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Abstract. For X and Y Banach spaces, let X®e Y, be the injective tensor product. If
Z is also a Banach space and U e L(X<8>t Y, Z) we consider the operator

U*;X->L(Y,Z), (U*x)(y) = U(x®y), x e X, y e Y.
We prove that if U e PI(X®e Y, Z), then U* e I(X, PI(Y, Z)). This result is then
applied in the case of operators defined on the space of all A'-valued continuous functions
on the compact Hausdorff space T. We obtain also an affirmative answer to a problem of
J. Diestel and J. J. Uhl about the RNP property for the space of all nuclear operators;
namely if X* and Y have the RNP and Y can be complemented in its bidual, then
N(X, Y) has the RNP.

An operator U e L(X, Y) is called a Pietsch integral operator if there exists a
Y-valued vector measure with bounded variation on the Borel subsets of (£/*••» weak*)
such that: U(x) = $Ux. x*(x) dG(x*) for each x e X and the Pietsch integral norm of U is:
II l̂lpim = inf \G\ (Ux.). It is well known that the class of all Pietsch integral operators with
the Pietsch integral norm is a normed ideal of operators in the sense of A. Pietsch, which
in the sequel will be denoted by (PI, || \\pint). Also U E PI(X, Y) if and only if for each
e > 0, U admits a factorisation of the form

X - ^ Y

where V s I(X, L ^ ) ) , S E L ^ W Y ) and ||V||tes \\U\\pinl + e, | |5||<1; see [2] for
details.

For the definition of integral operator, absolutely summing operator, nuclear
operator and their basic properties see [2] or [4]. By /( , ), || H ,̂, (resp. (As, || ||flJ),
(N, || ||nuc) we denote the normed ideal of all integral operators (resp. absolutely
summing operators, nuclear operators). For all notations and notions used and not
defined we refer the reader to [2]. Given U e L(Ar®<! Y, Z) we consider the operator
U*:X^>L(Y,Z) defined by (U*x)(y)=U(x®y), xeX,yeY, that is evidently linear
and continuous. Also for a given normed ideal of operators 3 and U e 2S(A"<8>e Y, Z) we
have Uttx e 3(Y, Z), for any xeX. Indeed, if x e X, let Vx e L(Y, X®e Y) be the
operator Vx(y) = x®y, y e V. Since Uux = UVX, by the ideal property of S we obtain
U*x e 2S(Y, Z). Hence for a normed ideal of operators 3 and U e L(X®f Y, Z) we can
consider the assertions

(a) £/e£&(jr®.Y,Z),
(b) t / * e 3 ( I ( 3 ( y , Z ) ) .
In the sequel for the normed ideal of Pietsch integral operators we study the

connection between (a) and (b); see also [3], [6], [7] for corresponding work on other
normed ideals.
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THEOREM l.IfUs PI(X®C Y, Z), then £/* e I(X,PI(Y, Z)) and || t / L , < \\U\\
pinr

Proof. We make first a remark. If W can be complemented in its bidual by a norm
one projection, then I(X®€Y, W) = I(X,I(Y, W)), which follows easily using Theorem
2.1 from [3]. Now if U e PI(X®e Y, Z), then for each fixed e > 0, U admits a factorisation

MM)

where K e / ^ ^ Y . L j O ^ . S E L C L j G L O . Z ) and | |V| | t o s \l)\m + e, | |S | |<1. (Here M

is a regular Borel measure on some compact Hausdorff space Q.). See [2, Theorem 11, p.
168]. Using the above remark for W = Lj(^) we obtain that V** s /(^/(Y.Lj(/*))) and
ll^#||m, = \\V\\int. However Grothendieck's theorem shows that / ( . ,L 1 ( /A)) = / ' / ( . , L I ( / I ) )
and || ||M = II \\pinl, (See [2, Theorem p. 558].) Thus we have the factorisation

X - ^ PI(Y,Z)

where S#(/4) = SA, A e PI(Y, L^fi)) and, by the ideal property of the class of all integral
operators, we obtain f/# E I(X, PI(Y, Z)) and | | l / # | | t o s ||V#||,m l|5#|| < ||K#|L, ||5|| <

\\v\\*,.
Thus | |£ / #L,< | |£/ |U + e, hence \\U*\\inl^ \\U\\pUlt.
In the sequel, by T we denote a compact Hausdorff space and C(T,X) will be the

Banach space of all A'-valued continuous functions on T under the supremum norm. For
^ = R (or C) we note that C(T, X) = C(T). By 2 we denote the o--field of all Borel
subsets of T. It is well known [2, p. 182] that any U e L{C(T,X), Y) has a representing
finitely additive vector measure G:2-»L(Ar, Y**). For U e L(C(T,X), Y), we consider
the operator

V*:C{T)^L{X,Y), {U*<p){x) = U(<px), <p e C(T), xsX.

Since C(T,X) = C(T)®e X, from Theorem 1 we obtain the following corollary.

COROLLARY 2. Let U e L(C(T, X), Y)), Un be as above and G be the representing
measure of U. We consider the following assertions:

(a) UePI(C(T,X),Y);
(b) [/#<p e PI(X, Y) for each <p e C(T) and £/* e PI{C(T), PI(X, Y))\
(c) G(E) e PI(X, Y) for each Eel. and G:I,^PI{X,Y) has bounded variation

with respect to the Pietsch integral norm on PI(X, Y).

Then we have (a)=^(b)=^(c) and, in this case the following inequality holds:
t/#llPint = |G|pint(T)<||f/||pint.

Proof. For the implication (a )^ (b) we use Theorem 1 and the well known facts
PI(C(T),.) = As(C(T),.) and || \\pint=\\ \\as. See Theorem 12 of [2, p. 169]. For the
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implication (b) ̂ > (c) we again use Theorem 12 of [2, p. 69] and the obvious fact that the
representing measure of U in the hypothesis of (b) coincides with that of U. The relations:
IIU* Wpint= \G\Pint (T)^\\U \\pin, are also true. In this way arises the following conjecture.

Conjecture 3. If U e L(C(T, X), Y) has the representing measure G which satisfies
the conditions

(1) G(E) E PI(X, Y) for each E e 2 and
(2) G:I.—>PI(X,Y) has bounded variation with respect to the Pietsch integral

norm,
then it follows that U e PI(C(T,X), Y).

If Y can be complemented in its bidual, then it is well known that we have
/(., Y) = PI(., Y) Corollary 10 of [2, p. 235] and hence using the result of P. Saab from [6]
we obtain that this with supplementary hypothesis about Y Conjecture 3 is true. In the
sequel we describe the Question 5 from the paper of P. Saab [6] as the Saab conjecture.

Saab conjecture. If Y has the RNP and U e L(C(T, X), Y) has the representing
measure G which satisfies the conditions

(1) G(E) G N(X, Y) for each E e 2 and
(2) G:1.—*N(X, Y) has bounded variation with respect to the nuclear norm,

it follows that U e N(C(T,X), Y).
Recall also the following open problem of Diestel and Uhl. See [2, p. 258].
Diestel-Uhl conjecture. If A"* and Y have the RNP, then the space of all nuclear

operators from X to Y also has the RNP.
The following theorem establishes a connection between these problems.

THEOREM 4. Conjecture 3 is true implies Saab conjecture is true implies Diestel-Uhl
conjecture is true.

Proof. Conjecture 3 is true implies Saab conjecture is true; it is obvious since, if Y
has the RNP, then PI(., Y) = N(., Y) and || \\pin, = || \\nuc. See Theorem 2 of [2, p. 175].)

Saab conjecture is true implies Diestel-Uhl conjecture is true. Let X and Y be Banach
spaces such that X* and Y have the RNP. Let 2 be the Borel subsets of [0,1] and
Gercabv(l,N(X,Y),\\ \\nuc). Let U:C([0,l],X)-* Y be the operator U(f) = flfdG,
feC(T, X). Then U is a linear and continuous operator and G is its representing
measure.

Since Y has the RNP and the Saab conjecture is true then, U will be a nuclear
operator. Since X* has the RNP from [5, Theorem 1] or [7, Theorem 6] we obtain that
G:2->(N(X, Y), \\ \\mc) has a Bochner integrable derivative g e L^Ntf, Y), \\ \\nuc),
where /x, = |G|nuc. Thus N(X, Y) has the RNP.

In [2, Theorem 5 p. 249] and [1, Theorem 7 p. 119] are given positive answers to the
Diestel-Uhl conjecture, with supplementary hypotheses about X or Y. Since as we have
seen the Conjecture 3 is true when Y can be complemented in its bidual from Theorem 4
we obtain the following corollary which is another positive answer to the Diestel-Uhl
conjecture different from those given in [1] and [2].

COROLLARY 5. If X and Y are Banach spaces such that X* and Y have the RNP and Y
can be complemented in its bidual, then N(X, Y) also has the RNP.
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