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COINITIAL GRAPFIS AND WHITEHEAD 
AUTOMORPHISMS 

A. H. M. HOARE 

Coinitial graphs were used in [2; 3 ; 4] as a combinatorial tool in the Reide-
meister-Schreier process in order to prove subgroup theorems for Fuchsian 
groups. Whi tehead had previously introduced such graphs bu t used topological 
methods for his proofs [8; 9]. Subsequent ly Rapapor t [7] and Iliggins and 
Lyndon [1] gave algebraic proofs of the results in [9], and AIcCool [5; 6] has 
further developed these methods so t ha t presentat ions of automorphism groups 
could be found. 

In this paper it is shown tha t Whi tehead automorphisms can be described 
by a "cu t t ing and pas t ing" operation on coinitial graphs. Section 1 defines 
and gives some combinatorial properties of these operations, based on [1]. 
Section 2 gives algebraic properties, based on [5]. Section 3 gives a unified 
proof and extension of the results of [1], [5] and [6], 

I would like to thank the referee for his many valuable suggestions, part ic­
ularly in the wording of the first two pages. 

1. Let X be a set of let ters with a fixed involution x i—> x - 1 , where x may be 
equal to x~~l and where for convenience we will use the term involution to 
include the case in which x = x~l for all x. Let W be a set of reduced cyclic 
words in X. Wi th the pair (X, W) we associate a directed graph F with ver tex 
set X and with directed edges defined as follows. Wi th each occurrence of a 
letter x in an element w of the set W we associate a directed edge e : x >—» y 
where y~1 is the letter which occurs in w immediately following the given 
occurrence of x. If w is of length one then x immediately follows itself in the 
cyclic word giving an edge r x n x~l. This will be a loop if x = x^1, bu t apa r t 
from this T has no loops. 

We define also a one-to-one m a p </> of the edges of F to themselves which 
takes an edge ex : x i—> y associated with an occurrence of x to the ed^e 
e2 : y~1 —̂> z associated with the occurrence of y~l immediately following the 
given occurrence of x. 

Definition. A coinitial graph is a pair (T, <f>) where F is a directed graph 
whose vertex set X has an involution x —̂> x - '1 as above, and where 0 is a 
one-to-one map of the edges of F taking each edge ending a t each vertex y to 
an edge beginning a t y~l. 
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COINITAL GRAPHS 113 

Clearly each orbit under <j> determines a succession of letters in X, and if each 
orbit is finite then from a coinitial graph ( r , 0) we can recover a unique pair 
(X, W) with which it is associated. 

I t should be noted tha t the present concept of coinitial graph is an extension 
of t ha t used in [2; 3 ; 4]. 

If A and B are subsets of X, not necessarily disjoint, then by an edge 
between A and B we will mean an edge e : a \—> b or an edge e : b •—> a where 
a Ç A and b £ B. A' will denote the complement of A in X, and a will as usual 
be used to denote either the element a or the set [a] according to the context. 

We now define an operation on coinitial graphs analogous to the well known 
cut t ing and pasting of a fundamental region of a Fuchsian group. Let a 9e a~l 

be an element of X and A a subset of X containing a but not a~1. The operation 
(A, a) on a coinitial graph (F , 0) is defined in three stages. 

(i) Replace each edge e in F between x G i and y~l (E A' by edges e\ 
between x and a and <?2 between a~l and 3/""1, where a and a;-1 are new and dis­
t inct vertices. The directions of e\ and e2 are defined by e\ : x \—> a 
and e2 : o r 1 1—> ^~1 if r x n 3/-1, and by e2 : 3>-1 i—» or1 and c?i : a >—» x if 
c : y~1 —̂> x. In the first case we modify 4> by defining <£(<?i) = e2 and replacing 
0(e ') = e by 0(V) = 0i a n d <t>(e) = e" by (t>(e2) = e". In the second case 0 is 
modified by defining 4>(e2) = e\ and replacing <j>{e") = g by <\>(e") = e2 and 
0(0) - e' by 0(ei) - e'. 

(ii) Relabel a, a~l as a, a~] and conversely. 
(iii) Do the converse of operation (i) with the new a and crl. T h a t is, 

remove the vertices a and crl and replace each pair of edges a t a and a~l which 
correspond under 0 by a single edge with suitable direction and adjust 0 
accordingly. 

We will refer to operation (i) as cut t ing the edges between A and Af and 
joining them to a and a~l, and to operation (iii) as joining the edges a t a and 
a~~l. Clearly after cut t ing the edges between A and Af we have two disjoint 
graphs and operation (iii) joins edges in distinct components so no loops can 
be created or destroyed by (A, a). 

We will write the operation (A, a) on the right so t ha t (A, a)(B, b) will 
denote (A, a) followed by (B, b). The conditions a G A and a~l (? A will be 
assumed whenever we write {A, a). W e will use Ae to denote A if e = 1 and 
to denote A', if e = — 1, so tha t (A, a) is defined if and only if ae Ç Ae for 
e = ± 1 . We will also, as is usual, use A + B to denote A U B 
when A T\ B = 0, and A — B to denote A C\ B' when ^ 3 £ . In longer 
formulae the operations of plus and minus for sets are performed from left to 
right. Let T denote the set of all operations (A, a). 

Suppose now tha t | T|, the number of edges of F, is finite. Let a be any finite 
succession of operations in T, then Ta also has a finite number of edges and we 
write Aro-, or simply Aa, for | IV| — |T| . Let A and B be any two subsets 
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of X, then we define A.TB, or A.B when Y is understood, to be the number of 
edges in Y between A and B. 

We have immediately that 

a.a = 0 iî a 9e a -1, 

A.B = B.A ^ 0, 

(A +B).C = A.C + B.C, 

(B - A).C = P . C - A C , 

a.X = ar\X 

Also operation (i) above replaces each edge between A and A' by two edges 
thereby increasing the number of edges by A.A', while operation (iii) replaces 
pairs of edges at a and a~l, which were previously the edges at a and a~l, by 
single edges thereby decreasing the number by a.X, hence 

A(A, a) = A.A' - a.X = A(A', a'1). 

Let P e , r denote A* C\ B*. Then A' = E f ^ . r , ^ r = E«P«.r and 
X = ^ e j P £ , r , where summation is over e, f = ± 1 . Hence 

A 4 ' = A . , 4 - = (Pe, f + Pc ,_ r).(P_e ,? + P_e,_r) 

^P 6 > _ r . (P_ € , r + P- e , - r) +P-e , r .P e > r 
and 

B.B' = J3f.J3-r = (P«.r + P_e. r).(P«._ r + P_«._r) 

^ P«,-r.P«,r + P_,. r . (P. ,_ r + P - , , - r . ) . 
Thus 

(1) A 4 ' + P.P' è P«.-r(^«.r + ^-«.r + P-«.-r) 
+ P_«.r.(P«,r + P«._r + P_.._r) = P.,-r.P',.-r + P-..t.P'-t.t. 

By symmetry 

A A + B.B' ^ P_6 ,_ r .P_€ ,_/ + Pttt.P€y 

and so 

(2) 204 .4 ' + B.B') ^ Ee,r Pe.r .P, , / . 

LEMMA 1. If A C\ B = 0 and a"1 $ P then for all finite Y 

\T(A,a)(B,b)\ - \T(A,a)\ = | r ( P , 5 ) | - |T|. 

Proof. Consider the effect of (A, a) on edges between P and B' in F. 
Since P C .4', the only edges between B and B' which are affected by opera­

tion (i) are those between B and A and these are replaced by an equal number 
of edges between B and or1 and between a and A. Therefore the number of 
edges between B and B' + a + a~l is the same as between B and P ' in I\ 

Since a and a - 1 are in B' operation (ii) does not change the label of any vertex 
of P , hence the number of edges we are concerned with does not alter. 
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Since the new a and a~l are not in B, reversing the argument for operation (i) 
shows that the number of edges we are considering remains unaltered. 

We have shown therefore that the number of edges between B and B' is the 
same in T(A, a) as in F. Applying the same argument with b for B and using 
the equations above gives 

\T(A,a)(B,b)\ - | T ( ^ , a ) | = B.B' - b.X = \T(B,b)\ - \T\. 

LEMMA 2. Let Y and I \ , i (E / , be finite coinitial graphs, where I is a set 
inductive lender a relation > . Suppose that, for each i t I, \T<\ is minimal under 
operations in T which do not increase | T ;| for j < i. Suppose also that (A, a) and 
(B, b) satisfy 

Ai(A, a) = Ai(B, b) = 0, for all i £ I, where At = An, and 

A(A,a) è 0, A(5,6) g 0, 

with at least one of these inequalities strict. Then for some p = a±l, l^1 

A,(P, p) = 0, for all i G J, and 

à(P,P) < 0 , 

where P denotes the set A* C\ B$ containing p. 
Moreover if (F, y) = (A~e, a~'e) or (B~t, b~?) then 

Aid = 0, for all i £ I, and 

Aa < 0, 

where 
UY,y)(P,p) ify'iP, 

<r = <(P,p)(Y,y) ifp-i d Y, 
{either (P, ^_1) or (F, p~~l) otherwise. 

Proof. For x = a±l, b±l let P(x) denote the set Ae H B* containing x. If the 
four sets P(a), P(a~l), P(b) and P(5_ 1) are all distinct then 

£ A(P(x),x) = E Pe,t-Pe/ - 2a.X - 2b.X 
X e , r 

S 2A.A' + 2B.B' - 2a.X - 2b.X, by (2), 

< 0 by hypothesis. 

Hence A(P, p) < 0 for some p = a±l, b±l where P = Pip). Similarly 

£ Ai(P(x),x) S 0 for al i i 6 / . 
X 

Hence by the given conditional minimality and using induction on I we have 

At(P,p) = 0 for all i £ I. 

If there are three or less distinct sets P(x) for x = a±l, b^ then for some e 
and f, A€ P\ P f does not contain any of a, a~~l, b or b~l. In particular it does not 

https://doi.org/10.4153/CJM-1979-012-x Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1979-012-x


116 A. H. M. HO ARE 

contain ae or W, so 

P(a*) = A*C\ B-t = P e > _ f and P(¥) = A~* C\B* = P _ e , r . 

Hence 

A(P(a«) , «€) + A ( P ( t O , &r) = i \ - r . - P « . - r ' - <*'•* + ^-«. r -^-«. r ' 

- b*.X 

^ A.A' - a.X + B.B' - b.X, by (1) 

< 0 by hypothesis . 

Similarly 

A,(P(a«) , ae) + A, (P(&0, &0 Û 0 for all i Ç J. 

As above it follows tha t A(P,p) < 0 and At(P,p) = 0 for (P , p ) = 
(P (« e ) , ae) or (P(6f)> ^ 0 and for all i G P This completes the proof of the 
first par t . 

By a change of notat ion take P = A* H P f . Then lor F = ^4 -% or F = P " f , 

P H F = 0 so if r 1 î P we have 

A<r = \T(Y,y)(P,p)\ - \T(Y,y)\ + \T(Y,y)\ - \T\ 

= | T ( P , £ ) | - | r | + | r ( F , y ) | - | r | by Lemma 1 

= A(P , p) + A(Y,y) < 0, since A ( F , y) ^ 0 by assumption. 

Similarly, Afa — 0, since A f ( F , y) = 0. 
T h e proof for p~l d Y is similar. 
If y-1 e P and p~l G F, then (P , 3/-1) and ( F , /r-1) are defined and 

A ( F , p - i ) + A(P , 3;-1) = F . r - p.X + P . P ' - y.X 

= A(F, ;y) + A ( P , £ ) g 0. 

Similarly, A*(F, p~l) + A*(P, 3/-1) = 0. As before this gives Aa < 0 and 
A z(7 = 0 either for a = ( F, ^r*1) or for or - (P , 3/-1). 

If p = 3/-1 t ake 0- - (P , 3;-1). 

When I is emp ty this reduces to the lemma of [1.]. 

2 . We now consider the t ransformation on the set IF corresponding to the 
operation {A, a) on the coinitial graph of IF. 

Let there be given any w £ IF of length greater than one and an occurrence 
of x"1 in w, say . . . yx~1z . . . . Suppose y ^ z~l, and let IF ' be the set of reduced 
cyclic words obtained by deleting the occurrence of x - 1 from w. I t follows from 
the definition t ha t the coinitial graph (r" , # ' ) of W is obtained from (L, <j>) by 
deleting the corresponding pair of distinct edges 

d : y >—» x and e% : x~l \—-> z - 1 

from T, and replacing them by a new edge <? : y 1—-» s - 1 which is not a loop since 
by assumption 3? ^ s_ 1 . <j>' is obtained by adjusting <j> in the obvious way, that 
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is by deleting e\ and e2 from the domain and range of 4> and subst i tut ing the 
new edge e for them, # ' being otherwise the same as <j>. This deletion operation 
for coinitial graphs was used in [2], [3] and [4] to obtain subgroup theorems. 

Comparing this with stage (iii) in the operation (A, a) and comparing its 
converse with stage (i) wre have tha t the transformations on the set W corre­
sponding to the three stages of (A, a) are: 

(i) ' For every occurrence of . . . yz . . . or . . . z~1y^1 . . . with y G A and 
z~l (? A, insert a~l or a respectively, 

(ii) ' Subst i tu te a, a"1 for a, a~l and conversely, 
(iii)7 Delete all occurrences of a and a~l. 

I t is now easily checked using (i) ' (ii)' and (iii)' t ha t the following lemma 
holds. 

LEMMA 3. The operation {A, a) is equivalent to the transformation of W given 
by mapping each x £ X as follows: 

a <-> a"1, 
x »—» axa"1 if x £ A and x~l Ç A, 
x —̂> xa~~l if a ?£ x (z A and x~~l (? A, 
x >—» ax if a~l ^ x $ A and x~l £ A, 
X H X if x (? A and x - 1 Ç A, 

and deleting any a"1 a in the resulting cyclic words. 

Note t ha t this transformation differs from the Whitehead automorphism 
only in taking a, a"1 to a™1, a. HA is the subset {a}, then we have tha t (a, a) is 
equivalent to the transformation a <-> a"1. 

We now introduce the notation (a <-» b), if a 9^ a~l ^ b±l and b 9e b~x, for 
interchanging the labels of the vertices a and b and those of a-"1 and b~l, and 
interchanging similarly all occurrences of a, a~l

} b, b~l in the reduced words. 
Clearly (a"1 <-> b~l) denotes the same operation as (a <-» b). 

LEMMA 4. If b 7e a the following relations hold. 
R l . {A, a) = (A,a)~\ (x <-> y) = (x *->y)-\ 
R2. ( 4 , « ) = W ' . f l i , 
R3. (a, a) = (a"1, a" 1 ) , 
R4. (.4, a)7r = 7r(^47r, air), TT = (x <-» _y) or (x, x) , 
R5. (A,a)(A,b) = (4,&)(fc <-»a). 
1/ /I Pi 5 = 0 //z<? following also hold. 

R6. 04, a)(.B, a-1) - ( 5 + 4 - a"1, « ) ( « - \ a" 1 ) , 
R7. (/I, a ) ( £ , 6) = (B, b)(A, a) whenever a~l g B, b"1 ([ A, 
R8. (A, a)(B, b) = (£ , / ; )(£ + 4̂ - b~\ a) whenever crl C± B, b~l £ A. 

Proof. Since we have proved the. equivalence of the operations (A, a) on 
coinitial graphs and on reduced cyclic words, and since this clearly extends to 
(a <-> b) we can prove the relations by showing tha t they hold either for all 
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coinitial graphs or for all reduced cyclic words. Consider first all coinitial 
graphs. 

In the operation (A, a), (i) and (iii) are inverses and (ii) is its own inverse, 
and by definition (x <-> y) is its own inverse, so R l holds. Operat ions (i), (ii) 
and (iii) are the same for (A, a) and (A', a~v), so R2 holds. Now (a, a) and 
(a - 1 , a - 1 ) both merely interchange a and a~l, so R3 holds. T h e operat ion (A , a) 
followed by a change of label may also be achieved by first relabelling the 
vertices and then carrying out the operation on the same edges and with the 
same vertex, i.e., with the new labelling, (AT, air), so R4 holds. In applying 
(A,a) {A, b) operation (i) of (A,b) cuts precisely those edges which have been 
joined by operation (iii) of (.4, a). Therefore (A, a) (A, b) is equivalent to 

(i) cut all edges between A and A' and join to a and a~l, 
(ii) apply (a <-» a) then apply (a <->&), 

(iii) join the edges a t a and a~{. 
Now (ii) above is the same as applying (a <-> b) and then applying (a <-> b); 
moreover the edges at a and a"1 may be joined before the last relabelling and so 
R5 holds. 

T h e proofs of R6, R7 and R8 are more succinct using reduced words than 
coinitial graphs, so we consider the action on letters. 

Now a(A, a)(Bf, a) = a and similarly for a~l. If x ^ a±1 then 

Î
.xa if x £ A H B, 
.xa~l if x e A' r\Bf, 
.x otherwise, 

where the dot is determined by x~l. Hence, using (B', a) = (B, a-"1)* 

(A,a)(B,a~i) = (C, a) (D, a"1) 

whenever A C\ B = C H D and A' C\ B' = C C\ D\ In par t icular R6 holds. 
If A C\ B = 0 and crl ([ B then 

a(A, a)(B, b) = a"1 = a(B, b)(A,a) 

= a(B,b)(B + A - b~\a), 

and similarly for a~l. Moreover if x ^ a±l, b±l then 

Î
.xa~l if x G A , 
.xb-1 if x e B, 
.x otherwise. 

Now if also b~1 (? A then by symmet ry 

b (A, a) (B, b) = b-1 = b (B, b) (A , a) and 

x(A,a)(B, b) = x(B, b)(A,a) for all x ^ a±l, b±\ 

so R7 holds. 
Whereas if b~l G A then 

b(A,a)(B,b) = ab-1 = b(B,b)(B + A - b~\ a) 
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and for x ^ a±l, b±l 

Î
.xa~l if x £ A, 
.xa-hib-' if x G 5 , 
.x otherwise, 

which proves R8. 

3. We now combine the algebraic results in Section 2 with the combinatorial 
results from Section 1. Suppose that the conditions of Lemma 2 hold and that 
(P, p) and a are given by the lemma. Let a0 = (A, a) and 0-3 = (B, b). If 
p = a1 let ai be (P, £) and a2 be 0- with (F, y) = (B~t, b~t). If p = W let a2 be 
(P, £) and 0-1 be a with (F, >') = (A~€, cre). 

LEMMA 5. With 0-0, . . . , (73 defined as above, the relations R1-R8 give 

at = <rt-\(Qu ct)irt for some Q t, t = 1, 2, 3, 

where ct = <7~€ or fr~f awd 71-̂  = (a€ <-> &f)> (c*> £/) ^f ^ e identity, and with the 
convention that (Q t, ct) may be the identity. 

Proof. The relations R1-R3 will be used freely throughout, the other rela­
tions will be explicitly mentioned. 
Suppose p = ae; then, with (F, y) = (B~t, b~t), 

0-1 = (P, a€) = (A~€, a~f)(A-e + P - a~e, a-*)(ae, a'), 

by R6, which is of the required form. 

' ( F , ? ) (P, p) = (P, p) ( F, 3O or (P, />) (P + F - £-1, y) 
by R7 or R8 if y~l Ct P , 

)(P,P)(Y,y) = (P,p)(Y,y) if p^ $ F, 

) (P, r x ) = (P, P) (P, 3^) (y"1 ~ £) by R5 if £ ^ y~l £ P , 
(P, p) \îp = y~\ 

SY,p-^) = (p^)(F + p _ ^ i ^ ) ( p - i j r i ) b y R 6 , 

which in every case is of the required form. 
Moreover 

(Y,y)(P,p) = (Y,y)(P,p) if y-i g P , 
I (P, />) ( F, y) = ( F, y) (P, p) or ( F, y) ( F + P - y \ p) 

= / by R7 or R8 if p"1 <l Y, 
"* I (P, J*""1) = ( F, y) (P + F - y - \ y) (y- \ y-1) by R6, 

f ( F, />->) = ( F, y) ( F, p-1) (y <-> £-*) by R5 if y ?* £-» 
= ( r , y ) if y = p~\ 

which, since a^ = (F, 3;), may be transformed to the required expression for 
0-3 using R4 if necessary. 

This proves the lemma when p = ae. If p — b? the proof is the same with 
(A, a) and (B, b) interchanged. 
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When 7 is empty we get Lemmas 1 and 2 of [5]. 
Let T now denote the set of t ransformations (A, a) and (a <-> b), and 2 the 

group of t ransformations generated by T. Lemma 2 still holds with the slight 
change of notat ion. 

LEMMA G. Let I be a finite partially ordered set and let Y and Ytfor i Ç 7, be 
finite coinitial graphs. Suppose that, for eaeh i t 7, | Y t\ is minimal under r £ T 
that do not increase \ Y f\ for any j < i. Let a be any element of 2 such that 
| Y {a\ = | Y t\ for i Ç I, and I Ta\ is minimal under all a 6 2 that do not increase 
\Yt\ for i f I. Then any expression for a as a product of r in T can be changed by 
repeated use of the relations in Lemma 5 to a = n . . . rn such that 

| r\-ri • • • rr\ = 1Yt\ for r = 1, 2, . . . , n, and all i Ç 7, and 

| r | > | Tril > . . . > | TTl . . . r , | = . . . - | Ta\ for some 

s = 0, 1, . . . , n. 

Proof. Add an element i0 to I with i0 > i for all i Ç 7, and pu t Y = I \ 0 . W e 
use induction on the relation > . Let k be a minimal element of 7 for which the 
conclusion does not hold for some a satisfying the hypotheses. 

Now by the induction we can assume that the expression for a has been 
changed by the relations to a = n . . . T„ with \YtTi . . . rr\ = \Yt\ for 
r — i , . . . , n, and all i < k. P u t | r f c n . . . rr\ = lT for r = 0, . . . , n, and con­
sider the sequence /0, /i, . . . , /„. If k T^ ?'0 tlien k G 7 and by the hypothesis 
l-r ^ h — hi, so we have /r_i ^ /r > lr+i for some r. If k = i0, then by hypo­
thesis lr ^ ln and again / r_i ^ lr > / r + 1 for some r. In either case choose r to 
give a maximum 1 r satisfying these inequalities. 

If rr is not a permutat ion then we assert t ha t the conditions of Lemma 2 
hold for F = YkT\ . . . rr and F / n . . . rrj j < k, with rr = (A, a) and r r + ] = 
(B, b). For if { | r 7 n . . . TT\, j < ^} does not satisfy the required minimali ty 
condition for L e m m a 2 then there exists s o m e / < k and some r f T such t h a t 
| YjTi . . . TTT\ = I Y,jTi . . . rr\ all j < j ' , and | F^ n . . . TTT\ < j I > n . . . r r | . 
But then by the induction hypothesis we may apply the present lemma to j ' and 
a suitable a to show the existence of rf such tha t j Y JT\\ = | F ;j and | Y yT\\ < 
\Y j>\. Since j ' Ç / this contradicts the hypotheses given for this lemma. T h e 
other hypotheses of Lemma 2 clearly hold. We may therefore apply Lemma 2 
and Lemma o to find au a2 such tha t Aat = | F^n . . . rrcr?| — | r^-n . . . rr\ < 0, 
| r ; - n . . . rrat\ = | r ; - n . . . rr\, j < k, and at = (Jt-i{Qt, Ct)iru t = L ->, 3, 
where a0 = (.4, a) = r r and o-3 = (B} b) = rr+i. Therefore 

3 

Tr+1 = ^ [ 1 (Qt, Ct)7Tt 
I 

and subst i tut ing this for TT+I in the expression for <r and cancelling r r r r we 
obtain a sequence in which, in place of the value lr, we have lr + Ad] twice 
and lr + Acr2 twice and / r + i once. Moreover for the new sequence, since 
\YjTi . . . rTat\ = | r ^ r i . . . r r | , we still have | r ; r i . . . 7 v [ = \Y j\ ail r\ all 
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j < k. If rr is a permutat ion then by R2 we can move it one place to the right 
to obtain a sequence in which the value lr is replaced by lr+i. 

Now by the usual induction on the value lr and the number of times it is 
a t ta ined we have, after a finite number of steps, t ha t the conclusion holds 
after all for this k and a. Since / is finite the lemma is proved. 

If I is empty we get the original result of Whitehead [9]. 

COROLLARY. Let I be an inductive set and let | I \ | , i G / , be minimal under all 
T G T that do not increase \Y f\ for any j < i. Then 11\ | is minimal under all 
0- £ 2 that do not increase \ Yô\ for any j < i. 

Proof. Suppose not. Then there is some minimal i0 G / and some a G 2 
such tha t \Tioa\ < \TiQ\ and \Tja\ = \Tj\, for j < i0. Applying the lemma 
to Vi for i < i0 with r = I \ 0 , we have a = n . . . r„, where | I V i | = 11\ | and 
\Tn\ < |T | contradicting the hypothesis. 

Now each a in 2 acts on ordered m-tuples of finite coinitial graphs by 
(Ti, T2, . . . , Tm)a = (Ti(7, r2cr, . . . , Tma). The following theorem was proved 
by McCool [5 ; 6] for m = 0 and 1, and the general case can be proved similarly. 

T H E O R E M Let T1, r 2 , . . . , Tm be coinitial graphs on a finite set X, then 
Stab ( r i , r 2 , . . . , Fm) is finitely presented. 

Proof. We may suppose tha t each \T t\ is minimal under a t ha t do not increase 
|r ;-| for j < i. For in general if at is chosen inductively for i = 1 , 2 , . . . , m, 
so tha t | r V i . . . <jt\ is minimal under all a G 2 not increasing | I\o-i . . . o-*_i| 
for j < i, and if a = aia2 . . . <rm then | r ^ | satisfi.es the stated minimali ty 
condition and S tab (Ti, T2, . . . , Tm) = a S tab (Tio-, r2cr, . . . , Tma)a~1. 

Following the method of [6] we construct a 2-complex K as follows. We 
take as vertices v all m-tuples (Tier, r 2 a , . . . , Tma) such tha t | I\o-| = |T f | , 
where for m = 0 we take one vertex. For each vertex v in i£ and for each 
r G T such tha t i>r is also in i£ we construct one edge, labelled r, between v and 
vr. Since r2 = 1 for all r G T, there is a t most one edge labelled r a t each vertex. 
If VT\T2 . . . r r is in X for r = 0, 1, . . . n and VTIT2 . . . rn = V, then we say tha t 

r i , r2, . . . , Tn is a loop in K a t ̂ . 
By Lemma 6, K is connected and if v0 = (Ti, T2, . . . , Tm) and o- G Stab ^0 

then a = TIT2 . . . rn, rr G T where | I V i . . . r r | = | T^|, r = 1, . . . , n\ t ha t is, 
r i , r2, . . . , r„ is a loop in K a t flo- Conversely every loop a t vQ in /^ gives an 
element of Stab v0. Since X is finite, T is finite and the number of vertices and 
edges of K is finite. Thus Stab VQ is finitely generated. 

T h e subset of T consisting of all transformations (a, a) and (a <-» b) gen­
erates the extended symmetric group 0 on all a ^ a~l G X. We add sufficient 
relations R9 to give a presentation of this group. These relations clearly hold 
in S. We now add 2-cells to K as follows. If TT . . . T{V) = 1 is a relation R 2 - R 9 
then whenever r, r ' , . . . , T ( ,° is a loop a t some vertex y of K we add a 2-cell 
with t h i s loop as boundary. Since the number of relations and of vertices is 
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finite we now have a finite complex, whose fundamental group 7n(i£, v0) is 
therefore finitely presented. 

Since every 2-cell corresponds to a relation in 2 , homotopic loops a t v0 give 
the same element of S tab z/0. We therefore have a homomorphism from w\ (K, VQ) 
to S tab VQ, which we wish to prove is an isomorphism. Suppose then t h a t r\, 
72, . . . , rn is a loop in K such t h a t n . . . rn = 1. Let Y be any coinitial graph 
minimal under a Ç 2 not increasing [ I \ | , i = 1, . . . , m. Then by L e m m a 6 we 
m a y change the product n . . . rw to one in which | IVi . . . rr\ = \Y\. Moreover 
this is achieved by subst i tut ions of the form 

r i . . . rrat = n . . . rrcr^_i(Ç/, Ct)iru t = 3, 2, 1, 

where o-* is defined as in Lemma 5 and where Lemma 2 applies to 
vT = v0Ti . . . rr. Hence we have | I V i . . . TT(P, p)\ = \ I V i . . . rr\ = \ Yt\ etc. , 
so t h a t the words at and at-\{Qu ct)irt correspond to pa ths in K from vT to 
vrat. Moreover they form the boundary of a 2-cell in K which is the union of 
2-cells corresponding to the relations used in Lemma 5. Therefore the original 
loop n , 72, . . . , T„ is homotopic to one for which | IVi . . . rr\ = \ Y\. I t remains 
to show by choosing a suitable Y t h a t this loop is homotopic to the ident i ty . 
This is similar to the method used [6]. 

If X contains an element e = e~l, t ake Y to be the coinitial graph of the 
reduced cyclic words {ex : x ^ x~l G X}. Then Y is minimal and if 
| IVi . . . rr\ = |T | for all r, then rr = (a, «) , (X — a, a~l) or (a <-> b) so 
2-cells corresponding to R2 and R9 will give 7i, . . . , rn homotopic to the 
identi ty. 

If X contains no element e = e~l, take Y to be the coinitial graph of the 
reduced cyclic words {x : x G X}, and Yf the coinitial graph of {xy : y ^ x~1}. 
Y is minimal and each xy, y ^ x~l, is minimal under r G T not increasing Y, 
so, a fortiori, Y' is minimal under such r. Applying the a rgument above for Y 
and then for Y' we obtain an expression for which | IVi . . . rr\ = | F | and 
| r V i . . . rr\ = \Y'\. Bu t again this is only possible if rr = (a, a), (X — a, a"1) 
or (a <->&), and the result follows as before. 

W e now consider au tomorphisms of free groups. Let F be a free group of 
finite rank and let X consist of a set {x\ of free generators and their inverses 
and one other element e. Then X has an involution x >—» x~l, e t—> e. T h e re­
duced cyclic words having exactly one occurrence of e are in 1 — 1 corre­
spondence with the elements of F, under the m a p ew >—» w G F. T h e t rans­
formations {A, a) take this set of reduced cyclic words into itself and corre­
spond to automorphisms of F. In fact if e 2 A then (A, a) corresponds to the 
transformation on the generators of F given after Lemma 2, whereas if e £ A 
then it corresponds to the same transformation followed by the inner automor­
phism x i—» a~1xa. T h e transformations (x, x) and (x + y, x)(x, x) correspond 
to the elementary Nielsen transformations. Therefore we have an epimorphism 
from S to Aut F which is easily seen to be an isomorphism. 
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If Wi, W2, . . . , Wm are sets of reduced words or cyclic reduced words in the 
free generators of F, let I \ , . . . , Tm be the corresponding coinitial graphs, 
where as before a reduced word w is equated with the cyclic reduced word ew. 
Then Stab (Ti, . . . , Tm) is isomorphic to the subgroup of all a in Aut F such 
that Wta = Wi, i• = 1, . . . , m. Adding the relations (A, a) = (A — e, a), 
whenever e £ A, factors out inner automorphisms. In this way presentations 
of some subgroups of Aut F/I(F) can theoretically be given, including the 
subgroups given by Zieschang [10] which induce automorphsims of Fuchsian 
groups. 
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