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The Fitting length of a finite soluble

group and the number of conjugacy

classes of its maximal

nilpotent subgroups

A.R. Makan

It is shown that there exists a logarithmic upper bound on the

Fitting length h(G) of a finite soluble group G in terms of

the number v(G) of the conjugacy classes of its maximal

nilpotent subgroups. For v(G) = 3 , the best possible bound on

h{G) is shown to be h .

1. Introduction

All groups considered in this paper are finite and soluble, and, for e

group G , v(G) denotes the number of conjugacy classes of its maximal

nilpotent subgroups and h(G) denotes its Fitting length. In [5], it was

shown that the Fitting length of a finite soluble group of odd order is

bounded in terms of the number of conjugacy classes of its maximal

nilpotent subgroups. Our main purpose of this paper is to show that the

result is true for any finite soluble group, not necessarily of odd order.

More precisely, we show here that

THEOREM 1.1. For any finite soluble group G ,
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This result improves considerably the bound obtained in [5] for a

finite group of odd order. The precise form of the bound obtained (though

not its order of magnitude) relies, however, on an unpublished result of

Newman (see Theorem 3.5)-

Theorem 1.1 is proved in Section 3. In Section 4, we obtain the best

possible bound on h(G) in the special case when v(G) = 3 . The sharp

bound on h{G) in the case when v(G) = 2 or in the case when v(G) = 3

but |G| is odd has been discussed in [5].

2. Notation

We will use the following notation in the rest of the paper:

= the order of the group G

= the centre of G

= the normalizer in G of the subgroup H of G

= the centralizer of H in G

= the Frattini subgroup of G

= the Fitting subgroup of G

= the largest normal p-nilpotent subgroup of G

= the largest normal p'-subgroup of G

= the minimal number of generators of G

reads H is a subgroup of G

reads H is a proper subgroup of G

reads H is a normal subgroup of G

reads H is a proper normal subgroup of G

= the direct product of the groups G and H

will always denote primes

= the field with p elements.

3. The proof of the theorem

First, we will prove some lemmas. We begin with the following
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elementary lemma.

LEMMA 3.1 . Let G be a group whose Fitting subgroup F is a

p-group and let Q be a q-subgroup of G , q + p . Then there is a

maximal nilpotent subgroup W of G such that CAQ) = W n F . Moreover,

if Q t (I) , then W n F < F .

Proof. Let W be a maximal nilpotent subgroup of G which contains

CAQ) x © . Clearly W n F = CAQ) . Also, since CJF) < F (see Theorem
r t &

6.1.3 in Gorenstein [3]), F £ W unless © = {l} . Thus, if © # {l} ,

W n F < F , as required.

Next, we show

LEMMA 3.2. Let G be a group whose Fitting subgroup F is an

elementary abelian p-group, let Q be a non-trivial q-subgroup of G ,

q # p j and let S be a maximal element in the set

X = {Q* I Q* o Q, Cp(Ql < Cp(Q*)} .

Then CQ[CF{S)) = S and, moreover, Z(Q/S) is cyclic.

Proof. Since S 2 Q , C_(5) is ^-invariant. Thus

H = CQ{CF(SJ) o « . However, S 5 S and also Cp{Q) < C?(S) S Cf(ff) .

Hence, since S is a maximal element in X, , it follows that 5 = # , as

required.

In order to show that Z{Q/S) is cyclic, we proceed as follows.

Since Cp{S) is ©-invariant, we observe first that, by Theorem 3.3.2 in

Gorenstein [3], C_(5) = Cp(Q)
 x L , where L is ©-invariant. Clearly,

L * {l} since CAQ) < CAS) . Now, let L* be a non-trivial

©-invariant subgroup of L of minimal order and let K = CAL*) . Since

L* is ©-invariant, K < © . Moreover, K S CQ[L*C„(©)) . In particular,

CF(©) < Cp{K) , and so, K t X . However, S S K . Thus, since S is a

maximal element of ^ , X = S , and hence ©/S is represented faithfully

as well as irreducibly on L* , regarded as a vector space over the field

GF(p) . By Theorem 3-2.2 in Gorenstein [3], it follows then that Z(©/5)

is cyclic, and the proof is complete.
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The following lemma extends Lemma 3 of [5D.

LEMMA 3.3. Let G, F and Q be as in Lemma 3.2 and let I be the

largest integer for which there exists a chain of subgroups

(3.10 Cp(Q) = Vt n F < VU1 n F < ... < V± n F < F ,

where V. is a maximal nilpotent subgroup of G for i = 1, 2, ..., I

and Cp(Q) x Q £ V . If Q/Z(Q) is elementary abelian, then d{Q) is at

most 2l .

Proof. We proceed by induction on \Q\ . Let 3C be defined as in

Lennna 3.2, and let R be a maximal element in X . Then, by the same

lemma, Z/R = Z(Q/R) is cyclic. Also, since Cp(Q) < Cp(R) and, by Lemma

3.1, there is a maximal nilpotent subgroup W of G such that

W n F = Cp(R) , it follows, in view of our hypothesis, that a chain of

subgroups of the type (3.U) which joins CAR) to F has length at most

I - 1 .

Suppose first that Q = Z , so that Q/R is cyclic. Then, since, by

induction, d{R) 5 2{l-l) , d(Q) 5 2.1 - 1 and we are done. Hence, assume

next that Q t Z . Let A/R be a maximal abelian normal subgroup of

Q/R . Since Q/Z(Q) , and therefore Q/Z is elementary abelian, it

follows from Satz III, 13-7 in Huppert [4] that there is a maximal abelian

normal subgroup B/R of Q/R such that AB = Q , A r> B = Z and

d(A/Z) = d{B/Z) ; consequently d(Q/R) £ 2d(A/R) . It remains now to show

that d(A/R) 5 I and that a chain of subgroups of the type (3-1*) which

joins Cp{R) to F has length at most I - d(A/R) , for then, by the

inductive hypothesis, d(R) £ 21 - 2d{A/R) £ 21 - d(Q/R), and hence

d(Q) £ d{R) + d(Q/R) £ 21 . We show this as follows.

Let A = A and for i = 1, 2, ... , define A . to be a maximal

element in the set

{Q* | R £ Q* £ Ai_1 and C^A^ < Cp(Q*)} .

For some integer n £ 1 , 4 = i? . Now, let G be the semidirect product

of X = CJi?) by y = 4/i? . Since, by Lemma 3.2, CV(X) = {l} , X is
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clearly the Fitting subgroup of G . Thus, by the same lemma and the fact

that A/R is abelian, it follows now that A . I A . is cyclic for

i = 1, 2, ..., n . In particular, d{A/R) £ n . On the other hand, by

Lemma 3-1, there exist maximal nilpotent subgroups W, W , ..., W of G

such that

C F ^ = W0 n F < C F ^ = Wl n F < ••• < CF^Ar) = CF{R) = Wn
 n F •

Hence, by our hypothesis, n £ I , whence d{A/R) £ n S I . Also, for the

same reason, the chain of subgroups of the type (3-^) joining C_(i?) to F

has length certainly at most I - n 5 I - d(A/R) . This completes the

proof.

REMARK. In Lemma 3.3 we always have I £ v(G) - 1 , since each member

of at least one conjugacy class of maximal nilpotent subgroups of G

contains F , and trivially, if V and W are conjugate maximal nilpotent

subgroups of G , neither V n F < W n F nor W n F < V n F .

It has been well-known for some time that the Fitting length of a

soluble linear group is bounded in terms of its degree. The best possible

bound has been obtained in recent unpublished work of Newman, and

determines the precise form of the bound in Theorem 1.1. We now state this

unpublished result of Newman.

THEOREM 3.5 (Newman). Let G be .a soluble linear group of degree

n > 1 . Then

1 , if n = 1 ;

3 , if n = 2 ;
HG) ~\ s s

2s + k , if 2.3 < n < U.3 ;

1.2s + 5 , if ^ . 3 S < n < 2 . 3 S + 1 .

In particular, h(G) £ 2 log_ *—r—

We wi l l deduce the main resul t of th is section from the following

lemma.

LEMMA 3.6. Let G be a group whose Fitting subgroup F is an

elementary abelian p-group. If H/K is a q-chief factor of G , where

q * p , then
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h{G/CG(H/K)) 5 2 log3

Proof. Let $ be a Sylow ^-subgroup of H and N = NAQ) . Then,

by the Frattini argument, G = NH , and hence

G/CG(H/K) = N/CN(H/K) = N/C^iQ/QnK) . Thus, clearly it will be sufficient

to show that h(N/CN(Q/QnK)} 5 2 log-

Let E be a characteristic subgroup of Q given by Lemma 8.2 of Feit

and Thompson [7 2. Then, by the same lemma, E has, among others, the

following two properties of interest to us:

(i) E/Z(E) is elementary abelian;

(ii) every non-trivial q'-automorphism of Q induces a non-trivial

automorphism of E .

In particular, by (ii), CJE)/C^(Q) is a <?-group. Also, since E

is a characteristic subgroup of Q 3 N , it follows that E , and hence

CN(E) , is a normal subgroup of N . How, by Theorem 3.1-3 in Gorenstein

[32, G/CJH/K) , and hence N/C^Q/QnK) , has no non-trivial normal

(^-subgroups. Thus, since the normal subgroup CAE)C {Q/QnK)/CN(Q/QnK) of

N/CN(Q/QnK) is isomorphic to CS(E)/C^E) n C^Q/QnK) which is a factor

of the <j-group C (E)/C (Q) , we have C (E) S C (Q/QnK) . For similar

reasons one can say even more, namely that ^(s/$(£•)) 5 CAQ/QnK) ; for,

by a result of Burnside (see Theorem 5-1.^ in Gorenstein [32, for example),

CN[E/$(E)) /CAE) is a <?-group, and, moreover, C (E/$(E)) 3N since

$(ff) 4 N , being a characteristic subgroup of E < N •

Thus, it suffices to show that 7iUV/C«(£/*(E)) is below the upper

bound claimed. However, N/CN[E/HE)) is a soluble linear group of degree

at most the dimension of E/$(E) regarded as a vector space over GF(q) ,

and the latter is, in view of (i), Lemma 3-3 and the remark following the

latter, at most 2(v(G)-l) . Thus, by the preceding result of Newman,

namely Theorem 3.5,
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, 2

and so the proof is complete.

We can now prove Theorem 1.1.

Proof of Theorem 1.1. Since each Sylow subgroup of G is contained

in some maximal nilpotent subgroup of G , it is immediate that h(G) 5 1

when v(G) = 1 . For a proof by contradiction, let G be a

counter-example of minimal order. Then v(C) > 1 , and, in view of Lemma 1

in [5] and the fact that N71 , the class of groups of nilpotent length at

most n , where n is any positive integer, is a saturated formation (see

Gaschutz [2], for example), G is a monolithic group with its Fitting

subgroup F as its monolith. In particular, F is an elementary abelian

p-group for some p . Let k = 2J1+log 2 / ' t h e l a r S e s t

integer is less than or equal to 2-(l+log_ ~^—*-\\ . Since, for each

each q dividing \G\ , 0 , (G) is the intersection of the centralizers
q q

of the <?-chief factors of G (see Satz VI, 5.1* (b) in Huppert [4]), Lemma

3.6 and the fact that the class W~ is a formation (see Gaschutz [2])

give

But 0 0 , (G) is q-nilpotent for every q other than p , and hence
qtp q q

it is an extension of a p-group by a nilpotent group. Thus h(G) £ k ,

and so G is not a counterexample after all. This contradiction completes

the proof.

We conclude this section with the remark that the bound of Theorem 1.1

is, at least for certain values of v(C) , not the best possible, as the

cases v(G) = 2 (see [5]) and v(<5) = 3 (see the following section) show.

4. The case v(G) = 3

Here, in this section, we will obtain a sharp bound on the Fitting

length of a group G for v(G) = 3 • In particular, we show

PROPOSITION 4.1. For v(C) = 3 , h(G) £ 1* .
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For the proof of Proposition U.I, we will need the following result

which is a slight extension of Lemma 6 in [5].

LEMMA 4.2. Let G be a monolithic group with its Fitting subgroup

F(G) as its monolith. If h(G) > 1 , there is a normal subgroup S of G

suoh that h{G/S) = h(G) - 1 and the Fitting subgroup R/S of G/S is

the monolith of G/S . Moreover, if V is a maximal nilpotent subgroup of

G such that VF(G)/F(G) 2 F(G/F(G)) , then VS/S > R/S .

Proof. For the proof of the first part of the lemma, we refer the

readers to Lemma 6 in [5]. The second part of the lemma is immediate from

the proof of the first part.

We now proceed to prove Proposition U.I.

Proof of Proposition 4.1. Suppose the result is false and let G be

a minimal counter-example. Then, in view of Lemma 1 of [5], the corollary

following the proof of the main theorem in [5] and the fact that the class

N.4 of finite groups of the Fitting length at most k is a saturated

formation (see [2]), it follows that

(1+.3) G is monolithic with F{G) as its monolith, V[G/F(G)) = 3 = v(C)

and h{G) = 5 .

Let \FI = pa , a > 0 . Then, since CG[F(G)) = F{G) by Theorem

6.1.3 in Gorenstein [3], a Sylow p-subgroup P of G is clearly a

maximal nilpotent subgroup of G . Let V and W be representatives of

the remaining two conjugacy classes of maximal nilpotent subgroups of G ,

respectively, and assume, without loss of generality, that VF(G) 2 F^ ,

where F /F(G) = F[G/F{G)) . Since F{G) is the largest normal

p-subgroup of G , F^/F{G) is a p'-group. Hence, since

CG[F2/F{G)) £ F2/F{G) (see Theorem 6.1.3 in Gorenstein [3]), it follows

that

(h.k) VF{G)/F(.G) is a p'-group.

Consequently,

(U.5) V n F(G) = 1 .

For, assume to the contrary that V n F{G) > {l} . Since F(.G) is an

https://doi.org/10.1017/S0004972700044440 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044440


Fitting length and conjugacy classes 221

abelian p-group (see (U.3)) and V/VnF(G) is a p'-group (see (lt.lt)),

V n F(G) 5 Z(F2) , so that, in view of our assumption, Z{F2) > (l) .

But Z(F2) - G , being a characteristic subgroup of a normal subgroup,

namely F2 , of G . Therefore, since F{G) is the monolith of G (see

(it.3)), Z(F2) - F(G) . However, since CG(F(G)) = F(G) , this can only

happen if F(G) = G . Thus, since h(G) = 5 (see (It.3)) , we must have

V n F(G) = {l} .

• Now, since G is monolithic with its Fitting subgroup as its monolith

and h(G) > 1 (see (It.3)) , G has, in view of Lemma It.2, a normal

subgroup 5 such that h(G/S) = h(G) - 1 and the Fitting subgroup R/S

of G/S is the monolith of G/S . Clearly h(G/S) > 3 , since otherwise

h{G) 5 h(G/S) + 1 5 It , contrary to G being a minimal counter-example.

Thus, it follows from (It.3) that

(1».6) h{G/R) = 3 and h(G/S) = h .

In particular,

(It.7) v(G/S) = v(C) = 3 •

For, if v(G/S) + V(G) , then by Lemma 1 of [5], v(G/S) 5 2 , and hence,

by the corollary following the proof of the main theorem in [5],

h{G/S) < 3 , contrary to (It.6).

Let |i?/S| = q , B > 0 . Since, by Lemma It.2, VS/S > R/S , it

follows from (lt.lt) that

(It.8) q + p .

Also,

(It.9) q * 2 .

For, suppose to the contrary that q = 2 . Then, the proof of Lemma 3-6

shows that G/Cr{R/S) = G/R is a factor of GL(U, 2) . Since

|GL(lt, 2 ) | = 26.32.5-T , it follows, therefore, that G/R is a soluble

group of order dividing 26.32.5-7 . Thus, in view of Theorem 1.3.10 (ii)

of Gorenstein [3], the group of automorphisms induced by G on a 5-chief

factor or a 7-chief factor of G/R is cyclic, and clearly that induced on

a 3-chief factor of G/R is a 2-group. In particular, the group of

automorphisms induced by G on each odd-ordered chief factor of G/R is
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nilpotent. But then, since J| , the class of all finite nilpotent groups,

is a formation, and, by Theorem 3.1.3 of Gorenstein [3], G/R has no

non-trivial normal 2-subgroups so that F{G/R) is the intersection of the

centralizers of the odd-ordered chief factors of G/R (see Satz III, k.3

in Huppert [4] and the proof of Theorem l.l), we have MG/R) 5 2 .

However, this is impossible because of (1».6), and so we conclude that q

cannot be 2 .

But, in view of (U.3), Lemma 3 in [5] and the remark following the

proof of Lemma 3.3,

(it.10) G has no elementary abelian r-subgroups of order r3 , for each

* * P >

so that, by a result of Thompson, namely Lemma 5-21* in [6], every

odd-ordered r-chief factor of G , for each r ? p , is of rank at most

2 . Thus, since G/R is represented faithfully and irreducibly on R/S

and h(G/R) = 3 (see (U.6)) , we have^. in view of Theorem 3.2.5 of

Gorenstein [3], that

(lt.ll) \R/S\ = q2 ; consequently, G/R is isomorphic to a subgroup of

GL(2, q) .

It follows then that

(U.12) q * 3 •

For otherwise, G/R S GL(2, 3) since every proper subgroup of GL(2, 3)

has the Fitting length at most 2 , while h(G/R) = 3 (see (U.6)). But

then, contrary to (U.7), v(G/5) > k , the Sylow 2-subgroups, the Sylow

3-subgroups and the two distinct conjugacy classes of 6-cycles of G/S

constituting four distinct conjugacy classes of maximal nilpotent subgroups

of G/S , Hence q cannot be 3 .

Now, let Z/R be the centre of G/R . Since G/R is isomorphic to a

subgroup of GL(2, q) of the Fitting length 3 (see (1*.6) and (lt.ll)), it

follows that

(U.13) G/Z = Sh , the symmetric group on four letters, and Z i- R .

Moreover, if K < G such that K 5 R and G/K is isomorphic to a

subgroup of GL(2, q) , then Z/K is the centre of G/K .
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For, let H < GL(2, q) such that H = G/R and let Z = z(GL(2, q)) .

Then H/Hriz = HZ/Z < PGL(2, q) , and so, by Satz II, 8.20 (b) in Huppert

[4], H/HnZ is isomorphic to a subgroup of PSL(2, q2) . But now, by a

well-known result of Dickson (see Hauptsatz II4 8.27 in Huppert [4], for

example) and Theorem 2.8.3 (iii) in Gorenstein [3], H/HnZ = 5 4 . In

particular, Z(#) = H n Z , and so, G/Z = Si^ . Hence, since q > 3 (see

(4.9) and (4.12)}, Z +R as S4 has no faithful, irreducible

2-dimensional representation over a field of characteristic greater than

3 . The rest of (4.13) now follows.

As a consequence of (14.13), (4.9), (4.12) and the fact that G/R has

no non-trivial normal ^-subgroups, we thus have

(4.14) q \ \G/R\ , and so R/S is a maximal nilpotent subgroup of G/S .

But,

(4.15) V contains a Sylow q-subgroup of G .

For, otherwise, W contains one, since a Sylow (j-subgroup of G is

contained in some maximal nilpotent subgroup of G . Since, by Lemma 4.2,

VS/S > R/S , it follows then that R/S £ WS/S n VS/S . Thus, since

CG(R/S) = R/S , both WS/S and VS/S are q-groups, and so v(G/S) £ 2 ,

contrary to (4.7).

Next, let L = 0 f(G) , N/L a minimal normal q-subgroup of G/L

and C = CJN/L) . Since C^.JR/S) = R/S and L avoids R/S , we have

L < S . On the other hand, since V contains a Sylow ^-subgroup of G

(see (4.15)), and since the Fitting subgroup of G/L is a <y-group and

contains its own centralizer in G/L , it is clear that

(4.16) VL/L is a Sylow ^-subgroup of G/L .

Thus, as G/Z is a ^'-group (see (4.14)), it follows that

(4.17) VL 5 Z .

Suppose first that WL > N . Then clearly (WL/L) , > C/L , and so

WC/C is a <?-group. Hence, since, in view of (4.16), VC/C is a Sylow

^-subgroup of G/C , WC/C £ iftc/C for some g in G . But now, since

V £ Z (see (4.17)), we may conclude that W < \flc < ZC , whence, by Lemma
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1 of [5], G/ZC has only one class of maximal nilpotent subgroups, namely,

that of PCZ/CZ . Thus, G/ZC is a p-group. Since G/Z = Si, (see

(it.13)), ZC/Z must, therefore, contain a subgroup isomorphic to the

alternating group A^ on k letters. In particular, the Hall

q1-subgroups of ZC/Z , and hence those of C/ZnC and C/L , cannot be

nilpotent. But then the nilpotent ^'-subgroup (WL/L) , of C/L cannot

be a Hall ^'-subgroup; that is, for some z>(t q) , {WL/L) , cannot

contain any Sylow r-subgroup (C/L) of C/L . However, (C/L) * N/L

is a non-primary nilpotent subgroup of G/L . Since VL/L and PL/L are

primary, (C/L)p * N/L must, therefore, be contained in some conjugate of

WL/L . But now, some conjugate of (C/L) is in (WL/L) , , and we have a

contradiction.

Hence, WL % N . We claim that C/L is then a <?-group. Suppose

this is not so, and let T/L be a non-trivial Sylow r-subgroups of C/L

for some r / q . Then (N/L) x (T/L) is a non-primary nilpotent subgroup

of G/L , which, as before, must be contained in some conjugate of WL/L .

But then N/L £ WL/L , contrary to WL £ N .

Thus, it follows that C £ R (for G/R is a q'-group (see (lt.1^))

and L > R ) , and so |/V/i| - q2 , since the alternative |w/£| = q

implies that G/C , and hence G/R is cyclic, contrary to (k.6).

Next, we show that \N/L\ = q2 and WL n N > L . Let Q be a Sylow

(^-subgroup of N/L ; Q is then elementary abelian, and so, from what has

been just shown and (U.IO), \Q\ = \N/L\ = q2 . Moreover, by Lemma 3.2,

Q has a non-trivial subgroup Q* such that Cn(Q*) > CAQ) > {l} . Since
r r

V is a p'-group (see (̂ .U) and (U.5)), it follows then that some

conjugate of Cp(Q*) x Q* is contained in W , whence WL n N > L .

Now, since |#/£| = q2 , we have that G/C is isomorphic to a

subgroup of GL(2, q) . Thus, since C 5 R , it follows from (1*.13) that

Z/C is the centre of G/C . But 0 (G/C) = {l} . Therefore, Z/C is a

^'-group. Hence, from (!4.9), (U.12) and (U. 13), we get that G/C is a

<7*-group, and so, in view of (I».l6), V £ C . Thus the maximal nilpotent

subgroups of G/C are just the conjugates of PC/C and WC/C , so that

https://doi.org/10.1017/S0004972700044440 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700044440


Fitting length and conjugacy classes 225

WC/C 2 Z/C . Since Z/C is a q'-group, in fact, W ,C/C > Z/C . But

W ,C acts trivially on (WLnN)/L ; so Z , too, must act trivially on

WLnN/L . Consequently, {l} < (WLnN)/L 5 C^.jXZ/L) < G/L , and hence

CN,L(Z/L) = N/L as N/L is a chief factor. It follows thus that Z acts

trivially on the whole of N/L , whence Z = C and a fortiori Z = R ,

contrary to (it. 13). The proof of Proposition k.l is now complete.

Let H be the binary octahedral group, that is, the group defined on

the generators a, b, o by the relations

a
2 = i>3 = c1* = aba .

As is well-known, H has just one element s of order 2 , the

centre Z of H is generated by z and H/Z = Si, . Let U be a vector

space over GF(3) which affords the representation of H induced from a

non-trivial one-dimensional representation of Z and let U* be any

non-zero /^-invariant subspace of U . It is easy to see that, for the

split extension G of U* by H , v(<J) = 3 and h(G) = k : (In fact,

U* can be chosen to be of order 31* , so that G is of order 24.35 •)

Thus, the bound obtained in Proposition l*.l is the best possible.

We conclude this paper by mentioning that we have examples of groups

G for which h(G) > log log3 (v(C))J .
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