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COINITIAL GRAPHS AND WHITEHEAD
AUTOMORPHISMS

A. H. M. HOARE

Coinitial graphs were used in [2; 3; 4] as a combinatorial tool in the Reide-
meister-Schreier process in order to prove subgroup theorems for Fuchsian
groups. Whitehead had previously introduced such graphs but used topological
methods for his proofs (8; 9]. Subsequently Rapaport [7] and Iliggins and
Lyndon [1] gave algebraic proofs of the results in [9], and McCool [5; 6] has
further developed these methods so that presentations of automorphism groups
could be found.

In this paper it is shown that Whitehead automorphisms can be described
by a “cutting and pasting’’ operation on coinitial graphs. Section 1 defines
and gives some combinatorial properties of these operations, based on [1].
Section 2 gives algebraic properties, based on [5]. Section 3 gives a unified
proof and extension of the results of [1], [5] and [6].

I would like to thank the referee for his many valuable suggestions, partic-
ularly in the wording of the first two pages.

1. Let X be a set of letters with a fixed involution x + x~!, where x may be
equal to x~! and where for convenience we will use the term involution to
include the case in which x = x~! for all x. Let W be a set of reduced cyclic
words in X. With the pair (X, W) we associate a directed graph I' with vertex
set X and with directed edges defined as follows. With each occurrence of a
letter x in an element w of the set IV we associate a directed edge ¢ : x — vy
where y~! is the letter which occurs in w immediately following the given
occurrence of x. If w is of length one then x immediately follows itself in the
cyclic word giving an edge ¢ : x +— x~1. This will be a loop if x = x~1, but apart
from this T has no loops.

We define also a one-to-one map ¢ of the edges of T' to themselves which
takes an edge e¢; : x +— yassociated with an occurrence of x to the edge
es @ v~ >z associated with the occurrence of y~—! immediately following the
given occurrence of x.

Definition. A coinitial graph is a pair (T, ¢) where T is a directed graph
whose vertex set X has an involution x + x~! as above, and where ¢ is a
one-to-one map of the edges of T' taking each edge ending at each vertex y to
an edge beginning at y—1.
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Clearly each orbit under ¢ determines a succession of letters in X, and if each
orbit is finite then from a coinitial graph (T, ¢) we can recover a unique pair
(X, W) with which it is associated.

It should be noted that the present concept of coinitial graph is an extension
of that used in [2; 3; 4].

If 4 and B are subsets of X, not necessarily disjoint, then by an edge
between 4 and B we will mean an edge e : ¢« — b or an edge ¢ : b — a where
a € Aand b € B. A’ will denote the complement of 4 in X, and « will as usual
be used to denote either the element « or the set {a} according to the context.

We now define an operation on coinitial graphs analogous to the well known
cutting and pasting of a fundamental region of a Fuchsian group. Let « # ¢!
be an element of X and 4 a subset of X containing « but not «~'. The operation
(A4, @) on a coinitial graph (T, ¢) is defined in three stages.

(i) Replace each edge ¢ in T between x € 4 and y=' € A" by edges ¢
between x and @ and ¢; between o' and y~!, where a and o' are new and dis-
tinct vertices. The directions of e; and e, are defined by ¢; : x — «
and ex:at >yt if e:x >yl and by ey oot and ¢ i a o x if
¢y~ —x. In the first case we modify ¢ by defining ¢(¢;) = ¢, and replacing
o(c’) = eby ¢(¢') = ey and ¢(e) = €’ by ¢(es) = ¢’ In the second case ¢ is
modified by defining ¢(ex) = e; and replacing ¢(¢’’) = ¢ by ¢(¢’’) = ¢y and
d(e) = ¢ by ¢ple)) = ¢

(i1) Relabel a, a~! as ¢, a=' and conversely.

(iii) Do the converse of operation (i) with the new « and a~!. That is,
remove the vertices e and a~! and replace each pair of edges at « and o= which
correspond under ¢ by a single edge with suitable direction and adjust ¢
accordingly.

We will refer to operation (i) as cutting the edges between A and A’ and
joining them to a and o™, and to operation (iii) as joining the edges at « and
a~ 1. Clearly after cutting the edges between A and A4’ we have two disjoint
graphs and operation (iii) joins edges in distinct components so no loops can
be created or destroyed by (4, a).

We will write the operation (4, @) on the right so that (4, a)(B,b) will
denote (4, a) followed by (B, b). The conditions ¢« € A and a=' ¢ A will be
assumed whenever we write (4, a). We will use 4¢ to denote 4 if ¢ = 1 and
to denote 4, if e = —1, so that (4, «) is defined if and only if a¢ € A€ for
e = 1. We will also, as is usual, use 4 + B to denote 4 U B
when 4 M B =0, and 4 — B to denote 4 M B’ when 4 2D B. In longer
formulae the operations of plus and minus for sets are performed from left to
right. Let T denote the set of all operations (4, a).

Suppose now that |T|, the number of edges of T, is finite. Let ¢ be any finite
succession of operations in T, then T's also has a finite number of edges and we
write Arg, or simply A, for [T'e] — |T|. Let 4 and B be any two subsets
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of X, then we define 4.1B, or 4.B when T is understood, to be the number of
edges in T between 4 and B.
We have immediately that

aa =0 ifa##a?
A.B=B.A =0,

(4 + B).C =A4.C + B.C,
(B—A4).C=B.C—A4.C,
X =a1X

Also operation (i) above replaces each edge between A and 4’ by two edges
thereby increasing the number of edges by 4.4, while operation (iii) replaces
pairs of edges at @ and o=, which were previously the edges at « and «~!, by
single edges thereby decreasing the number by «.X, hence

A(d,a) = A.A" —aX = A4, a™").

Let P.; denote A< M Bf. Then 4A¢ = > ¢P.;, B = > P.; and
X = X ¢ Pey, where summation is over ¢, { = +1. Hence

AA = A A<= Py + Pe_¢).(P_cc + P_c )

Z2 P (Pocy+ Pocg) +PoctPey
and

BB = BB =P+ P_ct).(Pe—t+ P_ct)

2P P+ Poco(Peg+ Poct).
Thus

1) AA"+BB 2P ¢(Pet+ P_ct+ P_c_y)
+P s (Peg+ P+ Pcy)=P P o+ PPy
By symmetry
AA"+BB =z P_c ¢ P« ¢ + P Pey
and so
(2) 2(4.A"+ B.B') =z Yt Pep.Poy.
LemMMAa 1. If A M B = B and a= ¢ B then for all finite T
IT(4,a)(B,0)| — |4, a)] = |T(B,b)] — |T.

Proof. Consider the effect of (4, @) on edges between B and B’ in T.

Since B C A4’, the only edges between I3 and B’ which are affected by opera-
tion (i) are those between B and A and these are replaced by an equal number
of edges between B and o' and between a and 4. Therefore the number of
edges between B and B’ 4+ « + «~! is the same as between B and B’ in T

Since ¢ and =" are in B’ operation (ii) does not change the label of any vertex
of B, hence the number of edges we are concerned with does not alter.
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Since the new e and o~ are not in B, reversing the argument for operation (i)
shows that the number of edges we are considering remains unaltered.

We have shown therefore that the number of edges between B and B’ is the
same in T'(4, ¢) as in T. Applying the same argument with b for B and using
the equations above gives

IT(4,a)(B,b)| — |T(4,a)| = B.B —b.X = |T(B,b)| — |T].

LEMMA 2. Let T and Ty 1 € I, be finite coinitial graphs, where I is a set
inductive under a relation > . Suppose that, for each 1 € I, || is minimal under
operations in T which do not increase | T'y| for j < 1. Suppose also that (4, «) und
(B, b) satisfy

Af{A,a) = Ay(B,b) =0, foralli € I, where A; = Ar,, and
A(d,a) £0,A(B,0) 20,

with at least one of these inequalities strict. Then for some p = o+, hF!
AP, p) =0, forallz € I, and
AP, p) <0,

where P denotes the set A< (M BY containing p.
Morecover if (V,y) = (A=¢, a=¢) or (B~%, b7%) then
Aw =0, forallt € I, and
Ao < 0,
where
Y,»)(@P,p) fytePp,

o=@, p)(Y,y) ifpt ¢ 7Y,
either (P, y=) or (Y, p~1) otherwise.

Proof. For x = a*!, b*! let P(x) denote the set 4¢ M B¥ containing x. If the
four sets P(a), P(a~1), P(b) and P (b~1) are all distinct then

; AP (x), x)

> Per Py — 20X — 20X
€,

=24.4"+2B.B" — 2a.X — 2b.X, by (2),
< 0 by hypothesis.
Hence A(P, p) < 0 for some p = a*!, b=! where P = P(p). Similarly

> AP(x),x) £0 forallic I.
Hence by the given conditional minimality and using induction on I we have
Ay (P,p) =0 forallze I

If there are three or less distinct sets P (x) for x = a*!, b=! then for some ¢
and ¢, A<M Bf does not contain any of @, a~!, b or b='. In particular it does not
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contain a¢ or 0f, so
Pla) =4 NB*¥=P,  and P@f) = A=< DB = P_. ;.
Hence

A(P(a¢), a) + AP (L5),08) = Pe ¢ Pey —at X + P_o Py
— X
<44 —aX + BB —0b0X, by (1)
< 0 by hypothesis.
Similarly
Ay(P(a®), a®) + A;(P(%),0%) =0 foralle € 1.

As above it follows that A(P,p) < 0 and A(P,p) = 0 for (P, p) =
(P(a*), a¢) or (P(b¥), b%) and for all ¢« € I. This completes the proof of the
first part.

By a change of notation take P = A<M\ Bf. Thentor ¥V = 4=, or V' = B¢,
PNY =0soif y1 ¢ P we have

T2, p)| — T + |1(Y,y)] — |T| by Lemma 1
=A(P,p) +A(Y,y) <0, since A(Y,y) £ 0 by assumption.

Similarly, Ao = 0, since A (V,v) = 0.

The proof for p~ ¢ V is similar.

If y=* € Pand p~' € V, then (P, y~') and (¥, p~!) are defined and

AY, p) + AL, y1) = V.V — pX + PP — yX
=A(Y,y) +A(P,p) 0.

Similarly, A;(Y, p71) + AP, y™') = 0. As before this gives Ac < 0 and
A0 = 0 either for ¢ = (V, p~1) or for ¢ = (P, y~1).

If p =y !take ¢ = (P, y71).

I

When I is empty this reduces to the lemma of [1].

2. We now consider the transformation on the set W corresponding to the
operation (4, «) on the coinitial graph of 1V.

Let there be given any w € W of length greater than one and an occurrence
of x~'inw,say...yx"'z....Supposcy # z~!, and let " be the set of reduced
cyclic words obtained by deleting the occurrence of x~! from w. It follows from
the definition that the coinitial graph (I, ¢’) of W’ is obtained from (1", ¢) by
deleting the corresponding pair of distinct edges

e;:yr—>x and ey:x~!l g7l

from T, and replacing them by a new edge ¢ : y — z~! which is not a loop since
by assumption y # z71. ¢’ is obtained by adjusting ¢ in the obvious way, that
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is by deleting ¢; and ¢, from the domain and range of ¢ and substituting the
new edge ¢ for them, ¢’ being otherwise the same as ¢. This deletion operation
for coinitial graphs was used in [2], [3] and [4] to obtain subgroup theorems.

Comparing this with stage (iii) in the operation (4, a) and comparing its
converse with stage (i) we have that the transformations on the set 17 corre-
sponding to the three stages of (4, «) are:

(i)’ For every occurrence of ...yz...or ...z "1 . with vy € 4 and
z71 @ A, insert a~! or « respectively,
(i1)” Substitute «, a~! for @, &~ and conversely,
(iii)” Delete all occurrences of o and a1

It is now easily checked using (i)’ (i)’ and (iii)’ that the following lemma
holds.

LeEwMA 3. The operation (A4, a) 1s equivalent to the transformation of 1 given
by mapping ecach x € X as follows:

a <> a’t,

x—axa~t ifx € Aand x7P € A4,
x—oxab feFx e Aandxt 4 A4,
x—ax ifat#Fxd Aandxt € A4,
x>y ifxd dandx q A4,

and deleting any a~'a in the resulting cyclic words.

Note that this transformation differs from the Whitehead automorphism
only in taking «, «~! to a=, «. If 4 is the subset {«}, then we have that («, a) is
equivalent to the transformation ¢ < a7%

We now introduce the notation (¢ <> 0), if @ 5 «=' = 0! and b # b1, for
interchanging the labels of the vertices ¢ and b and those of «=! and 0~!, and
interchanging similarly all occurrences of «, «=1, b, b=' in the reduced words,
Clearly (¢! «» 0™') denotes the same operation as (¢ <> b).

LEMMA 4. I b 5% « the following relulions hold.

RL (d,a) = (4,a0)7, (x ©y) = (x < y)7,

R2. (4, ua) = (4',a™"),

R3. (a,a) = (¢, a™1),

R4. (A4, a)m = 7(Aw,an), 7 = (x <> y) or (x,x),

R5. (4, a)(4,0) = (4,0)(b < a).

If A M B = @ the following also hold.

R6. (4,a)(B,a™") = (B4 4 —a Y, «) (@™, a™Y),

R7. (4, ) (B,b) = (B,b)(4, a) whenever a=* ¢ B, 0" ¢ 4,

RS. 4,a)(B,0) = (B,b)(B+ A4 — b1, a) whenever a=* ¢ B, b~' € 4.

Proof. Since we have proved the equivalence of the operations (4, «) on
coinitial graphs and on reduced cyclic words, and since this clearly extends to
(a &) we can prove the relations by showing that they hold either for all
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coinitial graphs or for all reduced cyclic words. Consider first all coinitial
graphs.

In the operation (4, @), (i) and (iii) are inverses and (ii) is its own inverse,
and by definition (x <> y) is its own inverse, so R1 holds. Operations (i), (ii)
and (iii) are the same for (4, «) and (4’, a='), so R2 holds. Now (a, «) and
(¢, a~1) both merely interchange ¢ and ¢, so R3 holds. The operation (4, a)
followed by a change of label may also be achieved by first relabelling the
vertices and then carrying out the operation on the same edges and with the
same vertex, i.e., with the new labelling, (4w, ar), so R4 holds. In applying
(4,a)(A4, D) operation (i) of (4,b) cuts precisely those edges which have heen
joined by operation (iii) of (4, «). Therefore (4, «)(A4, D) is equivalent to

(i) cut all edges between 4 and 4’ and join to « and a1,
(ii) apply (a <> @) then apply (@ < D),

(iii) join the edges at « and a~'.

Now (ii) above is the same as applying (a <> ) and then applying (¢« <> b);
moreover the edges at o and o' may be joined before the last relabelling and so
R5 holds.

The proofs of R6, R7 and RS8 are more succinct using reduced words than
coinitial graphs, so we consider the action on letters.

Now a(4, a)(B’, «) = a and similarly for ¢=1. If x 5 a%! then

xa o ifx € 4AM B,
x(A4,a)(B',a) = <xa~tifx € A" M B,
.x otherwise,
where the dot is determined by x~'. Hence, using (B’, «) = (B, «™1),
A4,a)(B,a™) = (C,a)(D,a ")

whenever 4 M B = CMN\ D and A" N\ B’ = C’ M D’. In particular R6 holds.
If AMNB=0and et ¢ B then

a(d,a)(B,b) = a ' = a(B,b)(4, a)
=a(B,0)(B+4 — b1 a),

and similarly for «='. Moreover if x # «*!, b*! then

xa™l o ifx € 4,
x(4,a)(B,b) = <.xb-! if x € B,

.x  otherwise.
Now if also b= ¢ A4 then by symmetry

b(A4,a)(B,b) =01 =b(B,b)(4,a) and
x(4,a)(B,b) = x(B,b0)(4,«) forall x # att, b*,

so R7 holds.
Whereas if b=! € 4 then

b(A,a)(B,b) =ab=t = b(B,b)(B+ A — b1, a)

https://doi.org/10.4153/CJM-1979-012-x Published online by Cambridge University Press


https://doi.org/10.4153/CJM-1979-012-x

COINITAL GRAPHS 119

and for x # a*!, b*!
xa~b o ifx € 4,
x(B,b)(B+ 4 — b7 a) = {.xaab™! if x € B,
.x otherwise,
which proves RS.

3. We now combine the algebraic results in Section 2 with the combinatorial
results from Section 1. Suppose that the conditions of Lemma 2 hold and that
(P, p) and ¢ are given by the lemma. Let oy = (4, «) and o3 = (B, b). If
p = aclet o1 be (P, p) and g2 be o with (V,y) = (B, 07%). If p = b¥let g, be
(P, p) and a1 be ¢ with (V, y) = (4~ a™°).

Lemma 5. With g, . . ., o3 defined as above, the relations R1-R8 give
o, =0,90Q, c)m, for someQ, t=1,2,3,

where ¢, = a=<or b=% and m, = (a¢ b)), (¢y, ¢;) or the identity, and with the
convention that (Q ,, ¢,) may be the identily.

Proof. The relations R1-R3 will be used freely throughout, the other rela-
tions will be explicitly mentioned.
Suppose p = a¢; then, with (Y, y) = (B, b7¥),

o1 = (P,a®) = (A=, a=)(A~ <+ P — a~¢, a~¢) (as, a*),
by RO, which is of the required form.

(Y, 9)(P,p) = (P,p)(Y,y)or (P,p)(P+ ¥V —p7ly)
by R7 or R8if y~1 ¢ P,
(P,p)(Y,y) ifp~tq 7,

It

(P, p)(Y,y)

gy =
(P, y™) = @, )2,y )y o p) byRSifp#yte P,
= (L, p) ilp=y7"
(Y, p™) = @,p)(Y+ P —p,p)p~tp7') by R6,
which in every case is of the required form.
Moreover
(Y, )Py p) = (Y, 9)(P,p) ify ' ¢ P,
P, p)(Y,y) = (Y, 9)(P, p)or (Y, 9)(Y + P — 7' p)
oy = by R7 or R8if p=' ¢ 7,
P,y = (Y, )P+ Y =y ™y by R6,
(Y, p™) = (Y, ) (Y, p7)(y «p™') by R5ify # p7t,
= (Y,y) ify=7p7}
which, since o3 = (Y, ), may be transformed to the required expression for

o3 using R4 if necessary.
This proves the lemma when p = < If p = b¥ the proof is the same with
(4, a) and (B, b) interchanged.
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When I is empty we get Lemmas 1 and 2 of [5].

Let T now denote the set of transformations (4, @) and (¢ < b), and Z the
group of transformations generated by T. Lemma 2 still holds with the slight
change of notation.

LeEaxya 6. Let T be « finite partially ordered set and let T and Ty for 1 € 1, be
fintte coinitial graphs. Suppose that, for euch i € I, |Ty| is minimal under + € T
that do not increase || for any j < i. Let o be any element of 2 such that
Dol = |0 for i € I, and |Va| is minimal under «ll ¢ € 2 that do nol increase
|Ty| for 1 € 1. Then any expression for ¢ as a product of T in T can be changed by
repeated use of the relations in Lemma 5 to ¢ = 71.. .1, such that

Doy oor | =D forr=1,2,... ,n,and all i € I, and

]F{ > |F7’1i > 00> 'Fn...rs| =...= ITJE for some
s=0,1,...,n
Proof. Add an element 7, to I with iy > iforallz € I,and put T' = T';,. We
use induction on the relation >. Let & be a minimal element of I for which the

conclusion does not hold for some o satisfying the hypotheses.
Now by the induction we can assume that the expression for ¢ has been

changed by the relations to ¢ = 71...7, with [[i...7,] = [T for
r=1,...,n,andall i <k Put|I'yri...7,| =1, forr =0,...,n, and con-
sider the sequence /g, l1, ..., [,. If B # 1, then k& ¢ I and by the hypothesis

I, =z 1y =1, sowehave [,y =1, > [, for some r. If & = 4,5, then by hypo-
thesis [, =2 [, and again [,_; <[, > [,;, for some . In either case choose 7 to
give a maximum /, satisfying these inequalities.

If 7, is not a permutation then we assert that the conditions of Lemma 2
hold for T' = Tyry...7,and Tyry ... 7y 7 < kb, with 7, = (4, «) and 7., =
(B, b). For il {|T,71...71,], 7 <k} does not satisfy the required minimality

-

condition for Lemma 2 then there exists some j° < k& and some r £ T such that
[Ty orr| = |Tyr. o] all <7, and |Typr.. . rr] <ITyr...1,l
But then by the induction hypothesis we may apply the present lemma to j" and
a suitable ¢ to show the existence of ri/ such that |[I';7/| = [T, and [T,7/] <
IT . Since j° € I this contradicts the hypotheses given for this lemma. The
other hypotheses of Lemma 2 clearly hold. We may therefore apply Lemma 2
and Lemma 5 to find ¢4, g such that Ae, = [Dgri .. .70, — [ Tyri ... 7] <0,
Dm0 =10 7], <k and o, = ¢,:(Q, c)m, Lt =1, 2, 3,
where o = (4, ¢) = r,and o3 = (B, D) = 7,41. Therefore

3
Tryl = Ty H (Qn Ez)ﬂ't
1

and substituting this for 7,,; in the expression for ¢ and cancelling 7,7, we
obtain a sequence in which, in place of the value /,, we have [, + Ag; twice
and [/, + Agy twice and /,y; once. Moreover for the new sequence, since
[Tiri...700, = |Dymi.. .7, we still have [D,ry...7.] = [Ty all #, all
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j < k. If 7, 1s a permutation then by R2 we can move it one place to the right
to obtain a sequence in which the value /, is replaced by [, ..

Now by the usual induction on the value [, and the number of times it is
attained we have, after a finite number of steps, that the conclusion holds
after all for this £ and ¢. Since [ is finite the lemma is proved.

If I is empty we get the original result of Whitehead [9].

COROLLARY. Let I be an inductive set and let |T 4|, ¢ € I, be minimal under all
7 € T that do not increase |Ty| for any 7 < i. Then |Ty| 1s minimal under all
o € Z that do not increase |T'4| for any j < 1.

Proof. Suppose not. Then there is some minimal 7, € I and some ¢ € =
such that |I'yo| < |Ty| and |Tye| = |Ty|, for j < 7,. Applying the lemma
to I'yfori < 7o with I' = T'y;,, we have ¢ = 7,... 7, where |I';ry] = |I'y] and
[T7i| < |T'| contradicting the hypothesis.

Now each ¢ in 2 acts on ordered m-tuples of finite coinitial graphs by
(T, Toy ..., Ty)o = (Tyo, Tao, . .., Tpo). The following theorem was proved
by McCool [5;6] for m = 0and 1, and the general case can be proved similarly.

THEOREM Let Ty, Ty, ..., T, be conitial graphs on a finite set X, then
Stab (', Ty, ..., T,,) s finitely presented.

Proof. We may suppose that each | I';| is minimal under ¢ that do not increase
|T,| for j < 1. For in general if ¢, is chosen inductively for i = 1, 2, ..., m,
so that |T';oy . .. ¢, is minimal under all ¢ € £ not increasing |01 ... 04|
for j < 1, and if ¢ = ¢102... 0, then |T',g] satisfies the stated minimality
condition and Stab (T'y, I's, ..., I',)) = ¢ Stab (T'yo, I'so, ..., Tyo)o™t.

Following the method of [6] we construct a 2-complex K as follows. We
take as vertices v all m-tuples (Tyo, T'so, ..., I'yo) such that [Ty = [T,

where for m = 0 we take one vertex. For each vertex v in K and for each
7 € T such that o7 is also in K we construct one edge, labelled 7, between v and
vr. Since 7> = 1forall 7 € T, there is at most one edge labelled 7 at each vertex.

If orirg. .. 7,isin Kforr =0,1,...nand vri72. .. 7, = v, then we say that
Ti, T2, ..., T, 18 a loop in K at v.

By Lemma 6, K is connected and if vg = (I'y, Ty, ..., T',) and ¢ € Stab v,
then ¢ = 7179 .. 7y, 7, € T where |[Tyry ... 7] = [T, 7» = 1,...,n; that is,
Ti, T, - . ., T, 18 a loop in K at v,. Conversely every loop at v, in K gives an

element of Stab v,. Since X is finite, T is finite and the number of vertices and
edges of K is finite. Thus Stab v, is finitely generated.

The subset of T consisting of all transformations (¢, ¢) and (¢ <> ) gen-
erates the extended symmetric group Q on all ¢ # ¢! € X. We add sufficient
relations R9 to give a presentation of this group. These relations clearly hold
in . We now add 2-cells to K as follows. If 77’ . .. 70 = 1 is a relation R2-R9
then whenever 7, 7/, ..., 7® is a loop at some vertex v of K we add a 2-cell
with this loop as boundary. Since the number of relations and of vertices is
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finite we now have a finite complex, whose fundamental group = (K, vo) is
therefore finitely presented.

Since every 2-cell corresponds to a relation in Z, homotopic loops at v, give
the same element of Stab vy. We therefore have a homomorphism from m; (K, vy)
to Stab v, which we wish to prove is an isomorphism. Suppose then that 7y,

T2, ..., 7,18 a loop in K such that 7, ... 7, = 1. Let T be any coinitial graph
minimal under ¢ € 2 not increasing |T';|,7 = 1, ..., m. Then by Lemma 6 we
may change the product 7, . . . 7, to one in which |T'ry ... 7,| = |[T|. Moreover

this is achieved by substitutions of the form
1o .10, =T1...7,0004Q,, ¢c)my, t=3,21,

where ¢, is defined as in Lemma 5 and where Lemma 2 applies to
v, = 911 ...7, Hence we have |[T'yry...7,(P, p)| = [Tir1...7,| = [T etc,,
so that the words ¢, and ¢,_1(Q,, ¢,)7, correspond to paths in K from v, to
v,0,. Moreover they form the boundary of a 2-cell in K which is the union of
2-cells corresponding to the relations used in Lemma 5. Therefore the original
loop 71, 72, . . ., 7, is homotopic to one for which |T'ry ... 7,] = |T|. It remains
to show by choosing a suitable T' that this loop is homotopic to the identity.
This is similar to the method used [6].

If X contains an element ¢ = ¢7!, take T to be the coinitial graph of the
reduced cyclic words {ex : x # x=! € X}. Then T is minimal and if

|[T7i...7,] =|T] for all r, then 7, = (¢, a), (X —a, «=') or (¢« <>b) so
2-cells corresponding to R2 and RY will give 74, ..., 7, homotopic to the
identity.

If X contains no element ¢ = ¢~!, take T' to be the coinitial graph of the
reduced cyclic words {x : x € X}, and T’ the coinitial graph of {xy : y # x~1}.
I' is minimal and each xy, y # x~!, is minimal under 7 € T not increasing T,
so0, a fortiori, I'" is minimal under such 7. Applying the argument above for T'
and then for T" we obtain an expression for which |T'ry...7,] = |I'| and
[T'7y...7,] = |I|. But again this is only possible if 7, = (¢, a), (X — «, «™")
or (a <> ), and the result follows as before.

We now consider automorphisms of free groups. Let I be a free group of
finite rank and let X consist of a set {x} of free generators and their inverses
and one other element e. Then X has an involution x — x~!, ¢ + ¢. The re-
duced cyclic words having exactly one occurrence of ¢ are in 1 — 1 corre-
spondence with the elements of F, under the map ew — w ¢ F. The trans-
formations (4, a) take this set of reduced cyclic words into itself and corre-
spond to automorphisms of F. In fact if e ¢ 4 then (A4, «) corresponds to the
transformation on the generators of I given after Lemma 2, whereas if ¢ € 4
then it corresponds to the same transformation followed by the inner automor-
phism x — ¢~ xa. The transformations (x, x) and (x + v, x) (x, x) correspond
to the elementary Nielsen transformations. Therefore we have an epimorphism
from Z to Aut F which is easily seen to be an isomorphism.
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If Wy, W, ..., W, are sets of reduced words or cyclic reduced words in the
free generators of F, let Ty, ..., I', be the corresponding coinitial graphs,
where as before a reduced word w is equated with the cyclic reduced word cw.
Then Stab (T'y, ..., I'y) is isomorphic to the subgroup of all « in Aut / such
that W = Wy, 7 = 1,...,m. Adding the relations (4, «) = (4 — ¢, a),
whenever ¢ € A4, factors out inner automorphisms. In this way presentations
of some subgroups of Aut F/I(F) can theoretically be given, including the
subgroups given by Zieschang [10] which induce automorphsims of Fuchsian
groups.
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