (Spergel
et al. 2003). By combining our measurements with WMAP results we find b =
1.07 ± 0.13 for our galaxy sample, but this compares information dominated by
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Figure 2. Likelihoods for parameters using sample 10. The left column
shows the power spectrum shape parameters with an 0b prior. The middle
column shows the power spectrum shape parameters without an Ob prior. The
right column shows normalization and distortion parameters. The contours
in the joint parameter plots are the two-dimensional 1, 2, and 3 a contours.
The points in the fb vs. Omh plots are MCMC points from WMAP (alone).
Parameter combinations not plotted are nearly uncorrelated.
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galaxies with redshifts 0.1 ::; z ::; 0.15 to present-day matter. If we use a AC DM
model to extrapolate to the present, we would find b~ 1.16. Our galaxies cover a
range of luminosities but our signal is dominated by the more luminous galaxies
(brighter than L*) because there are more long baselines available for the more
distant galaxies. This must be kept in mind when comparing our measurement
of atg with other estimates using SDSS data which focus on L* galaxies (Szalay
et al. 2003, Tegmark et al. 2004).

This analysis used less than one third of the data that will comprise the
completed SDSS survey. Our ability to measure cosmological parameters will
increase as the survey area increases, but we should also gain leverage in resolving
features in the power spectrum as our survey window function becomes cleaner.
The thickest slice of data from the samples used was roughly 10°, implying a
thickness of f'.J 50h-1 Mpc at z r-;» 0.1. As the slices become thicker, the KL
modes will become much more compact in that direction in k-space. Thus we
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Figure 3. Plots of the real space P(k) from best-fit model parameters for
SDSS (sample 10 with and without the Ob prior), WMAP, and 2dF. All use
atg from the SDSS for normalization. The vertical dotted lines indicate the
range in k used in the SDSS analysis.

will benefit from the change in the survey aspect ratio in addition to the increase
in survey area.
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