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1. Introduction

Let it be a fixed integer g 2. A positive integer n is called unitarily k-free, if
the multiplicity of each prime factor of n is not a multiple of k; or equivalently,
if n is not divisible unitarily by the k-th power of any integer > 1. By a unitary
divisor, we mean as usual, a divisor d > 0 of n such that (d,n/d) = 1. The
integer 1 is also considered to be unitarily fc-free. The concept of a unitarily
k-free integer was first introduced by Cohen (1961); §1). Let Q* denote the set
of unitarily k-free integers. When k -2, the set Of coincides with the set Q* of
exponentially odd integers (that is, integers in whose canonical representation
each exponent is odd) discussed by Cohen himself in an earlier paper (1960; §1
and §6). A divisor d > 0 of the positive integer n is called a unitarily k -free
divisor of n if d E Q*. Let T*t)(n) denote the number of unitarily fc-free
divisors of n.

In this paper we prove the following.

THEOREM 1. For x 2 3 ,

where Aft)(x) = O(xm exp{- A log3'5*(loglog*)-"5}) or O{x"), according as
k = 2,3 or k g 4; A being a positive constant, y is Euler's constant, a is the
number which appears in the Dirichlet divisor problem (2.19) and ak is the
constant given by (2.1).

THEOREM 2. / / the Riemann hypothesis is true, then for x g 3, the error
term Afk)(jc) in (1.1) is given by A?k)(x) = O(x<2-°v<I+2<c(1"a))w(x) or O(x"),
according as k =2,3 or k § 4 ; where CO(JC) = exp{A logx(loglogx)'1}, A being
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a positive constant and a is the number which appears in the Dirichlet divisor
problem (2.19).

2. Prerequisites

Let ju.(n) and <f>(n) denote respectively the Mobius function and the Euler
totient function. Let ^*(n) denote the unitary analogue of the Mobius
/x-function defined by ix*(n) = (- l)"<n>,where v(n) is the number of distinct
prime factors of n. Let cr*s{n) denote the sum of the s-th powers of the
square-free divisors of n. It is known Cohen (1961; Lemma 3.5) that

where the product is extended over all primes p and £(k) is the Riemann Zeta
function.

It can be easily shown by using standard arguments that

(2.2) X V '=O(x'-) for s>0 and , O S « < 1 .

We need the following lemmas:

LEMMA 2.1. (Suryanarayana and Sita Rama Chandra Rao (1975; Lemma
2.8)). For x g 3 and /or euery e > 0,

(2.3)
m £i

(m.n)-l

where the O-constant is independent of n and x and 8(x) is given by

(2.4) 8(x) = exp{-A log3'5* (log log x)"5},

A being a positive constant.

REMARK Hereafter, all the constants implied by the O-symbols are
independent of n and JC.

LEMMA 2.2. (Suryanarayana and Sita Rama Chandra Rao (1975; Lemma
2.13)). For* i: 3,

(2.5) N*(x)=*Z n*(m)<t>(m)=O(x28(x)),
m Si

where 8(x) is given by (2.4).

LEMMA 2.3 (Suryanarayana and Sita Rama Chandra Rao (to appear))
For x g 3 and for every e > 0,
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[3] Unitarily Ic-free divisors

(2.6) N*(x)= X f^*(m)<t>(m)=O(<T*1+e(n)x28(x)).

21

LEMMA 2.4. For x g 3, s >2 and for every e > 0,

(2.7)

PROOF. Putting f(m) = Mm', it can be easily shown that

By partial summation and Lemma 2.3, we have

<r*l+.(n)8(x)

since 5(JC) is monotonic decreasing. Also, since s >2,

Hence the lemma follows.
As a particular case of (2.7) for n = 1, we have

(2.8)
m

LEMMA 2.5. For i § 3 , s >2 and for every e > 0 ,

. - m v u*(m)<f>(m)logm „/cr?1+e(n)5(jc)logac\
(2.9) 2, tp S^-OI -7^5 1.

PROOF. Putting g(m) = log m/m', it can be easily shown that

By partial summation, Lemma 2.3 and making use of the argument adopted in
the proof of Lemma 2.4, we get (2.9).

As a particular case of (2.9) for n = 1, we have
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( 2 1

EMMA 2.6 .

(m.n)=l

z
For

m)4>(
m'

l

J

s

n

>

i)

*(m)<£(m)log

2,

= £(s - 1 )11 (

m nl

2

P "

f5(jc)logx\
I Xs-2 ;•

1 \ri fPtP"'-1)1 ' p ' J U (ps-2p + l

PROOF. Let e(m) = 1 or 0 according as m = 1 or m > 1. Then the series on
the left becomes

y H*(m)<l>(m)e((m, n))

This series is absolutely convergent for s > 2 and the general term is a
multiplicative function of m. Hence the series can be expanded into an infinite
product of Euler type (Hardy and Wright (1960; Theorem 286)), so that we have

n fi p ~ f
1 1 1 1

 n « Zi n ( i - ix»- i )
P I P '-1 P

p V p -

^ P

Hence the lemma follows.
As particular case of (2.11) for n = 1, we have the following:

- A + A ) for , > 2
m-1 rn p

LEMMA 2.7. For s > 2,

( 2 J 3 ) ^ W W l o , ^ . ^ . , ^ / , 2 i
m-l •" P \ P P

Jf(i-l) | y(2p-l)logp]
U(s-i) v p'-2P + i r
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PROOF. This series is uniformly convergent for s § 2 + e > 2 and so by
termwise differentiation of the series in (2.12) with respect to s, we get (2.13).
For finding the derivative of the right hand side expression of (2.12) with
respect to s, we write

Then

log f(s) = log C(5 - 1) + 2 log (l - ^Iry +1?) ,

so that

f ( s - l )

and this gives

v (2p-l)logp
- f ( ' 2 + l)

As a consequence of (2.8) and (2.12), we have

(214) y M
(2.14) ^

Similarly, as a consequence of (2.10) and (2.13), we have

(fe) , y (2p - l)logp

and as a consequence of (2.7) and (2.11) for s = k + 1, we have by (2.1):

LEMMA 2.8 (Suryanarayana and Sita Rama Chandra Rao (1973; Theorem
4.1)). // r(m, n) is the number of divisors of m which are prime to n, then for

(2.17) X T(m; n) = £ ^ (\ogx +2r - 1 + a(n)) + O(a*a(n)xa),
• Si n

where y is Euler's constant, a(n) is given by

(2 18) a(n)= — Y UMMA = V
(2.18) a{n) ^ ( n ) ^ d &
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and a is the number which appears in the Dirichlet divisor problem namely

(2.19) 2 r (m) = JC ( l o g * + 2 r - l ) + O(jc°).

It is known that | < a < 5 (Hardy and Wright (1960; page 272)). The best result
known so far is due to Kolesnik (1969), who proved that the error term in
(2.19) is O(xnm+') for every e > 0 . There is a conjecture that a=\ + e.

LEMMA 2.9. For x s 3,

(2-20) k ^ -~aki'pt

PROOF. We have by (2.18),

k ~ ' ) •

|Lt*(m)<fr(m)q(m)=

m
= y logp

.=

M< pk+l dk+'(p -

(2.21) = A + B , say.

We have ix*(pd) = fi*(d) and <{>(pd) = p<t>(d) when p | d . Hence

v /

4
(2.22) _ y M

pftx p
fi*(d)<j>(d)\ogp

= /4,-y42, say.

We have by (2.14),

v logp
1 ~ ^
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By (2.1), we have ak < 1 and pk(p - l )gp ' + l /2 , so that the second term in
(2.23) is

Also the O-term in (2.23) is

u fix p \pi \P,

since x8(x) is monotonic increasing and

£ i°££= O(logjc) (Hardy and Wright (1960; Theorem 425)).
p=* P

Hence

(2.24) A, = a»£ *( - D + O

We have by (2.16) and (2.22),

A2 =
PS»P VP '^ dSx/p

(d,p)=l

logp

(2.25)

By (2.1), we have ak < 1 and p - 1 g p/2, (pk+1 - 2p + 1) > p*+I/2, (pl - 1) < p \
so that the second term is (2.25) is

Also, the O-term in (2.25) is O(8(x)logxlxk~t), since it is the same as the
O-term in (2.23).

Hence

(2.26) (p'-Qlogp 8(s)logs\

Also, by (2.21) and (2.16),
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" ~~ Zj

(p,d)=l

— ZJ _
pa* P

(p.d)=

n*(d)<j>(d)\ogp
P «

(2.27)
(d.p)-l

psx P ak pt+1-2p 0"
_ _

(pfc-l)l0gp (p"-l)logp

By (2.1), we have a* <1 and(pt+1-2p + l)>pt+72, (p* - l)<pk, so that the
second term in (2.27) is

Also, the O-term in (2.27) is O(S(x)\ogx/xk '), since it is the same as the
O-term in (2.23).

Hence

D ^ (p"-l)logp . ^(8(x)\ogx\
(2.28) B - «*

Hence by (2.21), (2.22), (2.24), (2.26) and (2.28), we have

n*(m)<j>(m)a(m) _ (p*-l)logp

k

and the lemma is proved.

LEMMA 2.10. For x ^ 3 and for every e > 0,

(2.29) 2 M

where x(m)= 2 4"°".
dim
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PROOF. Let

Then we have

DlSl

(m.d)-l

If n is square-free, then it is easy to show that

ti(d)=l or 0,

according as n | m or n ^ m.
Hence, if n is square-free, then we have

and so by (2.3),

(2.30) =o(xS(x) [I (I + <r*1+.(p)}) = o(xS(x) f] 3)

Now,

2>*(nMm;n)=2/**(") 2 1 = 2/**(«) 2
(d,n >= 1

2 M*
rjfm

Hence, for square-free r, applying (2.30), we get
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2 fi*(.n)T(m ; n) =
n Si

Now the lemma follows, since

2 M2(r)3"<" = 2 S /*2(r)3-'> = V f f [ ( l + 3)}

LEMMA 2.11. (Suryanarayana and Sita Rama Chandra Rao (1975; Lemma
2.16)). // the Riemann hypothesis is true, then for x s 3 and for every e >0,

(2.31)

where

(2.32)

A being a positive constant.

LEMMA 2.12 (Suryanarayana and Sita Rama Chandra Rao (to appear;
Lemma 4.3)). / / the Riemann hypothesis is true, then for x is 3 and for every
e > 0,

(2.33)
m ^x

(m.n ) - l

LEMMA 2.13. If the Riemann hypothesis is true, then for x g 3 , J > 2 and
for every e > 0,

U->U Zrf ™» - «^(. v 5-3/2 I -
m>x " I •* /

(m,nl-l

PROOF. We get this lemma by following the same argument as in Lemma
2.4 and making use of Lemma 2.12 instead of Lemma 2.3. We have only to
replace o-*,+c(n)8(x) in Lemma 2.4 by

a- *$+t (n) x ~* (o (x) log x.

Similarly we get, as in Lemma 2.5, the following.

LEMMA 2.14. // the Riemann hypothesis is true, then for x § 3, s > 2 and
for every e > 0,
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n ,Sx y n*(m)<f>(m)\ogm _ nIcr%.(n)w(x)log2x

The results corresponding to (2.14), (2.15) and (2.16) in case the Riemann
hypothesis is true are given by the following:

(2.36) 2 *

li*(m)4>(m)logm _ ff'(fc) , y (2p - l)logp

v M(m)<Hm)_ n f P ( p " - D

(m,n)= 1

( •

LEMMA 2.15. // the Riemann hypothesis is true, then for x g 3,

Q v ^*(ffl)<j>(m)a(m) _ _ v logp , n(o>(x)\og2x\

' 4 a ^ +^l
(o>(x)\og2x\
l xk-/2 /•

PROOF Following the same argument adopted in Lemma 2.9 and making
use of (2.38) instead of (2.16), we get this lemma. We have only to replace S(x)
in Lemma 2.9 by x '«j(x)logx.

Similarly we get, as in Lemma 2.10, and making use of (2.31) instead of
(2.3), the following.

LEMMA 2.16. If the Riemann hypothesis is true, then for x g 3 and for every

(2.40) ^ n*(n)T(m;n)= O (x(m)xia}(x)logx).
nil

3. Proof of Theorem 1

Let qt(n) denote the characteristic function of the set of unitarily fc-free
integers. It has been shown by Cohen (1961; 3.7 and 3.1 as r—>oo) that

qt(n)= 2 M*(«0-

Hence
T?*,(H)= 2 <ft(r)= 2 X f*(d)= 2 /t*(d)

1 =

https://doi.org/10.1017/S1446788700016888 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700016888


30 D. Suryanarayana and R. Sita Rama Chandra Rao [12]

Hence

(3.1) 2 T ? M ( « ) = 2 2 M*WM«;d)= 2 n*{d)r(u;d),
"Sx nS* d k u , n dkuSx

the summation on the right being taken over all ordered pairs (d, u) such that
dku ^x.

Let z = x "\ Further, letO<p = p(x)<l, where the function p (x) will be
suitably chosen later.

Now, if dku Six, then both d > pz and u > p~k can not simultaneously
hold, and so from (3.1), we have

(3.2) 2 ^ > ( n ) = 2 ^*(d)r(w;d) + 2 ii*(d)r(u;d)
" a * dkSx dkusx

dSpz uSp *

SSp "

By (2.17), we have

S,= 2 M*(d)r(M;d)= 2
d*us* da<>z

dSpz

d Spz U d Spr

where

If fc = 2 or 3, then since i < a < | , we have ka < 1, so that by (2.2),
ta) = O (p-'-z);

and if k g4, then fca > 1, so that £?k)(x) = O(xa).
Hence we have

( 3 4 ) ET^x) = O(p'-*-z) or

according as fc = 2,3 or fc =£ 4.
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Now, by (3.3), (2.14), (2.15) and (2.20), we have

(3.5) S, =

_« [r(fc) , y (2p-l)logp1

logp

We have by (2.29),

31

Since 8(x) is monotonic decreasing and (Vx/u)^pz we have
5(pz). Also,

Hence

(3.6)

Also, we have by (2.29),

(3.7) S,= E 2
nip" ' dSf.2

= O (p '"* z 8 {pz) log4 {^j.

Hence, by (3.2), (3.5), (3.6) and (3.7), we have
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Now, we choose

(3.9) p=p(x) = {8(x"2k)r,

and write

(3.10) /U) = log'(x"2k){loglog(x"2t)}-*=(^J U'(V-log2k)K

where U = log x and V = log log x.

For V & 2 log 2k, that is, U S 4fc \ x g exp (4A:2),

we have

(3.11) V-»s

and therefore

(3.12) 5/c4L/^^S/(x)S/c- ' t7 'V" ' .

We assume without loss of generality that in (2.4)

(3.13) A<\.

By (3.9), (2.4) and (3.10), we have

(3.14) p

By (3.11), we have

K U V =2k'

Hence by (3.12), (3.13), (3.14) and the above,

so that p g
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Hence

(3.15) log(-) =ilog0/^) = 0(logjc) and pz^xU2k.

Since S(x) is monotonic decreasing, 5(pz)S S(x"2k), so that by (3.12) and
(3.14), we have

(3.16) p "" 8(pz) ^ p g exp { - y k~' [/' V"*} .

Hence, by (3.15) and (3.16), the first and second O-terms of (3.8) are

o(xm exp{ - y fc-i U* V"*} log4*) .

Hence, if A?k)(x) denotes the error term in the asymptotic formula (3.8), then
we have

(3.17) A?k)(jt) = o(xm exp{ - y fc"? U' V"'} log4*) + £?*,(*).

Case k = 2 or 3. In this case, we have 0< 1 - ka < 1, since \< a < i By (3.14)
and (3.12), we have

i-ka f -A (1 - ka) , . . 1 _ f A(l-<;a) , -fr r!,,.i)p1 *" = e x p | ^ -/(x)j^exp| ^ ^ ^/c » [/' V ' j ,

so that by (3.4),

Again, since 0 < 1 - ka < 1, the first O-term in (3.17) is also of the above order
of Efk)(x). Hence

(3.18) A?k)(jt) = O(x"k exp{-B log'x (loglogx)"'}),

where B is a positive constant.

Case fc g 4. In this case, by (3.4), E?t)(x) = O (xa) and the first O-term in (3.17)
is O(x'/k) = O(xJ) = O(xa). Hence A?t)(x) = O(x"). Hence Theorem 1 follows.

4. Proof of Theorem 2

Following the same procedure adopted in Theorem 1 and making use of
(2.36), (2.37), (2.39) and (2.40) instead of (2.14), (2.15), (2.20) and (2.29), we get
the following instead of (3.8):
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, , . , v * , . /. , . , . £'(k) , ̂  (2/cp-fc-l)logp\

+ O(pH'z*a)(pz)log2z)

log4(^-)

Now, choosing

P = z-l/(l+2*d-«»)

we see that 0<p < 1, 1/p < z, so that log(l/p)<logz and

Since w(x) is monotonic increasing, we have <o(pz) <w(z). Also, by (2.32), we
see that o>(xl/k)log5x = O(w(x)). Hence, if Afk}(x) denotes the error term in
the asymptotic formula (4.1), then

(4.2) A?k)(x) = O(xo-aVn+2*(1-a))

Case k = 2 or 3. In this case, by (3.4), we have

Hence by (4.2), Theorem 2 follows in this case.

Case k>4. In this case, by (3.4), we have £?*>(*) = O(xa). Also, since k g
and \ < a < 5, we have

2-a ^ 2 - « <

a) - 9-8a

Since a>(x) = O(x') for every e >0, taking

=11 2-(

we see that the first O-term in (4.2) is

Hence Theorem 2 follows in this case also. Thus Theorem 2 is completely
proved.
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