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ABSTRACT. Safe exploration and transportation of natural energy resources in polar and subpolar seas
such as the Sea of Okhotsk and the Arctic Ocean requires an understanding of the characteristics of ice-
coupled wave propagation. Using a time-domain solution involving both the boundary element method
and the finite-element method, a numerical procedure is developed to analyze the wave properties for
arbitrary ice conditions. This is done by applying a distinction index to discrete nodes representing the
dynamic boundary conditions. The numerical results agree well with experimental data for different floe
lengths, thicknesses and elastic moduli, obtained by using model ice plates. The elastic deformation of
the ice floe depends strongly on the flexural rigidity of individual ice plates.

1. INTRODUCTION
For the development of natural resources in regions where
sea ice is present, such as in the Sea of Okhotsk and Arctic
Ocean, it is important to understand how waves propagate
in ice-covered seas. The wave characteristics provide a
means of estimating wave power, the ice impact force,
composite forces that define the safe operation of ships and
design loads for coastal structures, the prediction of oil-
diffusion effects, and so on. The shape and number of ice
floes have a considerable influence on the wave character-
istics. Squire and Dixon (2000) developed an analytic model
for wave propagation across a crack in an ice sheet, and
report that the reflection and transmission coefficients
depend strongly on wave period.

Often field observations lack information on the ice
conditions because of the difficulty of making such
measurements. Tank experiments are also hard to set up
for arbitrarily specified ice conditions. The observations and
the experiments are costly, take considerable time and are
labour-intensive. On the other hand, if the wave character-
istics in the ice-covered sea can be analyzed using a
computer simulation, this will be a very effective means of
alleviating the problems mentioned above.

In this study, a numerical method is reported based upon
a time-domain solution incorporating the boundary element
method (BEM) and the finite-element method (FEM)
proposed by Liu and Sakai (2002). BEM is applied to
evaluate the water surface elevation, and FEM is used to
analyze the elastic deformation of the ice floe. Indices are
set up relating to the discrete nodes to distinguish the

dynamic boundary conditions. To verify the accuracy of the
method, the experimental data of Sakai and Hanai (2002)
are used to compare with the numerical results. In addition,
a computer simulation assimilating the sea-ice conditions of
the southern part of the Sea of Okhotsk is tried.

2. NUMERICAL ANALYSIS
This numerical method defines a two-dimensional water tank
of fluid domain�, as illustrated in Figure 1. BEM is applied to
the fluid motion, and the FEM is used to analyze ice-floe
deformation. The wave–ice-floe interaction is simulated by
prescribing the conditions on the wave generation boundary
for each time-step and by satisfying continuity of pressure
and displacement at the fluid–ice interface. Waves generated
by the wave generator �1 propagate in sea ice. After the
waves decay on the sponge layer �2, they permeate the open
boundary �3. Although the ice floes are free to move
vertically, they cannot collide with one another. It is assumed
that the ice floe cannot separate from the fluid surface.

When the fluid is taken to be incompressible and inviscid
and the flow is irrotational, the continuity equation in the
fluid domain � can be expressed as Laplace’s equation for a
velocity potential �:

@2�

@x2
þ @2�

@z2 ¼ 0: ð1Þ

For the two-dimensional problem, the ice floe is analyzed as
a plate with unit width, and its equilibrium equation in the
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Fig. 1. Computation domain and the definition of the boundary
conditions.

Fig. 2. Definition of the distinction index for the dynamic boundary
conditions: the indices for the free surface are zero and for the ice
floes are 1 to n, where n is the number of floes in the computational
domain.
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fluid motion is expressed by means of elastic bending theory:

Di
@4�

@x4 þmi
@2�

@t2
¼ p, ð2Þ

where Di ð¼ Eih3
i =12ð1� �2ÞÞ is the flexural rigidity, Ei is the

elastic modulus, hi is the thickness, � is Poisson’s ratio, mi is
the mass, � is the displacement of the ice floe, and p is the
pressure. The subscript i denotes the ice floe. The waves are
generated by prescribing the water surface elevation, ��, and
by giving the horizontal velocity, �uðzÞ, on the wave
generation boundary, �1:

� ¼ �� on �1 ð3Þ
@�

@n
¼ �uðzÞ on �1: ð4Þ

The bottom boundary, �b, is taken to be impermeable, i.e.
@�

@n
¼ 0 on �b: ð5Þ

Kinematic and dynamic boundary conditions are prescribed

on the free water surface, �f, and the fluid–ice interface, �i,
as follows:

@�

@n
¼ @�

@t
cos� on �f and �i ð6Þ
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� g� ¼ p
�

on �i, ð8Þ

where s is the tangential vector on the boundaries, � is
the internal angle between the vertical direction z and the
normal vector n, g is the acceleration of gravity, and � is the
density of fluid. To attenuate the short-period waves, a
numerical wave filter proposed by Ohyama and Nadaoka
(1991) is set up at the end of the wave tank, which acts as a
sponge layer �2:

� @�

@t
� 1
2

@�

@n

� �2
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@s

� �2
" #

� g� � ��þ
Z x2

x1
�
@�

@x

� �
dx

¼ 0 on �2: ð9Þ
The usual Sommerfeld radiation condition is applied to the
open boundary as the wave filter �3, to absorb long-period
waves propagating through the wave filter �2. The boundary
condition �3 is finally derived as the following equation:

@�

@x
¼ � 1ffiffiffiffiffiffi

gd
p @�
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þ ���
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� �
on �2

dx

( )
on �3,

ð10Þ

Fig. 3. The wave tank and experimental equipment.

Fig. 4. Comparison of the wave celerity below the ice floes (case 1: thickness hi ¼ 5mm, length li ¼ 0.5–4.0m) between numerical results
(open circles) and experimental data (closed circles) for the wave period T from 1.0 to 1.6 s.
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where � in Equations (9) and (10) is an attenuation
coefficient that is linearly distributed and proportional to x.

Using a Green’s function, Equation (1) can be expressed
as a boundary integral equation and solved using BEM by
dividing the whole boundary � into discrete nodes. By
substituting the kinematic boundary conditions (4), (5), (6)
and (10) into the boundary integral equation, the velocity
potential, �, of discrete nodes on the whole boundary � and
the elevation, �, of discrete nodes on the boundaries of �f,
�i and �2 can be determined by solving the dynamic
boundary conditions (7–9). Furthermore, when the vertical
movement and the rotation of the ice floe are considered as
the displacement of the node, and the shear force and the
bending moment of the ice floe are considered as the
external force, it is possible to solve Equation (8) by using
FEM. The time-dependent variables, i.e. the velocity

potentials, �, on the � and the displacements, �, on the
water surface and fluid–ice interface, are calculated with a
constant time interval, �t, by using a Newmark-� inte-
gration method.

Indices are set up to distinguish the boundary condition at
discrete nodes. Since the indices for the ice floes have
information on the length, li, thickness, hi, and the elastic
modulus, Ei, of the ice floe, it is possible to set arbitrary ice
conditions easily and to simulate the characteristics of the
wave under the ice floes. For instance, the indices for the free
surface boundary condition, �f, are set to zero, and the
indices for the ice-floe boundary condition are set from 1
to 3 corresponding to the respective ice plates, as illustrated
in Figure 2. This distinction index for the dynamic boundary
conditions is installed onto the discrete nodes as the input
condition in the simulation.

Fig. 5. Same as Figure 4, but for case 2 (thickness hi ¼ 20mm, length li ¼ 0.5–4.0m).

Table 1. Model ice conditions

Case Model ice Length, li Thickness, hi Width, bi Elastic modulus, Ei Density, �i

m mm m MPa kgm–3

1 Polyethylene 0.5, 1, 2, 4 5 0.78 850 914
2 Polyethylene 0.5, 1, 2, 4 20 0.78 650 914
3 Polyethylene 2 20 0.78 650 914

Ethylene-vinyl acetate 2 5 0.78 420 940
Polypropylene 2 20 0.78 3600 960
Polyethylene 2 5 0.78 850 914
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3. VERIFICATION FOR NUMERICAL ANALYSIS
3.1. Experiments for verification
We carried out experiments in the wave tank to verify the
accuracy of results obtained by the numerical analysis. The
wave tank was 26m long, 0.8m wide and 1m deep, as
illustrated in Figure 3. The water depth in the tank was
600mm. Wave generators, which incorporate a system to
decrease the influence of wave reflection, were installed on
both ends of the tank. Model ice was floated for 8m at its
center. As the elastic deformation of ice floes is the main
purpose of our study, the horizontal movement of the model
ice was restrained by steel pipes. Wave profiles in the open
water at the front and rear of the model ice were measured
by two wave gauges, respectively. Vertical displacements of
the model ice were measured at 25 points along the center
of the tank using an array of ultrasonic sensors.

The experiments were conducted for three different sets
of ice conditions. In cases 1 and 2 the ice sheet was of
uniform thickness, while in case 3 it was non-uniform. The
parameters of the ice sheet are shown in Table 1. In cases 1
and 2, polyethylene sheet was used as the model ice. The

thickness of the sheets was 5 and 20mm, and the elastic
moduli were respectively 850 and 650MPa. The density of
the polyethylene was 914 kgm–3 for both sheets. The length
of the sheets was 0.5, 1.0, 2.0 or 4.0m, and the number used
was 16, 8, 4 and 2 respectively. Regular waves of period
1.0–1.6 s were incident on the model ice, with the wave
steepness being varied from 0.005 to 0.015. In case 3,
polyethylene, polypropylene and ethylene-vinyl acetate
were used as the model ice. Four sheets of 2m long
polyethylene, ethylene-vinyl acetate, polypropylene and
polyethylene, respectively of thickness 20, 5, 20 and
5mm, and elastic moduli of 650, 420, 3600 and 850MPa,
were set out from the top end of the tank. The density of the
ethylene-vinyl acetate and the polypropylene was 940 and
960 kgm–3. The wave period was 1.4 s and wave steepness
was 0.01.

3.2. Comparison of numerical results with
experimental data
Figure 4 shows comparisons of wave celerity below ice floes
of 5mm thickness (case 1) between the numerical results
and experimental data. The solid line indicates the wave
celerity in open water. The horizontal axis is the distance
from the tip of the ice floes. The wave celerity produced by
the numerical analysis is almost consistent with that of the
experimental data. Figure 5 shows the same comparisons of

Fig. 6. Comparison of the wave celerity obtained by the mean
velocity of wave celerity below individual ice floes shown in
Figure 4 (case 1: closed circles) and Figure 5 (case 2: open circles)
between numerical results Cnum and experimental data Cexp.

Fig. 8. Comparisons of the wave celerity below the four ice plates
between the numerical results (closed circles) and experimental
data (open circles) for case 3.

Fig. 7. Comparisons of the temporal displacement of four ice plates (case 3: length li ¼ 2m for all plates, thickness hi ¼ 20, 5, 20, 5mm)
between the numerical results (solid line) and experimental data (dashed line).
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wave celerity below ice floes of 20mm thickness (case 2).
Even though the ice floes are thick, the numerical results
agree well with the experimental results. Furthermore,
Figure 6 shows the mean velocity of wave celerity plotted
in Figures 4 and 5. The closed dots indicate case 1 (ice
thickness 5mm), and the open dots indicate case 2 (ice
thickness 20mm). It can be seen that the values computed
by the numerical simulation correspond well with those of
the experiments.

Figure 7 shows the temporal displacement of the four ice
floes in case 3. In the figure, Xi is the distance from the tip of
the ice floes to the point of measurement. In the
experiments, energy loss occurs due to friction between
the water and the model ice plates. Because friction is not
included in the numerical analysis, the numerical predic-
tions are slightly larger than the experimental data. In
general, the numerical simulation provides a good explana-
tion of the experimental phenomenon. The comparison of
wave celerity in case 3 is shown in Figure 8, where the
values of the numerical simulation are again consistent with
the experimental data. As a result, the method presented can
be used to analyze the characteristics of wave propagation
in sea ice.

Fig. 10. Relationship between the diameter and the cumulative
number of ice floes, obtained by image analysis and presented by
Takatsuji (2004).

Fig. 9. Image of ice floes captured by Landsat 7 satellite (Takatsuji, 2004).
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4. NUMERICAL ANALYSIS OF ASSUMED SEA ICE IN
SOUTH OKHOTSK
4.1. Calculation condition
We perform the numerical analysis based on the ice
conditions observed in the southern Sea of Okhotsk. These
are adapted from data measured in satellite images reported
by Takatsuji (2004). Figure 9 shows one example of a
Landsat 7 satellite image. Figure 10 is the result obtained by
image analysis and shows the relationship between the
diameter and the cumulative number of ice floes. When the
diameter of the ice floes is 100, 200, 400m, the corres-
ponding cumulative number is 4, 2, 1. The length of the ice
floes was assumed here to be their diameter and was set to a
scale of 1 : 100. The thickness of the ice floes was set to 20
and 40mm because of the difficulty of measurement. The
density and elastic modulus of the ice floes are respectively
914 kgm–3 and 650MPa. Ice floes were arranged at random.
The calculation condition of ice floes is shown in Table 2.
A regular wave of 1.4 s period is used as the incident wave,
with a steepness of 0.01.

4.2. Calculation result
Figure 11 shows the spatial profile of deformation, �, of ice
floes at t ¼ 10, 15, 20 and 25 s. The dashed line indicates
the still water level. When the ice floes are long and thin,

the deformation follows the wave closely. On the other
hand, when they are short and thick, the deformation
accompanies a substantial rigid body movement. It is
expected that the deformation of each ice floe depends
strongly on its flexural rigidity.

5. CONCLUSIONS
Because the wave celerity below the ice floes and their
temporal displacement, calculated by the numerical
method, are consistent with the experimental data, it is
argued that the method presented is valuable in the analysis
of the characteristics of waves propagating in sea ice. In
particular, it has been possible to simulate the properties of
waves propagating in sea ice for a simple ice condition and
for arbitrarily specified ice conditions, by passing the
distinction index for the dynamic boundary conditions to
the discrete nodes. Further, it is clear that the length and the
flexural rigidity of ice floes strongly influences their deform-
ation during wave propagation.
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Fig. 11. Temporal changes of the spatial profile of ice-floe deformation at times t ¼ 10, 15, 20 and 25 s, calculated for the sea ice of the
southern Sea of Okhotsk.

Table 2. Ice-floe conditions determined by observation in the
southern Sea of Okhotsk: li is length, hi is thickness, Ei is elastic
modulus and �i is density

Ice-floe index No.

Model ice 1 2 3 4 5 6 7

li (m) 2 1 4 1 1 2 1
hi (mm) 40 20 20 40 20 20 40
Ei (MPa) 650
�i (kgm

–3) 914
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