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Abstract. The non-local, time-dependent convection theory of Kuhfuß (1986) in both its one-
and three-equation form has been implemented in the Garching stellar evolution code. We
present details of the implementation and the difficulties encountered. Specific test cases have
been calculated, among them a 5 M� star and the Sun. These cases point out deficits of the the-
ory. In particular, the assumption of an isotropic velocity field leads to too extensive overshooting
and has to be modified at convective boundaries. Some encouraging aspects are indicated as well.
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1. The Kuhfuß theory
R. Kuhfuß (Kuhfuß 1986, 1987a,b) developed a one-dimensional model for describing

stellar convection with the aim of presenting a non-local and time-dependent theory for
use in stellar evolution programs. The theory is based on expanding the fluctuations in
the hydrodynamics equation in terms of moments, stopping at the second order by closure
conditions for the third order moments. The theory results in three partial differential
equations for the mean kinetic energy ω = 〈1

2�v
′2〉, the mean entropy excess Φ = 〈1

2s′2〉,
and the correlation between velocity and entropy fluctuations �Π = 〈�v′s′〉. Including the
closure conditions, one arrives at (see Kuhfuß 1986 and Flaskamp 2003 for details):
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These are the three equations, Flaskamp (2003) is solving within the Garching stellar
evolution code to compute the convective flux and the convective gradient in full stellar
models. They are integrated into the standard implicit Henyey-scheme, which implies a
coupling of three grid points instead of two. The additional numerical variables are, due to
the nature of the physical variables (they can become negative), arcsinh-transformations
of the physical quantities. In addition, ω is transformed to

√
ω. Chemical mixing is

done with a diffusion scheme using the convective velocity of the theory. As in previous
investigations we find that the new system of equations is numerically much less stable,
and convergence problems abound.

Kuhfuß (1986) showed that by assuming the connection �Π ≈ −αsΛ
√

ω∇〈s〉 one can
reduce the system of three equations to a one-equation theory:
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Figure 1. Convective core structure of a 5 M� ZAMS star. The run of the isotropy parameter
ξ (lower right) has been imposed on the three-equation theory. The vertical line in the upper
left panel would be the classical Schwarzschild boundary.
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In this form radiative losses are no longer included, but can be added (Wuchterl 1995).
The parameters CD, βΠ, βφ of the theory are now correlated by the additional parameter
αs. The convective flux jt contains a further parameter (αt), which turned out to be
critical. Kuhfuß estimated a value of 0.25 for it.

2. Applications
Applying the three equations theory straightforwardly to a ZAMS star of 5M� re-

sults in a convective core that encompasses the whole star. An analysis of the details
revealed that the assumption of an isotropic velocity field is responsible for this unrealis-
tic behaviour. In fact, the correlation between radial velocity and kinetic energy directly
determines the extent of overshooting (Fig. 1).

Wuchterl (1995) and Wuchterl & Feuchtinger (1998) have introduced further improve-
ments and extensions to the theory, which were also used here: (a) radiative losses by
connecting radiative diffusion with convective energy via the radiative diffusion timescale;
(b) limitation of the mixing length scale to the distance to the nearest convective bound-
ary, as otherwise it would diverge at the stellar center; (c) a flux limiter, since the theory
allows enthalpy transport being faster than the convective velocity; this transport speed
was therefore limited by Wuchterl (1995).

To test the time-dependency of the theory, we followed the onset of convection in
a 5M� star at the beginning of He-burning, using, due to numerical difficulties, the
one-equation version only. We could nicely follow the onset of convection (Fig. 2, left).
However, the almost dynamical core helium flash in a low-mass star could even in this case
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Figure 2. Left: Onset of helium core convection in a 5 M� star. Shown is the convective energy
in steps of 22 days (time steps between the dashed lines) and the asymptotic stationary solution
(solid). Right: Convective flux in an A-star envelope of Teff = 8000 K in our own model (solid)
and a hydro-simulation by Muthsam (1999; dashed).

be followed only until the helium luminosity reached log LHe > 8. The flash developed
about 20% faster and more violent due to the non-instantaneous convective transport.

The final example we show concerns the overshooting in an A-star envelope (one-
equation theory). In Fig. 2 (right) we compare the convective flux (solid line) with that
resulting from 3-d hydro simulations by Muthsam (1999; dashed). While a certain sim-
ilarity is evident, the details, in particular in the overshooting layers differ appreciably.
Both approaches predict that the two convective layers are connected due to overshoot-
ing. As Kupka & Montgomery (2002) we find a non-vanishing convective velocity but
negligible convective flux between the two convective regions of an 8000 K hot A-star.

3. Summary
(i) The three equation version of the Kuhfuß-theory is a numerical challenge, if imple-

mented into a full stellar evolution code. (ii) Various tests, including an intermediate-mass
ZAMS star, reveal that the resulting overshooting is much too large and additional re-
strictions/assumptions to the theory are needed. (iii) The one-equation version is simpler,
easier to implement, and results in more realistic non-local effects. (iv) Comparison with
hydro-simulations and Kupka & Montgomery (2002) shows an encouraging agreement
for the structure of A-type star envelope convection. (v) However, a solar model test by
Flaskamp (2003) is passed only if one of the parameters of the theory, αt, is reduced to
a value of 0.1. (vi) Although the theory has promising aspects, the need for additional
fine-tuning and the numerical difficulties presently prevent a practical advantage over
using MLT.
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