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That the characteristic, quasi-symmetrical structure of planetary nebulae may re­
sult from the presence of imbedded magnetic fields has undoubtedly occurred to 
many astronomers. Gurzadian (1962), for example, employed the widely used equation 

p + H2l$n = const, (1) 

where p is the pressure of the ionized gas and H the magnetic-field intensity. This 
equation specifies that the sum of the gas and magnetic pressures should be constant 
for a given value of the radius. 

As often applied, however, Equation (1) is wrong. In particular it is wrong when 
the assumed magnetic field is a simple dipole field. For magnetic fields do not act 
directly on the gas. They act only on electric currents flowing in the medium. In a 
dipole, all the current is concentrated at or near the origin. To study this phenomenon, 
let us turn to the basic equation from which (1) results, under special circumstances. 

The force equation of magnetohydrodynamics is: 

dv 1 / 

p - = - V / ? - p V K + ( V x H ) x H , (2) 
dt An 

where p is the density, v the velocity, V the scalar gravitational potential, and H the 
vector magnetic field. For a dipole field the curl, (V x H), vanishes and thus no mag­
netic force exists, as previously noted. For electromagnetic forces to occur, the current 
density J, ^ 

J = 7 V x H , (3) 

must not vanish. The force is a vector, J x H, perpendicular to both J and H. 
Consider a field with the following characteristics. From the vector potential, 

r sin 6 
A = ^ e

 + r

2 f l 2 ' ^ ^ 

derives the field, 
T 2 cosO (r 2 - 2a 2 )s in0"| H = V x A = "Le'(? + 7 t 2 + e * <,r +

 2 J• (5) 
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1 « ^ t * I O l l l V 

V x H = ^ / T 7 ^ r 2 . (6) 

Here, r, 0, </3 are the usual spherical coordinates, e r, e 0 , and e^ the associated unit 
vectors, and p the magnetic moment. The disposable parameter, a, determines the 
general shape of the field. When a = 0, we obtain the characteristic dipole field with 
its singularity at the origin. 

\5a2r sin# 

Note that the current vanishes, as it should, for the dipole condition. For r$>a, 
Equation (5) approximates to the standard dipole field. 

Equation (2) separates, for the hydrostatic case, into two partial differential equa­
tions: 

dp GMp \5p2a2r(r2 - 2 a 2 ) s in 2 0 

dr r2 4n(a2 + r2)6 

1 dp 3 0 / / V r sin0 cos 0 

(7) 

(8) 

X*S[A, I * I J i l l \J 

P = Po (r) + - 7 T 7 T 2 — 2 v T • (9) 

r dO An{a2 + r2)5 

The latter integrates immediately to 

I5fi2a2r2 s in 2 0 

An (a2 + r2) 

wherein p0(r) is a 'constant of integration', a function of r only. Clearly, it represents 
the pressure distribution along the polar axis, 6=0 or it. 

Differentiate (9) with respect to r, and substitute into (7). The result is: 

1 0 5 / i V r 5 s in 2 0 
P = Po+4nGM(a^?f- ( , 0 ) 

The second terms of (9) and (10) represent the increase of pressure and density 
produced by the magnetic field. The phenomenon is a true 'pinch effect', resulting 
from the equatorial current. 

If magnetic fields are to contribute appreciably to the pressure and density, the 
second terms of these equations should at least be of the same order as the first. Take 
the extreme case where p0 and p0 are zero. The temperature distribution will then be 
independent of p. From the equation of state, we get 

T = pm/kp = GMm(a2 + r2)/lkr3, (11) 

where k is Boltzmann's constant and m the mean molecular mass. 
Now let T= 10 4 and M= 1 0 3 3 g. We get 

r 3 / ( a 2 + r 2 ) = 7 x 1 0 1 2 c m . (12) 

For a planetary, we must set r~ 1 0 1 7 . Solving for a, we get the unreasonably large 
figure of 1 0 1 9 cm. In other words, the electric currents responsible for the field would 
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have to be located in a region 100 times the radius of the luminous gas, an unaccept­
able condition. 

The difficulty arises from the low gravitational field at large distances from the 
central star. No equilibrium solution is possible under such conditions, whatever the 
field may be, unless the temperature of the gas is reduced to the order of 1 °K, when 
it would be neither ionized nor luminous. Introducing non-zero values for p0 and p0 

does not substantially alter the problem. 
This study clearly indicates that self-contained, static magnetic fields do not contri­

bute directly to the form and structure of a planetary. Inclusion of mass motion, such 
as radial expansion, only serves to make matters worse, though the temperature 
problem no longer remains. Instead of (9), we obtain an equation something like the 
following: 

15/i V r 2 s in 2 0 

4n(a2 + r2)5 

in which the density of kinetic energy, with v the velocity of expansion, replaces the 
gas pressure, p. But the same problem arises as before. No satisfactory simultaneous 
solution of (10) and (13) exists, except for physically insignificant values of v. Although 
the assumed magnetic field is somewhat arbitrary, no reasonable variation is likely to 
represent the problem. 

Hence, although the model fails for planetary nebulae, it does hold some promise 
for application to magnetic stars and stars with distended atmospheres. This applica­
tion will be the subject of a second paper, in which I shall develop another possible 
relationship between such fields and the observed structure of planetaries. 

In brief, the shells that comprise a planetary nebula must be considered objects 
totally disconnected gravitationally or magnetically from the central star. Internal 
magnetic fields may still contribute to nebular structure, but no static equilibrium 
solution exists. For example, magnetic fields could have dictated the shell-like or 
ring-like structure when the nebula was very small, perhaps part of the atmosphere 
of the central star. After ejection, the slowly expanding shell has retained some 
semblance of its original form. 
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D I S C U S S I O N 

Khromov: May I ask you about the origin of the postulated magnetic field? 
Menzel: If you can tell me what causes the electric currents in sunspots I can answer that question. 

I have postulated the existence of currents, which must occur, not just in the central star, but through­
out the volume of the nebula. 
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