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A SPOT WELDING RELIABILITY PROBLEM
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Abstract

When multiple operators are connected to a single power source which is not large enough
to simultaneously supply all users, interference can take place. This paper considers two
models of a spot welding station which differ in the method of resolving interference
between users. In the first model the system is allowed to become overloaded and the
consequent deterioration in weld quality is accepted. In the second model any request
which will overload the system is rejected. Expressions are found for (a) the proportion of
poor quality welds in the first model and (b) the probability of operators being rejected in
the second model. Numerical results are given which indicate how small the power supply
can be made for a typical welding shop while keeping interference at a minimal level.

1. Introduction

Many production lines have a station where spot welding takes place. At such
stations it is frequently the case that multiple operators draw on the same power
supply. Given the high voltage drops that occur during spot welding and the
deterioration in weld quality that can occur when a large number of operators
spot weld simultaneously, it is of interest to investigate the probability of poor
welds being produced.

The time taken to perform a single spot weld is small compared to the period
between consecutive welds by one operator and hence it might be expected that
the probability of many welders simultaneously drawing on the power supply is
small. As a consequence, it may be possible to install a power supply that can
only support some of the welders at any given time without significantly affecting
the performance of the welding shop.
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If a smaller power supply is installed then there are two possible methods for
dealing with any interference which may take place. Firstly, any number of
simultaneous welds may be allowed to take place, thus accepting the possibility of
bad welds. Defective welds pass undetected by the operators and no attempt is
made to rectify them. Secondly, access to the power supply may be restricted so
overloading does not occur. The second alternative will involve operators having
to make repeated attempts to weld. Providing this does not occur often, this may
be preferable from a reliability point of view.

This paper looks at queueing models for the two alternatives described above.
Section 2 considers the case where there is no restriction on the power supply, so
that it is possible for all operators to weld simultaneously. Expressions are derived
for the probabilities of the power supply simultaneously supplying multiple
operators. In contrast, Section 3 looks at a modification of the system where the
number of simultaneous welds is restricted. In Section 4, the results of Sections 2
and 3 are used to discuss the efficiency of the two systems.

2. The unrestricted system

Consider a spot welding station with N operators. To complete a single spot
weld takes a fixed time of /x'1 seconds. The time between successive welds of a
single operator has distribution function G(-) with mean A"1. The power supply is
such that all operators may access it at the same time. However, if more than K
operators actually use it simultaneously, the quality of all welds currently in
progress deteriorates.

The system can be considered as a closed two-node queueing network with TV
customers (see Figure 1). Those customers in node 1 are welding while those in

Welding node Not welding node

Deterministic service time General service time

Mean fj.'1 Mean A"1

N welders

Figure 1. Two node model of a spot welding shop.
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node 2 are not welding. Both nodes have TV servers, with the service time at node
1 being fixed and of duration n~l seconds and the service time at node 2 having
distribution (?(•) with mean X"1 seconds.

This is an example of an Engset system having N servers and a population of
size N, with service and interarrival time distributions as given above. This system
has been studied by Konig [2] who showed that the steady-state queue-length
distribution only depends on the service and interarrival time distributions
through their means, i.e. the steady state distribution is insensitive to the form of
the service and interarrival time distributions.

Hence, the steady-state distribution may be found by considering the system
with negative exponential distributions. This gives

The expected number of bad welds at any given instant is

(2-2)

whereas the expected number of welds in progress at any given instant is

Hence the proportion of bad welds is Nb/Nw.

3. The restricted system

Now consider the system described in Section 2, but with the restriction that
the electricity supply is limited to perform only K < N spot welds simultaneously,
K being the maximum number of welds that can be performed at the same time
without a drop in quality. If an operator tries to spot weld while K other welds
are already in progress, the attempt is rejected and the operator must try again.
The process is repeated until there is a successful attempt.

Restricting the power supply as described above reduces the incidence of
low-quality welds at the expense of occasionally denying access to the power
supply for some of the operators. However, if the probability of denying access is
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small, then the efficiency of the welding shop is little affected but its reliability is
increased.

In modelling the restricted system the following assumptions are made:
(a) the service time (duration of a spot weld) is negative exponentially distrib-

uted with mean fi'1 seconds,
(b) for each operator, the period between completing a weld and the next

attempt is negative exponentially distributed with mean A"1 seconds,
(c) for each operator, the period between an unsuccessful attempt to weld and

the next attempt is negative exponentially distributed with mean y"1 seconds.
Note that in practice y'1 is likely to be small compared to X"1, since operators

denied access are likely to reattempt quickly.
Even though service times are known to be deterministic and it is unlikely that

the distribution of time until a reattempt is negative exponential, the distributions
used here have been assumed to be negative exponential. This has been done to
aid solution of the problem. When the probability of an operator being rejected is
small, this is a good assumption since the system closely approximates the model
analysed in Section 2, the solution of which is insensitive to the form of the
distributions.

Supplement the state space of Section 2 by including a component to record the
number of operators that have made an unsuccessful attempt to weld. The state of
the system when n welds are being performed and j operators have made an
unsuccessful attempt and are trying again is (n, j). Thus, when the state is (n, j),
reattempts are made at rate jy, and if n < K the reattempt is successful and the
state becomes (n + 1, j — 1). If n = K and another operator (i.e. one that is not
reattempting) tries to weld, then the state moves to (K, j + 1). This happens at
rate (N - K - j)X. Denote by pnJ the probability of being in state («, j).

Figure 2 is the state transition diagram, marked with the appropriate transition
rates. Let the set of states {{n, j); 0 <y < N - K) be denoted by the level n.
This allows the system to be considered as a quasi birth and death process (see
Neuts [3]), whereby transitions with positive rate cause the level to change by at
most one up or down. It may be noted that j , the number of delayed welders,
may be considered as the state of the environment (see Neuts [3], Gaver et al. [1]).

It is clear that the process has a block tri-diagonal Q-matrix,

Q =

40 )

41' A?
(3.1)
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K

K-l"

K-2

Horizontal transitions :

ra te(JV-j r - j )A

Downward transitions

rate nfi

Diagonal transitions :

rate j'7

Upward transitions :

rate (N - n - j)X

N-K-2 N-K-l N-K

where

Figure 2. State transition diagram of the restricted system.

y (N-n-l)X

(N-K-\)y

-((N- K)\ + Kp.)

n< K- 1

(N - K)y (K-n)\

(N- K)X
-((#- K- l)\ + Kn) (N-K-l)\

- ( \ + ATM)

A^n) = nfil, 1 < n < K, I the identity matrix and A[n) is a diagonal matrix

with elements [^ n ) ] j ; = - ( (# - « - » A + «M +77) for 0 ^ n < AT - 1, O ^ j

^N - K, with all matrices of order (JV - K + 1) X (tf - K + 1).

So the balance equations may be written in the form

0

0

(3.2)

where pn = (/?n0, / > n l , . . . , pn<N_K).
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The solution of this system is given by (see Gaver et al. [1])

pKCK = 0

Pn = P n + i ^ ^ - C 1 ) . 0 < « .< tf - 1 (3.3)

E Pne = 1
n = 0

where

Co = A<?

Cn = A["> + 4")(-C-1iH"~1 ) 1 < » < K (3.4)

and e' = (1 ,1 , . . . , 1). Gaver, et al [1], show that the matrices Cn are all invertible.
When the process is in state (n, j) the total rate at which attempts to weld are

made is (N — n — j)X + jy, whereas the rate at which first attempts to weld are
made is (TV — n — j)X. Rejected attempts occur only when n = K and are made
at rate (TV- K - j)\.

Thus, the probability of an unsuccessful attempt to weld is given by

The numerator of (3.5) is the expected rate at which rejected attempts occur,
while the denominator is the expected rate at which all attempts are made.

It is also of interest to calculate the probability of an unsuccessful first attempt,
that is an attempt by a welder not currently trying again after an unsuccessful
attempt. This is given by

Z^Kp(N-K-j)X
K -}

The numerator of (3.6) is the expected rate at which first attempts are rejected,
while the denominator is the expected rate at which first attempts are made.

4. Numerical results

A welding shop would typically have between 10 and 20 operators. The
maximum number of effective simultaneous welds depends on the design of the
power supply, but could be in the range 3 to 5. The duration of a spot weld is
about 0.4 seconds, while a given operator may perform welds at 5 to 20 spots per
100 seconds. We shall assume the reattempt rate is 1 try per second. Tables 1, 2, 3
and 4 give, for different N and K, the values of (a) the probability of defective
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welds in the unrestricted system (Nb/Nw), (b) the rejection probability in the
restricted system (3.5) and (c) the first attempt rejection probability in the
restricted system (3.6). In all the tables, n = 2.5 and y = 1 while X ranges from
0.05 to 0.2.

(a)
N=10 (b)

(c)
(a)

N=15 (b)

(c)
(a)

N=20 (b)

(c)

K=l
0.163244736
0.226054855
0.174100990
0.242124979
0.335720521
0.268137348
0.313569244
0.434872847
0.359499307

K=2
0.012628787
0.015065381
0.012356345
0.029919969
0.035817501
0.029230348
0.052725553
0.063491704
0.051723400

K=3
0.000579510
0.000644399
0.000563745
0.002333318
0.002570483
0.002234599
0.005773688
0.006317488
0.005459238

K=5
0.000000342
0.000000364
0.000000337
0.000005004
0.000005264
0.000004854
0.000026779
0.000027819
0.000025596

TAB L E 1. X = 0.05, ji = 2.5, y = 1

(a)
N=10 (b)

(c)
(a)

N=15 (b)
(c)

(a)
N=20 (b)

(c)

K=l
0.297413268
0.397180166
0.326792179
0.422524922
0.554486978
0.483932975
0.525357581
0.673120272
0.615641213

K=2
0.044482041
0.052771718
0.043152056
0.099138873
0.118473195
0.097218532
0.164629337
0.198594255
0.164862360

K=3
0.004013044
0.004391568
0.003811608
0.015058499
0.016286305
0.013992727
0.034767168
0.037453611
0.031948774

K=5
0.000009311
0.000009784
0.000009024
0.000125825
0.000128975
0.000118395
0.000622074
0.000623074
0.000569026

TAB L E 2. X = 0.10, p = 2.5, y = 1

(a)
N=10 (b)

(c)

(a)
N=15 (b)

(c)
(a)

N=20 (b)

(c)

K=l
0.408101548
0.516294919
0.446933769
0.557699050
0.675105825
0.621542623
0.669487004
0.773490353
0.738560682

K=2
0.088476372
0.103775292
0.085350668
0.186166236
0.218814471
0.183263588
0.292702173
0.343758836
0.296137255

K=3
0.011766326
0.012693201
0.010949844
0.041268434
0.043995331
0.037583034
0.089238356
0.095062811
0.081025682

K=5
0.000060373
0.000062581
0.000057589
0.000755006
0.000754993
0.000689636
0.003458007
0.003352873
0.003037951

TABLE 3. \ = 0.15, ji = 2.5, y = 1
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(a)
N=10 (b)

(c)
(a)

N=15 (b)
to
(a)

N=20 (b)
(c)

K=l
0.499751038
0.594886713
0.532888678
0.659538964
0.737740252

0.768287941
0.816135853
0.790300456

K=2
0.139571780
0.160519857
0.133527366
0.278222598
0.315999554
0.271710745
0.416085606
0.463069299
0.414048496

K=3
0.024314415
0.025856420
0.022220222
0.079938084
0.083832506
U.UI iOOOUZt

0.162499921
0.169804321
0.146166515

K=5
0.000217942
0.000222851
0.000204609
0.002527809
0.002469H8
0.002244088
0.010754244
0.010135126
0.009H6947

TABLE 4. X = 0.20, p. = 2.5, y = I

As expected, the probabilities of bad welds in the unrestricted case or rejection
in the restricted case increase with increasing N and X, and decreasing K. For a
welding shop to operate efficiently, these parameters must be such that either the
probability of bad welds (unrestricted case) or the probability of rejection
(restricted case) is small. When this happens, it may be seen from Tables I, 2, 3
and 4 that in the restricted case the probability of rejection is of the same order as
the probability of bad welds in the unrestricted case.

5. Conclusion

Tables I, 2, 3, and 4 indicate that it is clearly possible to equip a welding shop
with a power supply the capacity of which is much smaller than the number of
operators in the shop. The probabilities of interference either in the sense of
causing bad welds or occasional rejections are very small for all shops where
K > 2 and are even small for K = 2 for some parameter values.

Given the decision to use a small power supply there still remains to choose
between restricting the number of simultaneous welds that are allowed as in
Section 3, or allowing any number of simultaneous welds but suffering a possible
loss of weld quality on a small number of welds, as in Section 2. A look at Tables
I, 2, 3, and 4 shows that for comparable parameter values the probability of
rejection in the restricted system is virtually the same as the probability of bad
welds in the unrestricted system. However, it seems reasonable from a reliability
point of view to accept an occasional rejection in order to prevent any bad welds
occuring through voltage loss. Hence the restricted system would appear prefer-
able.
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