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On Domination of Zero-divisor Graphs of
Matrix Rings

SayyedHeidar Jafari and Nader Jafari Rad

Abstract. We study domination in zero-divisor graphs of matrix rings over a commutative ring
with 1.

1 Introduction

By the zero-divisor graph Γ(R) of a ring Rwemean the graphwith vertices Z(R)∖{0}
such that there is an (undirected) edge between vertices a and b if and only if a /= b
and ab = 0. _us Γ(R) is the empty graph if and only if R is an integral domain. _e
concept of zero-divisor graphs has been studied extensively by many authors. For a
list of references and the history of this topic the reader is referred to [1,2].
A (simple) directed graph D = (V ,A) consists of a set V of vertices and a set A

of directed edges, called arcs, where A ⊆ V × V . _e outset of a vertex u is the set
O(u) = {v ∶ (u, v) ∈ A}, and the closed outset of u is O[u] = O(u) ∪ {u}. _e
out-degree dego

(u) of a vertex u is the cardinality of O(u). For a subset S of V ,
O(S) = ⋃u∈S O(u) and O[S] = ⋃u∈S O[u]. A set S ⊆ V is a out-dominating set
of D if O[S] = V . _e out-domination number γo(D) of D is theminimum cardinal-
ity of an out-dominating set ofD. _e in-dominating sets and in-domination number
γ i are deûned similarly, but considering the insets, where the inset, I(v), of a vertex
v is the set {w ∶ (w , v) ∈ A}. _e in-degree degi

(v) of a vertex v is the cardinality of
I(v). For references on domination we refer [4].

Zero-divisor graphs of non-commutative rings are studied in [1]. _e zero-divisor
graph of a non-commutative ring R is the directed graph Γ(R) whose vertices are all
non-zero zero-divisors of R in which for any two distinct vertices x and y, x → y is
an edge if and only if xy = 0.

In this note,we study domination in zero-divisor graphs ofmatrix rings over com-
mutative rings with 1. We also let Z(R) be the set of all zero-divisors of R.

We recall that if R is a commutative ring, then for a subset (or an element) X of R
the annihilator of X is the ideal ann(X) = {a ∈ R ∶ aX = 0}. We note that by G ≤ H
for two graphs we mean that G is a subgraph of H, while by R ≤ S for two rings we
mean that R is a subring of S.

Let Mn(R) be the ring of all n× n matrices over the ring R. _roughout the paper
R is always a commutative ring with 1. In Section 2 we consider Γ(Mn(R)), where R
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is a ûeld. In Section 3 we consider Γ(Mn(R)), where R is an Artinian commutative
ring with 1.

2 Matrix Rings on Fields

All vector spaces in this section are ûnite-dimensional over a ûeld F. We begin with
the following trivial lemmas.

Lemma 2.1 For any vector spaces V and W of ûnite dimension n over a ûeld F,
L(V ,V) ≅ Mn×n(F) as ring isomorphism.

For two vector space V ,W over ûeld F of ûnite dimensions m, n, respectively,
L(V ,W) ≅ Mm×n(F) as module isomorphism.

Lemma 2.2 Let V be a vector space of dimension n and let T ,U ∈ L(V ,V). _en
TU = 0 if and only if Im(T) ⊆ Ker(U).

Corollary 2.3 (Akbari, et al. [1]) Let V be a vector space of dimension n over a ûeld
F with ∣F∣ = q, and let T ∈ L(V ,V) with rank(T) = k. _en dego

(T) = degi
(T) =

2qn(n−k)−a and deg(T) = 2qn(n−k)−q(n−k)2 −a,where a = 1, unless T2 = 0, inwhich
case a = 2.

Proof By Lemma 2.2,

dego
(T) = ∣{U ∶ Im(T) ⊆ Ker(U)}∣ − a = ∣L(

V
Im(T)

,V) ∣ − a,

degi
(T) = ∣{U ∶ Im(U) ⊆ Ker(T)}∣ − a = ∣L(V ,Ker(T)) ∣ − a.

On the other hand,

∣ {U ∶ Im(T) ⊆ Ker(U)} ∩ {U ∶ Im(U) ⊆ Ker(T)}∣ = ∣L(
V

Im(T)
,Ker(T)) ∣ .

_e result follows.

Recall that a directed graph is Eulerian if and only if for any vertex v, degi
(v) =

dego
(v).

Corollary 2.4 For any integer n, Γ(Mn(F)) is Eulerian.

We recall that a graph isomorphism from a graph G to a graph H is a bijection
function f ∶V(G)→ V(H) such that if xy ∈ E(G), then f (x) f (y) ∈ E(H).

Lemma 2.5 For any commutative ring R, γo(Mn(R)) = γ i(Mn(R)).

Proof Notice that ϕ∶ Γ(Mn(R)) → Γ(Mn(R)) deûned by ϕ(A) = At is a graph
isomorphism.

Lemma 2.6 If A is an out-dominating set for Γ(Mn(R)), then there exists an out-
dominating set B for Γ(Mn(R)) such that ∣B∣ ≤ ∣A∣ and any element of B is of rank 1.
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Proof Let T ∈ A, and let v be a non-zero element of Im(T). _ere exists T1 ∈

L(V ,V) such that Im(T1) = ⟨v⟩. Notice that any element that is dominated by T
is also dominated by T1.

_eorem 2.7 If ∣F∣ = q, then γo(L(V ,V)) =
qn−1
q−1 .

Proof Let S be a γo(L(V ,V))-set. Let v ∈ V ∖ {0}. _ere exist T ∈ L(V ,V) such
that Ker(T) = ⟨v⟩. Since T ∈ Γ(L(V ,V)), there is T1 ∈ S such that T1T = 0. _en
Im(T1) ⊆ Ker(T). But T1 /= 0. _us, Im(T1) = Ker(T). It follows that ∣S∣ ≥ ∣{⟨v⟩ ∶ v /=

0}∣. Now the result follows by Lemma 2.6.

Corollary 2.8 Let R = Mn(F), where F is a ûnite ûeld. _en

S = {A = (a i j)n×n ∶ a i j = δ1 j(λ j), where λ1 , λ2 , . . . , λn ∈ F and λ j = 1 for some j}

is a γo(Γ(R))-set.

Proof Notice that A is a zero-divisor if and only if the rows of A are linearly depen-
dent. So there are λ1 , λ2 , . . . , λn in F such that λ1A1 + λ2A2 + ⋅ ⋅ ⋅ + λnAn = 0, where
A1 , . . . ,An are the rows of A. Without loss of generality assume that λ j = 1 for some
j. _en there is B ∈ S such that BA = 0. _is implies that S is a dominating set. On
the other hand, ∣S∣ = qn−1

q−1 = γo(Γ(R)). Hence, S is a γo(Γ(Mn(F)))-set.

We refer to Mn(F) with ∣F∣ = q as Mn(q).

Corollary 2.9 For any n, γo(Mn(q)) = γ i(Mn(q)) = qn−1
q−1 .

3 Matrix Rings Over Artinian Commutative Rings

In this section we will study matrix rings over Artinian commutative rings with 1.
From the structure theorem for Artinian rings we have the following lemmas.

Lemma 3.1 Let R be a ûnite commutative ring with 1. _en R = R1 × R2 × ⋅ ⋅ ⋅ × Rt ,
where R i is a local ring for i = 1, 2, . . . , t.

Lemma 3.2 Let R1 , R2 be commutative rings with 1. _en

Mn(R1 × R2) ≅ Mn(R1) ×Mn(R2).

Lemma 3.3 Let (R,M) be a local commutative ring with 1. If M /= 0, then there is
x ∈ R such that M = ann(x).

Lemma 3.4 Let R be a commutative ring with 1. If A ∈ Mn(R), then A(adj(A)) =
(adj(A))A = det(A)I.

For Artinian rings that we handle in this section we have the following lemma.

https://doi.org/10.4153/CMB-2015-017-6 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2015-017-6


274 S. H. Jafari and N. Jafari Rad

Lemma 3.5 Let (R,M) be a local commutative ring with 1, and let ϕ∶Mn(R) →
Mn(

R
M ) be the natural epimorphism. _en A ∈ Z(Mn(R)) if and only if ϕ(A) ∈

Z(Mn(
R
M )).

Proof Let ϕ(A) = A. By Lemma 3.3, M = ann(x).
(⇒) Let A ∈ Z(Mn(R)). _en by Lemma 3.4, det(A) ∈ M and det(A) = 0, so
A ∈ Z(Mn(

R
M )).

(⇐) Let A ∈ Z(Mn(
R
M )). _ere is B /= 0 such that AB = 0. So AB = C, where

C ∈ Mn(M). Now B /∈ Mn(M), and so xB /= 0. On the other hand, A(xB) =

x(AB) = xC = 0. _us, A ∈ Z(Mn(R)).

_eorem 3.6 Let (R,M) be a local commutative ringwith 1 and let R
M be ûnite. _en

γo(Mn(R)) ≤ γo(Mn(
R
M )).

Proof By Lemma 3.3, we have M = ann(x). Let

S = {A1 ,A2 , . . . ,At}

be a γo(Γ(Mn(
R
M )))-set. By Lemma 3.5, for any B ∈ Z(Mn(R)), B ∈ Z(Mn(

R
M )).

So there is A ∈ S such that AB = 0. _en AB = C, where C ∈ Mn(M). _us, (xA)B =
xC = 0. _erefore, {xA1 , xA2 , . . . , xAt} is a out-dominating set.

_eorem 3.7 Let (R,M) be a ûnite local commutative ringwith 1, and let M be cyclic
as an R-module. _en γo(Mn(R)) = γo(Mn(

R
M )).

Proof Let S be an out-dominating set for Γ(Mn(R)). Let K be a free R-module of
rank n, and let {e1 , e2 , . . . , en} be a basis of M. Let ψ∶Mn(R) → Hom(K ,K) be the
natural isomorphism. Let N be amaximal subspace of K

MK as a vector space over R
M .

_ere are y1 , y2 , . . . , yn in K such that {y1+MK , y2+MK , . . . , yn+MK} is a basis for
K

MK , and N = ⟨y1+MK , y2+MK , . . . , yn−1+MK⟩. SinceM is a ûnite free R-module,
{y1 , y2 , . . . , yn} is a basis for M. Let N1 = ⟨y1 , y2 , . . . , yn−1 , λyn⟩, where M = ⟨λ⟩.
_en N1 is amaximal submodule of M. Further, there is ϕ ∈ Hom(M ,M) such that
ϕ(e i) = y i for i = 1, 2, . . . , n− 1 and ϕ(en) = λyn . _ere is B ∈ S such that ϕϕ(B) = 0.

If ϕ1 is another homomorphism of M such that Im(ϕ1) is maximal and Im(ϕ1) /=

Im(ϕ), then ϕ1ϕ(B) /= 0. _is implies that

∣S∣ ≤ ∣ {ϕ ∈ Hom(K ,K) ∶ Im(ϕ) is amaximal submodule} ∣ .

On the other hand

∣ {ϕ ∈ Hom(K ,K) ∶ Im(ϕ) is amaximal submodule } ∣ ≥ ∣Max(
K

MK
) ∣ .

_us

∣S∣ ≥ ∣Max(
K

MK
) ∣ = γo

(Γ(L(
K

MK
,

K
MK

))) .

Lemma 3.8 LetV be a vector spacewith dim(V) ≥ 2. _en Γ(L(V ,V)) has a γo-set
S such that for any T ∈ S, T2 = 0.
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Proof For any 1-dimensional subspaceW = ⟨v⟩, there is a basis of V containing v.
Since dim(V) ≥ 2, there is a linear transformation TW such that Im(TW) = ⟨v⟩ and
v ∈ Ker(TW). So T2

W = 0, and by_eorem 2.7, S = {TW ∶ dim(W) = 1} is a γo-set.

Lemma 3.9 Let (R,M) be a commutative local ring with 1 such that M is cyclic as
an R-module. _en Γ(Mn(R)) has a γo-set S such that for any A ∈ S, A2 = 0.

Proof By Lemmas 2.1 and 3.8, Γ(Mn(
R
M )) has a γo-set S such that for any A ∈ S,

A
2
= 0. By _eorem 3.7, {λA ∶ A ∈ S} is a γo-set such that for any A ∈ S, (λA)2 =

0.

_eorem 3.10 Let R = R1 ×R2 × ⋅ ⋅ ⋅ ×Rt , where R i is a commutative ring with 1 such
that the uniquemaximal ideal of R i is principal. _en

γo(Γ(Mn(R))) = γo(Γ(Mn(R1))) + γo(Γ(Mn(R2))) + ⋅ ⋅ ⋅ + γo(Γ(Mn(Rt))) .

Proof For i = 1, 2, . . . , t, let R i = Mn(Zpt i
i
), let and S i be a γo(Γ(R i))-set such that

for any A ∈ S i , A2 = 0. Let S′i = B1 × B2 × ⋅ ⋅ ⋅ × Bt such that B i = S i and B j = 0
for j /= i. We show that S′1 ∪ S′2 ∪ ⋅ ⋅ ⋅ ∪ S′t is a γo-set. Notice that (A1 ,A2 , . . . ,An) ∈

Z(R) if and only if A i ∈ Z(R i) for some i. Let (A1 ,A2 , . . . ,An) ∈ Z(R). Without
loss of generality assume that A1 ∈ Z(R1). _ere is C1 ∈ S1 such that C1A1 = 0.
_en (C1 , 0, 0, . . . , 0)(A1 ,A2 , . . . ,An) = 0. We deduce that S′1 ∪ S′2 ∪ ⋅ ⋅ ⋅ ∪ S′t is
an out-dominating set. Let X be an out-dominating set. For any A ∈ V(Γ(R1)),
(A, I, I, . . . , I) ∈ V(Γ(R)). So there is Y ∈ X such that Y(A, I, I, . . . , I) = 0. _en
Y = (Y1 , 0, 0, . . . , 0). _us {Y1 ∶ (Y1 , 0, 0, . . . , 0) ∈ S} is an out-dominating set for
Γ(R1). Applying this on j ≥ 2 we obtain

∣X∣ ≥ γo(Γ(R1)) + γo(Γ(R2)) + ⋅ ⋅ ⋅ + γo(Γ(Rt)) .

Corollary 3.11 Let R = Zpt1
1
×Zpt2

2
× ⋅ ⋅ ⋅ ×Zptk

k
. _en

γo(Γ(Mn(R))) = γ i(Γ(Mn(R))) =
t
∑
i=1

pn
i − 1

p i − 1
.
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