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Abstract

In Zermelo-Fraenkel set theory weakened to permit the existence of atoms and without the axiom
of choice we investigate the deductive strength of five statements which make assertions about the
cardinality of the union of a well-ordered collection of sets. All five of the statements considered
are consequences of the axiom of choice.
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1. Introduction

We will work in Zermelo-Fraenkel set theory without the axiom of choice (ZF)
or in ZF weakened to permit the existence of atoms (ZFU). Our concern will
be with the deductive strength of several theorems of the theory ZF + AC (that
is, provable under the assumption of the axiom of choice) which make assertions
about the cardinality of the union of a family of well-ordered sets. In general
UT(condition 1, condition 2, condition 3) will denote the sentence which
asserts that whenever X satisfies condition 1 and each element of X satisfies
condition 2, then U X satisfies condition 3. If d is a cardinal number then the
condition has cardinal number d will be denoted d. In addition W O will stand
for the condition is well-orderable. This is the notation of [3].

The theorems of ZF + AC whose deductive strength we shall study are
(1) (V infinite cardinals d)UT(d,d,d)
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118 Paul Howard [2]

(2) (V ordinals a) UT (Ko, Xa, Ko)
(3) (V ordinals a) UT(K0, K, K)
(4) t/r(N0, Ko, «o)
(5) If {An : n e a>} and {#„ : n e co} are disjoint families of sets with

\An\ = |SJ for all n e co then | \JH&o An\ = \ \Jn€l0 Bn\
Theorem (1) was considered by Sierpinski in [7] while Theorem (3), The-

orem (4) and Theorem (5) were first employed by Cantor. (See [5, p. 9, 36]
and [2, p. 117].) All five of these statements appear in [5, p. 324] as part of an
implication diagram in the following relative positions

(1) « _ Ac
I

(2) — • (5)

I I
(3) (4)
I

(4)
We first want to point out that (5) implies AC is not provable in ZF since the

axiom of choice for countable collections of sets implies (5) but does not imply
AC, [5, p. 324, 325].

Secondly, the fact that the implication (4) implies (3) is not provable in
ZF follows from the results of [1] where it is shown that for any ordinal /*,
UT(#p, #p, Up) does not imply the axiom of choice for countable collections
of sets each of cardinality fy+i. Since UT(X0, t*p+l, #p+i) clearly implies
the choice principle mentioned above, we obtain the fact that UT(i*ip, #p, #p)
implies l/T(K0. #p+\, *Vn) ^s n o t Provable in ZF.

Thirdly, (1) implies that for every infinite set A, \A x A\ = \A\ which is
known to be equivalent to AC (see [6, p. 140, CN 6]).

In the following section of the paper we will prove that (5) implies (3) and
that the implications (2) implies (5) and (3) implies (2) cannot be proved in
the theory ZFU. This will give the following diagram, where none of the
downward arrows can be reversed.

(1) = AC
I I

(2) d^-o t (5)
I I

(3) (3)
I

(4)
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[3] Unions of well-ordered sets 119

The problems remaining unsolved are

PROBLEM 1. Does ZF h (5) ^ (2)?

PROBLEM 2. Can the results ZFU \f (2) -+ (5) and ZFU \/ (3) -* (2) be
strengthened to ZF \f (2) -> (5) and ZF \f (3) -+ (2)?

(We suspect that the implication (2) -> (5) from the first diagram is a misprint
in [5] since no references to the result are given. We have therefore included the
question of whether or not ZF h (2) -> (5) as an open problem.)

2. The Proofs

THEOREM 2.1. (5) implies (3).

PROOF. Assume that {An : n e co} is a countable family of sets such that
(Vn G co)(\An\ = N«). By (5) with Bn = {(n,fi) : /? < N«} we obtain
| Un££0 AJ = |K0 x Ka| = K by [4, p. 29, Theorem 10.12].

THEOREM 2.2. ZFU \f (3) - • (2).

PROOF. Let M' be a model of ZFf/ + AC with a set A of atoms of cardinality
Ni. Let a be a fixed bijection from Ki x Kj onto A (a e M'). We use a
to partition A into Nj blocks each size fti as follows: For each a < ^ let
Aa = {a(a, 0) : 0 < Ki}; Aa is called the a t n block. Let G be the group of all
permutations of A which fix the set of blocks, that is

G = {cf> : A —> A : (Va < tfi)(0(Aa) = Aa)}.
onto

For each countable subset E of fc^, let

G(E) = {cf> e G : (Va G E)(cf> fixes Aa pointwise)}

and let T be the filter of subgroups generated by { G(E) : E c Kt A |E| = Ko}.
Finally, let M be the permutation model determined by M' and T.

Theorem (2) fails in M since {Aa : a < Ki} is a family of Ki sets each
of cardinality K] whose union is not well-ordered in M. (3) holds in M, for
suppose that { Bn : n e co} is a countable collection of sets each of cardinality
Xa. For each n e co, assume En c Nl5 En is countable and G(En) fixes a
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well-ordering of Bn. Then G(En) fixes Bn pointwise so if we let E = [Jnea) En

then E c K,, E is countable and G(E) fixes UneM ^« pointwise and therefore,
since | \Jn&o Bn \ = K in M', | |JB6(B «„ I = «„ in M.

THEOREM 2.3. ZFf/ 1/ (2) -+ (5).

PROOF. We construct a permutation model with the idea in mind that we want
(5) to fail.

Assume M' is a model of ZFU + AC with a countable set of atoms A.
Write A as a disjoint union A = ({Ji€w A,) U (U,€(U Bt) where for all / e co,
| A,: | = \Bt | = Ko- Let /) be a fixed bijection between A, and B, for each i G <W.
The idea is to construct the model M so that for each / e co, f,^ is in M but
U,-6<u /i is not in M. Let

G = {<p : (/> is a permutation of A

A(Vi € w)(0(A,) = A, A 0(fl,-) = Bi)

A{ a e A : <̂ »(a) ^ a } is finite

A(V/ e (o){4> | A, and ^ | B, are even permutations)}.

For each finite subset x c co and finite E c A let

G(JC, E) = {4> e G : (Va e £)(0(a) = a) A (VI e

(where </»(/,) = /; means (Va e A,-)(0(/i-(o)) = fi((f>(a))). Let T be the filter
of subgroups of G generated by the groups G(x, E) where x c. co, E c. A and
x and £ are finite and let M be the permutation model determined by M' and T.

Then {A, : i € co} and {6, : / e co} are in M and are denumerable in M.
Further (V/ € &>)(| A, | — \B,• |) in M since G({/}, 0) fixes / . However it is clear
that there is no one to one function from [Jiew A, onto U,-S(U 5, in M. (Assuming
G(x, £) fixes such a function, consider an a G A — [£ U (Uiejt(^i ^ ^/))]-) So
(5) is false in M.

To show that (2) is true in M, it is enough to show that the union of a well-
ordered collection of well-orderable sets in M is well-orderable in M since this
implies (2) in all permutation models.

Assume Z e M i s well ordered in M and that G(x, E) fixes Z pointwise.
We assume without loss of generality that

(6) (Vi G <u)(Va G Ai)(a G £ «—• Ma) € £) .
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Also assume that each element of Z is well-orderable in M. We will show
that G(x, E) fixes \JZ pointwise. Therefore assume t e y G Z. We will
show that G(x, E) fixes t. By our assumption, G(x, E) fixes y and for some
x' c co and E' c A, G{x', E') fixes y pointwise. We may assume without loss
of generality that x c. x' and E c E'.

LEMMA 2.4. Ifi & x' — x and there is a<j) G G{x, E) such that
(i) (Va e A)(a £ A,- -+ 0(a) = a)

(ii) </
f G G(x', £) and 3t' G y

(iii) (Va € A)(a £ A, U fi, -^ f (a) = a)
(iv)

PROOF. Assume that <j> satisfies conditions (1) and (2) and that the conclusion
is false. Then for every xj/ e G(0, E) if

(a) (Va G A)(a & A, U B, -> yfria) = a) and
(b) (Vfl€AI-)(^a-(fl)) = / / (^(a)) )
then (Vr' e 3')(Vf(?') = ' ') and in particular, \fr{t) = t.
If we let K = [\jf e G(0, E) : (a) and (b) hold} then we could rephrase our

assumption as (V^ e K)(Vt' e y)(^r(O = r')
Let / / = [r] : r) G G(x, E) A (Va e A)(a # A, -> rj(a) = a)}. We

identify H with the group of (finite) even permutations of A, — E and we let
H, = {r) G H : r)(t) — t}. By hypothesis H, ^ H. Further H, is a normal
subgroup of H for suppose o e H and r\ e H,. We argue that ar\a~x G Ht, that
is that or)o~l(t) = t, as follows: Let ^ be defined by

_ I" 1fi(cr(fr\a))), a G B,

so that Va G A,, ̂ (/-(a)) = fii°(fr\fM)))) = fM(a)) = Mir (a)) so
satisfies (b). x/r clearly satisfies (a) so \j/{t) = t. Also or)o~l{a) = if {a) for all
a G A (by considering two cases a G A, and a G B,) SO or)o~x(t) = ir(t) — t.

Since the alternating group on an infinite set has no non-trivial, proper, normal
subgroups and H, ^ H, H, = {1} where 1 denotes the identity permutation.

Assume now that if G G(0, E) and if satisfies (Va G A)(a e1 A, U Bt -*•
if (a) = a). We first want to show

(*) if(t) = t^if€K.
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By assumption \jr e K —>• \jt(t) = t. Assume \(r(t) = t and if <0 K. Then
for some a0 e A,, ir(fi(a0)) j^ fi(^(a0)). Define iff' € G(0, E) by

if-'(a), a e B,

a, otherwise.

We first note that ir' fixes E pointwise since if does. (This uses our assumption
(6).) if' clearly satisfies (a). We argue that if' satisfies (b) as follows. Suppose
a € A,. Then a = f~\a') for some a' in fi,. Therefore

Hence fids'(a)) = f-{(fi(a)) = ir'(fi{a)). Since ^ ' satisfies (a) and (b) we
conclude that rjr' € K and therefore that ijf'(t) — t. Furthermore \lr'\ff(a) = a
for all a e Bt. Since \jr and ifr' are both equal to the identity outside of At U Bt,
it follows that ^'yfr € H. Now T/T'^ is not the identity since

So ty'f g Ht, that is, ir'ir{t) ^ t. But this contradicts (\/r(0 = t A V'CO = t).
This establishes (*).

By our assumption, </> e H and 0 ( 0 ^ ?. Therefore for some a^ e A,,
4>(a0) 7̂  ao- We claim there exists ir € K such that

(**) <f>f<t>-1 <£ K.

Choosey € A,• — E such that 4>(a{) — ax and let xfr = (a0, ai)(fi(a0), fi{ax))
(the product of two disjoint cycles). Clearly rfr e K. We also note that

l a.\ since VK ô) = <*\ and (t>~l{a0) ^ a0. Now we calculate

>~xU)(a0)) = c/>ir (Mao)) = <j>(fi(a0)) = f

and
)) = fi(a,)

showing 4>i/f<j>~1 £ K.

Now the proof of Lemma 2.4 is completed by observing that t' = (f>~l(t) e y
and that \//((p~l(t)) ^ <f>~l(t) (since otherwise 0 ^ 0 " ' (t) = t, and by (*),

e K contradicting (**).)
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Now continuing with the proof that G(x,E) fixes t, assume that there is some
0 € G(x, E) such that 0(0 ^ t.

LEMMA 2.5. (3^ e G(x', E))(3t' e y){f{t') ^ t').

PROOF. TO see this we first write 0 = 0!02 where

<t>{a), if (3/ € x')(a e A, UB,),
a, otherwise;

a, if(3/e*')(aeA,U.B,),
4>{a), otherwise.

If 02(0 T̂  t then ty = 02 will work. Therefore we assume that 02(O — t. Then
01 (f) ^ t since 0(r) ^ r. For each i e x', let

pi(a), ifaeAjUBt,
i, ifa^AiUBi.

Then 0i = Yliex' *li- Therefore for at least one /0 e x', rjh(t) ^ t. We can write
r)io = oxo2 where

_ f
I otherwise;

a, otherwise.

It follows that <7i(0 7̂  f or a2(0 # ?. Assume without loss of generality that
<7i(0 ¥"t- (The c a s e ai(t) 7̂  ^ would require a version of Lemma 2.4 obtained
by interchanging A, and B,.) Applying Lemma 2.4 with <\> = o\ gives us the
desired conclusion. This completes the proof of Lemma 2.5.

Assume that V and t' satisfy the conditions of Lemma 2.5. Let E" — {a e
A : ir(a) ^ a} and choose r) e G(x', E) such that r)(E") (1 £" = 0. Then
?j(O € j since rj € GU', E) C G(x, £). Let a = ^i/rr;"1. Then

(7) a € G(x', E').

(a is clearly in G(x', E) since rj and i/f are. We need only show a (a) = a
for all a € £'. If a € £' then yj-1^) ^ E", so f (^"'(«)) = ^"'(a), and so

(8)
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(For if not, »jf T 'OKO) = W), that is, ij^(r') = »?(''), giving V(O = ''•)
(7) and (8) contradict our choice of x' and E', completing the proof of

Theorem 2.3.
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