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Carbon in the Deep Biosphere

Forms, Fates, and Biogeochemical Cycling

susan q. lang, magdalena r. osburn, and andrew d. steen

16.1 Introduction

The form, fate, and biogeochemical cycling of carbon in subsurface environments
impacts and reflects microbial activity and has important implications for global elemen-
tal fluxes. Photosynthetically derived organic matter (OM) is transported to a depth where
it can continue to fuel life far from solar inputs. Alternative energy-yielding reactions
such as the oxidation of minerals and reduced gases can fuel life in the rocky subsurface
of both the ocean and continents, altering the distribution and characteristics of carbon
compounds. Nonbiological reactions such as the precipitation of calcium carbonate
influence the availability of dissolved inorganic carbon for lithoautotrophs and, simultan-
eously, the carbon cycle over geologic time. The abundances, characteristics, and distri-
butions of carbon in the subsurface can therefore provide an integrated history of biotic
and abiotic processes and a template for interpreting similar patterns from other planetary
bodies.

The goal of this chapter is to compile insights from disparate environments in order to
build a mechanistic understanding of the controls on carbon abundance and distribution in
the subsurface. The sections below summarize what is known from the oceanic and
continental subsurface, realms that are often studied separately. We synthesize commonal-
ities across these environments, highlight what remains unknown, and propose ideas for
future directions.

One challenge with working across the marine–continental divide is that the termin-
ology used to describe organic carbon varies between the two. We will use the following
terms and abbreviations: particulate organic carbon (POC), dissolved organic carbon
(DOC), and dissolved inorganic carbon (DIC). Another discrepancy between communities
is in the use of units, with ppm or mg/L dominating the continental literature and μM or
mM in the marine literature. We will use molar units throughout for comparison’s sake.
Finally, while the soil community has moved away from the terms “refractory” and
“recalcitrant” OM, they are still common in the marine community. Here, these terms
refer to OM that has escaped remineralization due to its inherent molecular structure,
physical associations with minerals, energetically unfavorable conditions, or the lack of a
specific microbial community adapted to carry out the necessary degradative processes.
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16.2 Oceanic Sedimentary Subsurface

Approximately 1.68 � 1014 g of organic carbon per year are buried in marine and estuarine
sediments (1). Burial of organic carbon in sediments represents a transfer of reducing
equivalents from Earth’s surface to the subsurface, thereby allowing persistence of oxi-
dized compounds such as O2 at the surface (2). The rate of burial of organic carbon in
marine sediments therefore has an important influence on the redox state, and thus
habitability, of Earth’s surface.

Broadly, marine sediments can be divided into river and estuarine delta systems,
continental shelves and slopes, and abyssal plains (Figure 16.1). Sediments may be more
finely divided into provinces based on microbial community composition, grain size, OM
content, and benthic communities, among other variables (3).

The oxidation of organic carbon in sediments is carried out by a series of heterotrophic
organisms. Macrofauna have their greatest influence on the surface sediments of continen-
tal shelfs, while the role of meiofauna and microorganisms increases with depth and where
oxygen is limited (4). Remineralization within anoxic sediments is dominated by micro-
organisms and is most prevalent at temperatures below ~80�C, constituting ~75% of
Earth’s total sediment volume of 3.01 � 108 km3 (5). The composition, abundance, and
activity of heterotrophic microorganisms in marine sediments therefore has a strong influ-
ence on the burial rate and chemical nature of organic carbon. While these reactions are
catalyzed by enzymes, they are ultimately controlled by thermodynamics. This section will
briefly review the chemical and biological factors that regulate organic carbon oxidation
and burial rates, as well as some of the models that can be constructed to describe and
predict those rates.

The burial rate of organic carbon in marine sediments is controlled by a range of
biological and geological processes, including sedimentation rate, primary productivity,
biological activity, sediment organic carbon content, chemical and physical form of
organic molecules, and concentrations of oxidants (electron acceptors), as described below
and in several reviews and syntheses (6–13). These factors are interrelated: rapid sedimen-
tation rates influence the quality of OM delivered to the sediment surface, which in turns
affects oxidation rates, oxygen exposure time (OET), quantity and composition of hetero-
trophic microbial communities, and concentrations of potential electron acceptors.

16.2.1 Chemical Composition

OM is delivered to marine sediments from marine sources such as sinking plankton and
consumers and from terrigenous sources such as plant litter and soil OM. The chemical
composition of fresh biomass is relatively well constrained and consists predominately of
carbohydrates, proteins, and lipids. The composition of terrestrial material transferred by
fluvial or aeolian processes ranges from fresh biomass to highly degraded and altered
material. Lignin phenols synthesized solely by vascular plants have long been used to track
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terrestrial inputs into the ocean (14). Ancient and recycled petrogenic carbon can also be
remobilized from the weathering of sedimentary rocks (15). This suite of compounds is
subject to biotic and abiotic alteration en route to marine deposition, which further diversi-
fies the range of organic compounds present. Physical processes within the catchment are a
major control on the composition and reactivity of OM delivered to the ocean by rivers
(16), with larger inputs of both recently synthesized and ancient petrogenic organic
carbon delivered in regions of higher erosional rates such as small mountainous streams
(10,17–19) and some Arctic rivers (20–23).

Within the sediments, heterotrophic organisms and abiotic processes such as condensa-
tion reactions or sulfurization can alter the chemical structures of OM. In general terms, the
heterotrophic remineralizaiton of larger organic molecules under anoxic conditions pro-
ceeds by the breakdown of polymers into monomers and oligomers, followed by smaller
alcohols and organic acids, and finally methane and CO2 (Figure 16.2) (24,25). As a result,
small organic molecules such as acetate, ethane, propane, and methane build up in the
porewaters of anaerobic sediments, with additional contributions from acetogenesis and
hydrogenotrophic methanogenesis (24,26–29).

Ultimately, the vast majority of OM produced in the upper water column is respired,
with only 1% of gross primary production escaping remineralization to be buried in the

Figure 16.2 Anaerobic breakdown of OM by microorganisms via (a) methanogenesis and
(b) sulfidogenesis.
Adapted from (25).
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deep sediments (6–8,30). Some molecules survive due to chemical structures that are
inherently recalcitrant, a process called “selective preservation.” The role of this pathway
is disputed. While some compounds such as highly cross-linked macromolecules are
inherently less bioavailable than others, microorganisms are capable of metabolizing even
ancient and highly altered OM relatively quickly under favorable conditions. Molecules
may become less bioavailable due to nonbiological alteration. Abiotic sulfurization of
organic molecules, deamination of peptides, and condensation of nitrogen-containing
heterocyclic molecules all appear to promote the preservation of organics in sediments
(7,31). Random recombination of molecules or the production of altered metabolites by
heterotrophic microorganisms can also rapidly convert labile organic carbon into far less
reactive material (32,33). Temperature can promote some of these transformations, as
discussed in detail in Section 16.4.

16.2.2 Bulk Controls on OM Preservation

In locations with relatively rapid sediment accumulation rates such as river deltas and
continental shelf sediments, greater OM preservation is most closely associated with higher
mineral surface areas and shorter OETs (7,34). These factors have proven broadly predict-
ive of organic carbon distributions, although they do little to reveal the underlying
mechanisms of preservation, nor do they allow for predictions of future responses to
changing environmental conditions.

A prevailing paradigm is that microorganisms access POC only after it has been
solubilized into DOC (35). Organic molecules enter cells via general uptake porins, which
can only accommodate molecules in the size range of 600–1000 Da (36). Organic
molecules in seawater, sediment porewater, and soils that are larger than 1000 Da are,
however, more bioavailable than small molecules on average (37–40), apparently because
smaller molecules tend to be more extensively modified than larger molecules (41).
Therefore, microbial extracellular enzymes appear necessary for the uptake and utilization
of the most bioavailable organic carbon in sediments. Consistent with this paradigm,
extracellular enzyme activity has been observed in deep, old sediments, including
217,000-year-old Mediterranean sapropels (42,43) and Baltic Sea sediments that are up
to 10,000 years old (44).

Several findings complicate the view that extracellular enzymes catalyze the rate-
limiting step in biological organic carbon oxidation. Extracellular enzyme activities can
outstrip the ability of sediment microbes to take up hydrolysate on timescales of days to
years, leading to accumulations of apparently bioavailable low-molecular-weight DOM
(45). Further, cells do not exclusively take up organic compounds via general uptake
porins. Active transporters, for instance, use energy gradients to pass specific molecules
through the cell membrane. These can be extremely large: for instance, certain TonB-
dependent transporters can import intact proteins up to 69 kDa (46). Additionally, in
seawater and in cow rumen, some cells are able to take up larger oligosaccharides into
their periplasm, store them over extended periods, and then metabolize them when
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conditions are right (47,48). The extent to which these mechanisms are important in
sediments is not known, but temporal decoupling between macromolecule hydrolysis
and metabolism could have implications for the dynamics of sediment OM oxidation.

16.2.3 Sorption

It has been observed for nearly 40 years that the volume-specific quantity of mineral
surface area in sediments is correlated with organic carbon content (49). The mechanism
underlying this relationship is not precisely understood. Sediments tend to accumulate
quantities of organic carbon that are roughly equivalent to the amount that would be
required to cover minerals in an organic monolayer (50,51). Sedimentary organic carbon,
however, exists in discrete “blebs” (Figure 16.3), so the fact that the average quantity of
OM per unit of mineral surface area is roughly monolayer equivalent appears to be
essentially coincidental (52).

Several mechanisms appear responsible for the protection of OM by mineral surfaces.
First, OM may be occluded between mineral grains, within minerals themselves, or even
within a matrix of more recalcitrant sorbed organic compounds (53,54). Encased OM
represents a sterile microenvironment in which biological oxidation is impossible. Second,
even when sorbed OM is physically accessible to microorganisms, sorption slows or halts
the diffusion of organic compounds to cell membranes (55). Finally, sorption distorts the
physical structure of extracellular enzymes, preventing them from functioning normally,
while simultaneously protecting enzymes from degradation and thereby substantially
extending their active lifetimes (56,57). Associations with iron oxides, which include

Figure 16.3 (a) Scanning transmission X-ray microscope image and (b) optical density map of the
organic carbon distribution of sediments from 1.75 m below seafloor at Integrated Ocean Drilling
Program Site 1231 Hole B, Peru Basin. The optical density map was generated by subtracting a pre-
edge X-ray image from a post-edge X-ray image; brighter pixels correspond to higher concentrations
of organic carbon. OM associated with particles is not distributed evenly over the surface.
Image courtesy of Dr. E. Estes, University of Delaware.
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chelation, coprecipitation, and noncovalent bonding to oxide surfaces, accounts for an
average of 20% of organic carbon in sediments (58,59). A full understanding of the
mechanisms of microbial OM oxidation in sediments requires consideration of both the
interactions between organic carbon and sediment minerals and the effects of mineral
surfaces on the metabolisms of microorganisms.

16.2.4 Oxygen Exposure Time

Typical marine sediments underlying oxygenated seawater contain oxic porewater near the
sediment–water interface, which becomes anoxic with increasing depth due to hetero-
trophic organic carbon oxidation. The depth of the oxic layer can vary dramatically, from
millimeters or less in rapidly accumulating, organic-rich sediments to meters in ocean
gyres. The presence of oxygen enhances the remineralization of organic molecules
(60–62), and the term “oxygen exposure time” was coined to quantify the average time
that sedimentary OM is exposed to “oxic” conditions, which can range from days to
thousands of years (8,34,62,63). Organic carbon oxidation is substantially faster in oxic
sediments than anoxic sediments because the greater free energy of reaction of organic
carbon with oxygen allows for a denser microbial community capable of catalyzing faster
oxidation and because specific reactions (e.g. the oxidation of lignin via an oxygen radical
intermediate) are not possible, or are vastly slower, in the absence of molecular oxygen
(64). Thus, shorter exposure times are associated with higher organic carbon burial
efficiencies and the preservation of less degraded materials (7,8,13,34,63,65,66). This
correlation is not absolute, however. Large provinces of ocean sediment underlying gyres
are oxic to the basement, representing as much as 86 million years of OET (67). In such
sediments, sedimentation rates are exceedingly slow and the sediments are very organic
poor, and most oxidation apparently occurs directly at the sediment–water interface.
Organic carbon oxidation in “rich” anoxic systems such as rapidly accumulating estuarine
sediments can exceed 100 µM C day–1, primarily via sulfate reduction, compared with ~3
� 10–6 µM C day–1 in oxic gyre sediments.

16.2.5 Models of Organic Carbon Diagenesis

Due to the chemical complexity of sedimentary OM, sedimentary diagenetic models have
focused on the transformation of bulk organic carbon to CO2. One common class of
models assumes the following form:

r ¼ � dG

dt
¼

Xn

i¼1

kiGi, (16.1)

where r is the bulk rate of CO2 production, equivalent to the rate disappearance of bulk
organic carbon (G), which in turn is the sum of the oxidation rates of different carbon pools
(Gi), each of which is oxidized according to a different, characteristic rate constant (ki)
(68). Frequently, these “multi-G” models only include two or three reactivity classes of

486 Susan Q. Lang et al.

Published online by Cambridge University Press



OM: usually a fast-reacting “labile” pool, an unreactive “recalcitrant” pool, and sometimes
an intermediate “semi-labile” pool. Related models include the reactivity-continuum
model, which assumes an infinite number of reactivity pools (69,70), and that of Middel-
burg (71), in which a single time-dependent reactivity rate constant is assumed. These
models are mathematically straightforward, but they are somewhat mechanistically discon-
nected from the reality of sediment OM, which is tremendously chemically complex
(7,72).

Recently, models that include a broader set of parameters, such as microbial biomass,
enzyme substrate specificity, and temperature–rate relationships, have been successfully
employed in soils and sediments (73,74). By including a wider range of processes, these
models have the capacity to both quantitatively fit bulk organic carbon concentration
data and make reasonable predictions about systems’ likely responses to changing
environments.

16.3 Oceanic Rocky Subsurface

Below ocean sediments, the igneous ocean crust hosts ~2% of the total volume of the
ocean, making it the largest aquifer system on Earth (75). Seawater actively circulates
through this aquifer and drives the transfer of heat and elements between fluids and rocks
with ramifications for ocean chemistry (76–79) and for the thermal, physical, and geo-
chemical structure of the crust and mantle (80,81). Microbial life is widespread in the rocky
oceanic subsurface and both exploits and influences these exchanges (82–84), altering the
abundance and form of carbon. Fluid flow through the rocky subsurface is ultimately
driven by a source of heat such as cooling magma or hot rocks (80,85). Heated fluids rise
buoyantly and ultimately exit the sub-seafloor, drawing cool seawater into the crust to
replace it.

The carbon characteristics of the fluids and rocks in hydrothermal systems and the
igneous basement differ greatly depending on the type of host rock, the temperature of the
system, and the presence or absence of sediments. Some systems are further influenced by
factors such as phase separation, magma injections, seismic activity, extent of subduction,
and even tides (86–89). Below, carbon transformations are described in some of the
primary types of hydrothermal circulation systems (Figure 16.4).

16.3.1 Characteristics of Recharge Water

The chemical composition of the seawater that enters into the rocky subsurface has a strong
influence on subsequent water–rock and microbial reactions. Deep seawater carries DIC in
concentrations of 2.1–2.3 mM (90) and DOC in concentrations of ~34–48 µM (2,91). DOC
is composed of a complex set of molecules, some of which turnover rapidly on timescales
of hours to years. The majority of DOC, however, is slow to remineralize and has the
potential to be stored for millennia in the ocean’s interior (see (92) for review). Refractory
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DOC is highly degraded, has few recognizable biomarkers, and has a 14C age of
4000–6000 years, substantially longer than the mixing time of the ocean (93). DOC
isolated from seawater and subjected to nuclear magnetic resonance and Fourier-transform
ion cyclotron resonance mass spectrometry is composed primarily of carboxyl-rich ali-
phatic matter (94), acylated polysaccharides (95), and carotenoid degradation products (96)
(see (97) for review).

16.3.2 Axial High Temperature, Basalt Hosted

The most widely recognized hydrothermal systems are close to axial spreading centers,
where new injections of magma maintain high temperatures (Figure 16.1). The host rock is
mafic and fluids exit through chimney structures at temperatures that can reach >400�C
(98). Exiting fluids are rich in dissolved metals that, upon mixing with cold seawater,
precipitate the sulfide minerals that give them the name “black smokers.” In the water
column, the hot fluids mix further with seawater, cool, reach neutral buoyancy, and spread
away from the vent field. The chemical signatures from these plumes of water can be
detected thousands of kilometers away from the field (99,100).

Figure 16.4 The abundance and composition of organic molecules in hydrothermal fluids will reflect
a complex reaction history. While chemoautotrophy and abiotic synthesis involve the reduction of
inorganic carbon into organic molecules, remineralization will do the reverse. Oxidation and
dehydration reactions produce smaller, more polar compounds that are generally more labile and
more easily consumed by heterotrophic microorganisms. Reduction and dehydration reactions may
produce larger and more apolar material that is more resistant to microbial degradation and may be
sequestered in the subsurface or persist for long periods of time in the deep ocean.
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The majority of high-temperature vent fluids have DIC concentrations equal to or greater
than deep seawater due to inputs of magmatic CO2 (Figure 16.5 and Table 16.1) (101). DIC
concentrations are generally 3–30 mM, or they can be higher when fluids are impacted by
phase separation, fresh inputs of magma, or sedimentary degradation (see (101) for review).
Additions of magmatic CO2 are identified by δ13C isotopic signatures (–9‰ to –4‰)
(102,103) that are markedly different from deep seawater DIC (–0.5‰ to 1.0‰) (104). The
lack of 14C in CO2 from some hydrothermal fluids demonstrates that the DIC carried with
recharge water can be fully removed during sub-seafloor circulation in some cases (105).
Calcium carbonate veins in basalts and gabbros have isotope values consistent with precipi-
tation of marine DIC at the relatively low temperatures of seawater recharge (106,107).

Methane concentrations in sediment-free, high-temperature axial fluids (~7–200 µM)
are higher than those of seawater (0.0003 µM), but generally low when compared to
sedimented or ultramafic-influenced systems (Figure 16.5 and Table 16.1). For example,
vent fluid CH4 concentrations range from 7 to 213 µM from high-temperature vents from
along the East Pacific Rise (111,123,147–150), while those from along the Mid-Atlantic
Ridge (MAR) range from 8 to 147 µM (98,117–119,151–153). Concentrations can spike
as a result of volcanic eruptions and due to outgassing after a dike injection (88,89,113).

The majority of the DOC carried with deep seawater is destroyed during circulation
through mafic hydrothermal systems. The first evidence for this removal came from a study

Figure 16.5 Range of methane and CO2 concentrations in basalt-hosted high-temperature (black
outline; Axial Volcano, Trans-Atlantic Geotraverse (TAG), 9�N East Pacific Rise, Lucky Strike),
ultramafic-hosted (green diamonds; Lost City, East Summit of Von Damm, Rainbow), ridge flank
(blue checkers; Juan de Fuca ridge flank, North Pond), back-arc basins (orange diagonal;
PACMANUS, Mariana Arc, Okinawa Trough), and sedimented systems (gray boxes; Guaymas,
Middle Valley, Okinawa Trough). Seawater composition is included for comparison. Methane
concentrations at North Pond are plotted at the reported detection limit of the analysis (0.5 µM).
References are given in Table 16.1.
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Table 16.1 Characteristics and carbon contents of representative oceanic sub-seafloor fluids.

System type Seawater Sedimentary porewater

Basalt hosted,
unsedimented,

high temperature

Basalt hosted,
unsedimented,

diffuse/mixed fluids

Example system
Below
1500 ma

Cascadia
Marginb

0–65 mbsf

Cascadia
Marginb

65–189 mbsf
East Pacific
Rise (9�50'N)c

Axial
Volcanod TAGe

East Pacific
Rise diffuse
(9�50'N) f

Axial
Volcanog

Temperatures (�C) 2–5 �9 ~8–12 275–371 217–328 290–321 23–55 3–78
pH (at 23�C) 7.8 7.7–8.0 7.7–8.4 3.5–4.2 3.5–4.4 3.1–3.5 5.8–6.4 4.6–5.8
H2 (mM) 0.0003 – – 0.27–8.4 <0.1–0.8 0.10–0.37 BDL–

0.0058
<0.5

Dissolved
iron (µM)

<0.001 – – 8–5150 12–1065 1640–5170 <2–277 35–400

ΣCO2 (mM) 2.1–2.3 7–24 18–29 9.4–219 50–285 2.9–5.0 3.0–11.8 –

δ13CCO2 (‰) –0.6 to 0.4 –24.4 to
25.6

27.9–33.6 –4.2 to –3.7 – –13.0 to –6.9 –4.2 to –2.2 –

F14CCO2 0.7511–0.9677 – – – – – – –

CH4 (mM) 0.0003 BDL–69 71–236 0.05–0.16 0.025 0.12–0.16 0.003–0.500 <0.6
δ13CCH4 (‰) – –59.7 � 7.1 –46.7 to

–41.7
–34.6 to –16.8 – –9.5 to –8.0 – –

F14CCH4 – – – – – – – –

Σ(C2H6–C4H8)
(µM)

BDL 0–35 ppmvq 0.5–7318
ppmvq

– – – – –

δ13CC2H6,C4H8 (‰) – – – – – – – –

CO (µM) BDL – – BDL–2.0 – BDL 5.7–17.8 –

CH3SH (nM) BDL – – 2.4–4.9 – 12 – –

DOC (µM) 35–45 400–3200 1700–5100 – 8–24 – – 34–71
δ13CDOC (‰) –20 to –22 –23.6 to

–22.1
–20.2 � 0.4 – – – – –18.6

F14CDOC 0.444–0.767 – – – – – – 0.481r

Formate (µM) BDL – – – – – – –

Acetate (µM) BDL 5–57 14–89 – – – – –

Hydrolizable
amino acids (µM)

80–160 – – – – – – –

“–” is used where no reports available in the literature.
BDL = below detection limit; mbsf = neters below seafloor; TAG = Trans-Atlantic Geotraverse.
a (93, 104, 108, 109).
b (29, 110).
c (109, 111–113).
d (114–116).
e (98, 109, 117–119).
f (109, 111, 120).
g (86, 114, 116, 121).
h (109, 122–126).
i (127).
j (116, 128–133).
k (134, 135).
l (109, 136).
m (109, 119, 137–139).
n (109, 112, 140–143).
o (144).
p (145, 146).
q Headspace gas concentrations in equilibrium with sediments.
r F14C of ultrafiltrated DOC (>1000 Da).
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Basalt hosted,
sedimented, high

temperature
Ridge Flank
(“warm”)

Ridge Flank
(“cool”)

Ultramafic influenced,
high temperature

Ultramafic
dominated

Silicic
back-arc

Guaymas
Basinh

Middle
Valleyi

Juan de Fuca
Ridge Flankj

North Pond
Basementk

Von Damm
(East Summit)l Rainbowm Lost Cityn PACMANUSo

Okinawa
Trough
(sedimented) p

100–315 40–281 64 3.1–3.8 226 350–367 30–91 152–358 >220–320
4.5–6.1 – 7.5 7.4–7.6 5.6 2.8–3.4 9–11 2.3–4.7 4.7–5.4
0.52–3.30 1.9–8.2 0.3–0.7 – 18.2–19.2 12.3–16.5 1–14 0.0084–0.306 0.05

17–180 – 0.6–1.1 – – 23,700–24,050 <3.5 µM 76–14,600 –

35–54 8.2–13 0.2–0.6 2.0–2.4 2.80 16.0–24.6 0.0001–0.026 4.4–274 198–200
–9.4 –34.6 to

–20.7
–9.7 to –1.3 –0.16 to

0.67
0.8–0.9 –3.15 to –2.5 ~–9 –5.7 to –2.3 –5.0 to –4.7

0.056 – 0.083–0.233 0.595–0.865 0.0251–0.0373 – – – –

44.2–58.8 3.0–22.6 0.001–0.030 <0.0005 2.81 1.6–2.5 0.9–2.0 0.014–0.085 2.4–7.1
–43.8 –55.5

to –50.8
–58 to –23 – –15.6 to –15.3 –17.7 to –15.8 –13.6 to –9.3 –20.8 to –7.4 –41.2 to

–36.1
0.077 – – 0.0056–0.0064 – 0.0017–0.0062 – –

– 14–310 – – 695 0.84 1.0–2.0 – –

– –25.3 to
–18.7

– – –12.9 to –9.8 – –16.0 to –13.0 – –

27–92.4 – – – n.d. 5.0–7.4 BDL 0.006–0.17 –

11–10,000 – – – 22 7.4–10.3 1.4–1.9 – –

111–2112 – 11–18 18–33 – – 68–106 – –

– – –34.5 to
–24.8

–26.6 to
–23.9

– – –21.0 to –10.5 – –

– – 0.166–0.230q

0.186–0.204
0.352–0.472 – – – – –

<40 – – – 88.2 – 36–158 – –

BDL–295 – – – – – 1–35 – –

5.2 – 0.043–0.089 – – – 0.7–2.3 – –
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of amino acids in the sediment-covered Guaymas Basin (26,122). Concentrations of
dissolved free amino acids in high-temperature fluids (>150�C) were below detection
limits and below deep ocean concentrations, with the losses attributed to the instability of
organic compounds at high temperatures (122,154). The DOC content of black smoker
vents on the unsedimented portions of the Juan de Fuca spreading center is less than half
that of deep seawater (<17 versus 36 µM) (116). Concentrations of DOC that can be
isolated onto solid-phase extraction (SPE-DOC) phases are ~92% lower in unsedimented
black smokers from Juan de Fuca and the MAR than in deep seawater (155). It is possible
to experimentally reproduce losses of OM by heating (125,155–157), though this does not
conclusively rule out alternative removal mechanisms such as sorption onto mineral
surfaces or heterotrophy.

16.3.3 Axial Diffuse Vents, Basalt Hosted

Adjacent to axial, high-temperature systems, local seawater enters the crust, creating
“diffuse vents.” The mixing of oxygenated seawater and reduced hydrothermal fluids
results in chemical disequilibria that microorganisms can exploit for metabolic energy
(158). Due to mixing and conductive cooling of fluids, temperatures are often well below
the upper temperature limits of life (122�C) (159). As a result, these zones are thriving sub-
seafloor microbial habitats (3,82,84,160,161). Microbial activity can alter fluid chemistry,
resulting in losses of H2S and H2 and gains of CH4 relative to high-temperature fluids
(111,112,115,162).

In diffuse vents on the Juan de Fuca Ridge, DOC is elevated over local deep seawater
(~47 versus 36 µM), attributed in part to sub-seafloor autotrophic production (116). This
DOC has a lower 14C content and a more positive δ13C value than local seawater,
consistent with a contribution of chemolithoautotrophs incorporating a pre-aged carbon
source such as mantle CO2 (121).

16.3.4 Ridge Flanks

Fluid continues to flow through the rocky subsurface far from the ridge axis, as rocks cool
in the absence of new magma injections (Figure 16.1). The extent of advective flow
through these “ridge flank” systems can be determined from discrepancies between
modeled conductive heat loss and heat flow measurements that indicate the convective
flow of water in crust that is 0–65 Ma (75,80). Sediment cover precludes fluid transport
into and out of the crust; bare-rock seamounts are therefore the primary locations of
advective transport (128). Even in regions with thick sedimentary layers, however,
exchange of water, carbon, elements, and nutrients continues between deep sedimentary
porewater and basement fluids.

Based on magnesium budgets, fluid fluxes through “cool” ridge flank systems (<45�C)
are substantially larger than those through warmer systems (77,163). Cool basement fluids
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(<20�C) have been accessed by Integrated Ocean Drilling Program drilling in the North
Pond sedimented basin on the MAR (161). Dorado Outcrop on the Cocos Plate has also
been confirmed to vigorously vent large quantities of water at temperatures of 10–20�C
(164). The “warm” ridge flank system on the Juan de Fuca ridge has been intensely studied
for decades, including via series of Ocean Drilling Program boreholes that have been
drilled perpendicular to the ridge to allow direct access to the basement (165).

DIC is substantially lower in Juan de Fuca ridge flank fluids than in seawater (0.1–0.9
versus 2.6 mmol/kg; Table 16.1), likely due to precipitation of calcium carbonate in the
subsurface (130,166,167). In contrast, fluids from the lower-temperature Dorado and North
Pond systems have DIC concentrations that are similar to seawater (134,164). In many
cases, the δ13C values of DIC are lower than that of seawater, suggesting an input from
remineralization of organic carbon or CO2 trapped in basaltic vesicles (130,133,135). The
apparent 14C age of DIC is often used as a measure of fluid residence time, although this
must be treated with caution, as mixing with older water masses, remobilization of calcium
carbonate, input of basalt vesicle CO2, and remineralization of 14C-depleted OM can
influence these signatures (133,168–170).

Methane concentrations are low but detectable in Juan de Fuca ridge flank fluids (1–32
µmol/kg) (131,132). The isotopic signatures of methane (–58.0‰ to –22.5‰) indicate a
mixture of processes, including biogenic production and oxidation (132). Methane concen-
trations at North Pond were below detection (134).

DOC concentrations are lower than seawater in ridge flank fluids on the Juan de Fuca
ridge and at North Pond (116,131,133–135). In both cases, this DOC has a lower
14C content and δ13C signatures that are more negative than those of starting seawater
(121,133,135). This pattern was initially attributed to a complete removal of seawater
DOC, followed by an input of chemosynthetically derived organic material (121). New
data suggest that the isotopic signatures could instead be attributed to the selective
oxidation and removal of portions of the seawater DOC pool (133,135). Diffusion of
porewater from the sediments covering the ridge flank may also contribute some organic
compounds to the fluids (124), as this exchange impacts the inorganic chemistry
(129,131,165).

16.3.5 Ultramafic Influenced

Systems hosted on ultramafic rocks undergo water–rock reactions that are distinct from
those of mafic environments. Ultramafic systems can be located on spreading centers and
influenced by magmatic injections, but they can also be far from the spreading center or
along ultra-slow-spreading centers with little to no magmatic influence. The compositional
differences between ultramafic rocks derived predominantly from Earth’s mantle and mafic
rocks such as basalt and gabbro give rise to fluids with distinct chemical signatures. Fluids
that have reacted peridotites are strongly enriched in H2 and CH4 and, in some cases, have
drastically lower metal contents (Figure 16.5 and Table 16.1).
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The earliest recognitions of an ultramafic hydrothermal signature in the ocean came
from high ratios of CH4 to Mn and suspended particulate matter in the water column on the
MAR (171–173). Subsequently, the Logatchev, Rainbow, Menez Gwen, Ashadze, and
Nibelungen hydrothermal fields were identified along the MAR, with fluid chemistries that
exhibit a mixture of magmatic influences such as high temperatures (200–372�C), acidic
pHs (2–4 at 25�C), and high metal contents (e.g. millimolar concentrations of Fe and
hundreds of micromolar concentrations of Mn), but also ultramafic influences such as
millimolar concentrations of CH4 and H2 (Table 16.1; for reviews, see 119,174).
Peridotite-influenced systems have since been identified on the Mid-Cayman Rise
(136,175) and Marianas Forearc (163,176). The ultramafic-dominated system in the Lost
City Hydrothermal field has minimal interaction with magmatic processes, resulting in
lower fluid temperatures (40–91�C), alkaline pHs (9–11 at 23�C), and low metal contents
(<100 nM of Fe and <50 nM of Mn) (140,143,177). A magmatic influence is still evident,
however, in elevated the 3He content of fluids (112). Ultramafic-dominated, low-tempera-
ture, alkaline systems are also present in the shallow waters of Prony Bay in New
Caledonia, fed by meteoric water (178), and on the Southern Mariana Forearc at the
Shinkai Seep Field (179).

The inorganic carbon concentration in ultramafic-influenced systems is highly
dependent on pH and magmatic inputs. In low-pH ultramafic systems, concentrations
of ΣCO2 can reach as high as those observed in magmatic systems, at ~4–20 mM
(Table 16.1; see (119) for a review). The δ13C values of this CO2 display “typical” mid-
ocean ridge values of –4‰ to –2‰ in some cases such as the Rainbow vent field (119).
In other locations such as the Logatchev field, it is unusually positive, up to +9.5‰,
even in fluids with ΣCO2 concentrations higher than seawater (119,180). In alkaline
ultramafic systems such as Lost City, the high pHs lead to the rapid precipitation of
calcium carbonate and therefore vanishingly low concentrations of ΣCO2 in end-
member fluids (112,140). This removal likely occurs throughout the fluid circulation
pathway. Carbonate mineralization is common in ultramafic rocks (181), and isotope
signatures indicate precipitation occurs both at cold seawater temperatures and at
warmer (65–95�C) temperatures, where δ13C values indicate that the source ΣCO2

has a substantial mantle component (107).
Methane concentrations in ultramafic systems are frequently an order of magnitude

higher than those in unsedimented, basalt-hosted systems (Figure 16.5 and Table 16.1),
and substantial methane anomalies along the MAR have been attributed to exports from
these systems (119,171–173). Estimates from mantle 3He exports suggest serpentinization
of ultramafic rocks could account globally for about 75% of the methane flux from mid-
ocean ridge systems (182). Isotopic signatures point to a nonbiological source for this
methane (112,119,183), although in most systems more CH4 is present than would be
expected in thermodynamic equilibrium with CO2 (for reviews, see (101,183)). One
possibility is that the methane was formed long ago, at higher temperatures than the
present day, and is subsequently stripped from vesicles in the rocks (136,184), which
contain high CH4 and CO2 contents (185,186). Biologically derived methane from
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methanogenesis may also contribute (187), albeit at relatively low levels when compared to
the dominant nonbiological signature.

Short-chain hydrocarbons such as ethane, propane, and butane have been found in the
low-micromolar concentrations in a wide range of ultramafic systems (Table 16.1)
(112,136,180). Isotopic values that decrease with increasing chain length have been used
to demonstrate that these species are not derived from the decomposition of sediments and
could have a nonbiological origin such as Fischer–Tropsch-type reactions (112). At the
Lost City and Von Damm hydrothermal fields, the concentrations of these compounds
increase in conjunction with methane concentrations (112,136), indicating similar pro-
cesses may lead to their formation and/or cycling.

Formate and acetate have been reported in elevated concentrations in multiple ultra-
mafic systems including Lost City (formate: 36–158 µM; acetate: 1–35 µM) (141), Von
Damm (formate: below detection to 669 µM) (136), and Prony Bay (formate: ~4 µM;
acetate: ~70 µM) (188). At Lost City, the isotopic composition of formate indicates it is
synthesized by two pathways: abiotic synthesis in the subsurface that results in 14C-free
formate with a δ13C signature (–13.0‰ to –8.9‰) similar to methane and short-chain
hydrocarbons; and near-surface biological synthesis that incorporates modern DIC,
resulting in formate with substantial 14C and a more positive δ13C signature (–9.1‰ to –

4.3‰) (189). At the Von Damm vent field, higher concentrations of formate are found in
hot mixed fluids than in pure end-member hydrothermal fluids, demonstrating that this
species forms abiotically on timescales of hours to days (136). At Lost City, the δ13C of
acetate (–27‰ to –17‰) could be attributed to a mixture of anaerobic fermentation and
acetogenesis (141,189). Given the high abundances of microorganisms in the chimneys,
the acetate could also be due to a thermocatalytic breakdown of complex organics in the
biomass (141,189).

Hydrolyzable amino acids are present in high abundances in Lost City fluids and
chimneys (142). In the fluids, the highest concentrations were observed in locations where
concentrations of H2 had been drawn down by sulfate reducers living in the sub-seafloor or
chimney. The 13C of amino acids isolated from the chimneys had fractionation patterns
consistent with synthesis by a chemolithoautotrophic source (142). In high-temperature
fluids (>300�C) from Rainbow and Ashadze, dissolved free amino acids were detected in
the picomolar concentration range, with tryptophan, phenylalanine, and leucine detected in
the fluids but not in deep seawater (180). Tryptophan and phenylalanine contain aromatic
rings that may assist in molecular stability at high temperatures (190).

16.3.6 Fluxes between the Ocean and Crust

Hydrothermal circulation is the primary means of transferring materials between the crust
and ocean (78,191). The net flux of constituents includes both input and removal pro-
cesses, though these may be geographically and temporally distinct. The impact of
hydrothermal circulation on the carbon budget of the ocean remains unconstrained in
many ways.
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Inorganic carbon is transferred to the deep ocean via magma degassing and removed by
carbonate precipitation in the sub-seafloor at roughly similar rates (Figures 16.4 and 16.5).
Degassing of mantle volatiles through high-temperature venting is estimated to input ~1 �
1012 mol C yr–1 of ΣCO2 into the ocean (191,192). Carbonate precipitation is estimated to
remove 1–3 � 1012 mol C yr–1 in ridge flanks (167,193,194). Seawater passing through
peridotites results in a loss of 0.4–2.0� 1011 mol C yr–1, although stable isotope signatures
indicate that approximately half of the carbon sequestered into the rock is in the form of
organic carbon (195,196).

Export and removal fluxes of DOC can be estimated by combining changes in concen-
trations with water fluxes through different types of hydrothermal systems (75,80,163). If
high-temperature vents remove an average of ~20 µmol of seawater DOC per liter,
approximately 0.7–1.4 � 1010 g C yr–1 would be lost globally (116). A similar scale loss
of 1.4 � 0.7 � 1010 g C yr–1 has been estimated based on changes of SPE-DOC concen-
trations (155). Ridge flank regions where crustal temperatures are “warm” (>45�C) have
more substantial chemical changes in circulating fluids but smaller fluid fluxes than regions
where crustal temperatures are “cool” (77,163). If concentrations from the “warm” Juan de
Fuca ridge flank system are typical of such systems, 2–13 � 1010 g C yr–1 would be
removed (116). Due to the larger water fluxes, if DOC concentrations through the “cool”
crust at North Pond are globally representative, losses would be an order of magnitude
higher at ~9–14 � 1011 g C yr–1 or ~5% of the total annual deep oceanic DOC loss (135).

16.4 Sedimented Hydrothermal Systems

Where spreading centers occur under thick sediment packages, hot water rapidly alters the
OM fueling heterotrophic communities (e.g. (125,156,190)), releasing inorganic carbon
(89), influencing local physiochemical conditions, or forming complex oil-like materials
(e.g. (197,198)). The form and fate of carbon in heated sediments depend on its origin
(terrigenous versus marine versus chemoautotrophic), temperature, and flow rate. Upon
heating, a series of reactions similar to those that give rise to petroleum proceeds, with
important differences due to the more water-rich conditions. The production of petroleum
is generally considered to begin at ~50–70�C (199). Weak bonds that sorb organic
molecules onto surfaces break most easily, followed by bonds involving oxygen, sulfur,
or nitrogen. Carbon–carbon bonds require the most energy – and therefore greater tem-
perature or time – to break (199).

Small polar compounds can be mobilized through enhanced desorption and the destruc-
tion of noncovalent bonds. The most labile material is removed from the solid phase due to
microbial activity, pyrolysis, and/or desorption (156). Over time, the amount of OM
transferred into the aqueous phase decreases as the material is physically transported out
of the system or biodegraded by microorganisms (125,156,157).

Unlike the dry “cracking” reactions that dominate petroleum reservoirs, breaking carbon–
carbon bonds in the presence of water results in more oxidized products. Cracking reactions
proceed at temperatures above ~100�C and result in CH4 and low-molecular-weight
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hydrocarbons (199–201). In contrast, in the presence of water and minerals, n-alkanes will
instead degrade to oxygenated products such as alcohols, ketones, carboxylic acids, and,
ultimately, CO2 and CH4 (89,202). Sediments heated in aqueous environments produce
copious amounts of acetate in particular. The reaction temperature impacts the products,
with higher temperatures favoring more oxidized products such as CO2 over CH4 and
propanol over propane (203).

Reduction, condensation, and dehydration reactions proceed at higher temperatures to
form macromolecules and aromatics, causing compounds to revert to their most stable
states (Figure 16.4) (204,205). Polycyclic aromatic hydrocarbons and cyclic polysulfides,
major components of some hydrothermal oils, form only under very high heat (>~300�C)
and are signatures of elevated temperatures (190,197,198). Polypeptides form through
dehydration and reduction, while lipids crack and recombine (206).

Water washing will selectively transport more soluble components from the subsurface
to the surface and leave behind larger condensates (125,190,199,207). Smaller alkanes
(<C10), aromatic volatiles, compounds containing C–N–S bonds, oligosaccharides, and
oligopeptides are often missing in sediments subjected to “water washing,” while fluids
and plumes contain higher concentrations of these compounds (190,204,207).

These released compounds are highly biodegradable and fuel heterotrophic organisms.
The labile amino acids released from sterilized sediments, for example, are utilized and
reworked by microorganisms in parallel, nonsterilized experiments (125). In general, the
low-molecular-weight organic acids that are primary breakdown products of heating
sediments in the presence of water, particularly acetate, are important substrates for
anaerobic microorganisms (208).

The residual OM that is not removed with water washing is enriched in less soluble
material, leading to “hydrothermal petroleum.” Cooling near the sediment–water interface
can help trap less soluble compounds through differential condensation and solidification
(190,207,209). The distribution of compounds and the maturity of these oils are highly
variable.

16.5 Continental Subsurface

Geological heterogeneity produced through plate tectonics diversifies and segments the
continental deep subsurface and its constituent biospheres differently from in the marine
realm. Mountain and basin formation juxtaposes reactive rocks and minerals and creates
new hydrological flow paths. Rock and water ages on the continents range from modern to
billions of years (210,211). Terrestrial vegetation supplies vast quantities of organic
carbon, although this influence is attenuated with increasing depth. The water age, hydro-
logical connectivity, and major element chemistry of continental subsurface sites dramat-
ically impact carbon cycling and the nature of in situ biospheres.

The continental deep subsurface extends downward from the base of the critical zone
(212,213), although specific depths and thresholds have yet to be defined, particularly
on the upper boundary. The penetration of life into the continental crust appears to be
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limited not strictly by depth, but rather by temperature, permeability, and perhaps
aridity, with clear life detection in even the deepest boreholes and mines. Sites lacking
identifiable life are few and far between and appear to be limited by temperature (e.g.
German continental deep drilling program (KTB) cores in the Black Forest (214)) or
aridity (213).

Estimates of the size of the continental deep biosphere are large (ranging from 2.3� 1015

to 1017 g C), mirroring similar estimates of the marine deep biosphere (4.1 � 1015 g C) and
rivaling terrestrial soils (2.6 � 1016 g C) (215–217). The uncertainty in these calculations
spans orders of magnitude and has not changed significantly since the original estimates by
Whitman (215; Chapter 17, this volume), although the trend is downward (Chapter 17, this
volume). However, increasing levels of inquiry applied globally using advanced method-
ologies have identified abundant, taxonomically diverse communities within the continental
deep subsurface, giving credence to vast amounts of carbon contained and being cycled by
these ecosystems (218–222).

16.5.1 Types of Continental Deep Subsurface Environments

Continental deep subsurface environments can be broadly divided between sedimentary
and crystalline host rocks, but even within this framework they range significantly in
carbon content, isolation from the surface, and dominant carbon cycling processes
(Figure 16.1). The best-studied sites are found in shallow sedimentary and igneous aquifers
owing largely to their relevance to human water supplies (223–231). Hydrocarbon reser-
voirs contain vast quantities of organic carbon and have distinct microbiology associated
with their formation waters (232–234). A recent emphasis on deep coal beds and their
constituent carbon cycling has come to the scientific forefront due to their importance in
gas extraction via deep fracking technologies (235). Deep crystalline bedrock sites feature
the oldest, deepest, and most isolated deep biosphere environments (211,236–238). Caves,
in contrast, sit at the interface between the surface and the deep and are covered more
completely in other reviews (239–241). This section will describe the forms, cycling, and
fate of organic carbon in each environment.

While the deep subsurface biosphere is pervasive, it is difficult to access reliably.
Common access points are wells, boreholes, mines, and caves. Each approach has the
potential to impact in situ processes and must be considered when evaluating data sets.
Natural springs are often considered as “portals” or “windows” into the deep biosphere,
often showing a mix of surface and subsurface communities (242,243). The last 10 years
has seen the establishment of a number of deep subsurface observatories including into
permafrost (Permafrost Tunnel Research Facility, AL, USA), deep crystalline bedrock
(Deep Mine Microbial Observatory (DeMMO), SD, USA; Coast Range Ophiolite Micro-
bial Observatory (CrOMO), CA, USA; Äspö Hard Rock Laboratory, Sweden; and many
others), and sedimentary aquifers (Deep Biosphere in Terrestrial Systems (DEBITS), New
Zealand; Savannah River Site, SC, USA).
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16.5.2 Continental Carbon Cycling

Organic carbon in the continental deep biosphere may derive from surficial inputs, in situ
autotrophic carbon fixation, water–rock reactions, or ancient sedimentary sources. The
relative balance of these sources depends sharply on geology, both by surface connectivity
and host lithology. The following sections describe this balance in sedimentary and
igneous aquifers, hydrocarbon reservoirs, deep coal beds, and deep crystalline bedrock.

Key processes in subsurface carbon cycling depend on the relative recalcitrance of
ancient OM, supply of labile organic carbon, input of metabolic oxidants and reductants,
and aquifer porosity and permeability. Microbial carbon fixation produces labile organic
carbon and methane, whereas heterotrophic microbial processes consume both labile and
recalcitrant subsurface organic carbon. The relative importance of these two end members
broadly suggests autotrophic processes dominate in crystalline and deep rock aquifers
whereas heterotrophic processes are more abundant within sedimentary systems, although
numerous counterexamples exist and both processes (e.g. (251)) must be active for a
functioning ecosystem (225). Organic acids and short-chain hydrocarbons are key micro-
bial products and substrates within most continental subsurface settings with typical
concentrations in the 10–100 µM range (Table 16.2). Due to rock dissolution and other
processes, DIC can be very high, and may get much higher as aquifers are targeted for
anthropogenic carbon sequestration (222).

16.5.3 Sedimentary and Igneous Aquifers

Both sedimentary (e.g. Atlantic coastal plain) and igneous aquifers (e.g. Columbia River
basalt aquifer) have been shown to contain vibrant microbial communities and have been
the subject of intensive study due to their economic and social importance as sources of
drinking and industrial water, as well as their vulnerability to anthropogenic contamination
(225,226,231). Recharge timescales of aquifers vary over many orders of magnitude
(months to millions of years), controlling the relative supply of exogenous DOC and
electron acceptors. In many systems, significant supply of young sedimentary carbon
produces relatively high DOC, methane, and organic acid concentrations. The composition
of this DOC can be complex, including significant amounts of nitrogen- and sulfur-bearing
organic molecules (252). While oligotrophic compared to surface environments, aquifers
are relatively carbon rich for the subsurface and can support correspondingly high cell
densities (e.g. 105 cells/mL), even in oligotrophic crystalline aquifers (246).

Primary productivity within aquifers varies tremendously based on exogenous and
sedimentary organic carbon supply, but is significant in some settings. Hydrogen
production can be large and may support autotrophic populations, particularly in igneous
and ultrabasic host environments, fueling the so-called subsurface lithoautotrophic
microbial ecosystems (223,251,253). Utilization of iron oxide minerals as terminal
electron acceptors for both autotrophic and heterotrophic metabolisms is common,
producing high concentrations of dissolved ferrous iron in many groundwaters
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Table 16.2 Summary of characteristics and carbon contents of different types of continental subsurface systems.

System type
Shallow sedimentary
aquifers

Shallow igneous
aquifers

Hydrocarbon reservoir
formation waters Coal beds Deep bedrock

Example systems
Lower Saxony,
Germanya

Columbia River
flood basaltsb Palo Duro Basinc

German lignite
depositsd

South African gold
minese

Defining
characteristics

Shallow confined and
unconfined aquifers
with abundant
sedimentary OM,
fresh waters

Thick basalt deposits
with confined aquifers,
interbedded sediments,
fracture-based porosity,
and relatively fresh
NaCl-dominated fluids

Sedimentary
hydrocarbons interfacing
with aqueous brines,
organic alkalinity may
exceed bicarbonate
alkalinity

Extremely organic-rich
sediments at varying
stages of thermal
maturity, limited
porosity and
permeability

Deep (1.0–3.3 km)
fracture-based fluids
with thousand- to
million-year recharge
times

Temperatures Low to moderate Low to moderate Moderate to high Low to moderate Low to high
Recharge
timescale

Rapid to moderate Rapid to moderate Moderate to long Moderate to long Moderate to very
long

pH Circumneutral 7.5–8.5 shallow,
8.0–10.5 deep

5–8 6.8–7.2 7.4–9.4

H2 (mM) – Up to 0.06 – – 7.4
SO4 (mM) – Generally <0.5, but up

to 2
Up to 25 Up to 0.148 0.623

Total DIC (mM) – 0.125–2.800 – 19.8–43.6 0.09–2.40
δ13CCO2 (‰) –20 –30 to 20; mostly –10 – –14 to 20 –43 to –5
CH4 (mM) 0.00089–2.68000 Up to 160 Very high 0.010–0.100 0.026–8.800
δ13CCH4 –110 to 20 (mean –

70)
– Variable –81 to –71 –58 to –37

Short-chain
hydrocarbons
Σ(C2H6–

C4H8) (µM)

~3 (median) – High – <0.1–201
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DOC (mM) 0.17–0.30 0.16–0.39 0.05–14.75 0.19–0.95 n.d. to 0.410
Formate – – – 2.22–31.1 µmol/g sed 0.44–34.00 µM
Acetate – – 6.08 mM 1.7–8.5 µmol/g sedf 0.07–28.00 µM
Amino acids – – – – 0.0133–2.6700 µM
Typical cell
density (cells/mL)

103–108 103–105 High 107 10–105

Ranges are reported for the example systems, where there are data available. Ranges and qualitative measures are given where there is significant
variability reported or differences between reports. “–” is used to indicate no available reports.
sed = sediment.
a (229, 244, 245).
b (223, 246).
c (228, 232, 233).
d (228, 247).
e (248–250).
f Aqueous extracts.

501

Published online by Cam
bridge U

niversity Press



(254,255). Iron and sulfur oxidative metabolisms are also found where microaerophilic
conditions or sufficient nitrate concentrations exist (254,256). Sulfate is a less dominant
anion in continental settings relative to its ubiquity in the marine realm, but where
present, it can fuel significant populations of autotrophic and heterotrophic sulfate-
reducing bacteria (254,255).

Heterotrophic processes rely on the input of DOC from the mineralization of sediment-
ary carbon, aquifer recharge, or in situ microbial activity. In 85% of US aquifers, DOC
concentrations were <175 µM (median 42 and 58 µM). These ranges were not signifi-
cantly different between sedimentary and crystalline aquifers (ranging from 8 to 275 µM,
median 42 µM) (257). A more recent analysis of DOC concentration across UK aquifers
showed a range of 15–1550 µM (257 µM average) (226), although this sampling includes
evidence for significant contamination from agriculture and concomitant microbial respir-
ation that introduced OM. Locally, high concentrations of organic acids (up to 60 µM
formate) can be produced by microbial degradation of complex sedimentary OM, particu-
lar in shale horizons, which may then diffuse to more porous sediments, driving respiration
(258). For shallow aquifer systems, periodic environmental changes related to seasonal
shifts, water table fluctuations, or land use may transport both DOC and oxidants to depth,
driving increases in heterotrophic respiration (244,259).

Methane is a ubiquitous reservoir of organic carbon in sedimentary aquifers. Methane
concentrations are extremely variable but sometimes can reach extremely high values
(e.g. 0.9 nM to 2.7 mM in the Lower Saxony region of Germany (229) and 3.1 nM to
293 µM across Great Britain (230)). Sources of methane vary and include abiotic and
biotic sources, including microbial methanogenesis (including hydrogenotrophic, aceto-
clastic, and methyl fermentation) as well as thermogenic cracking of buried OM
(224,229,230). The isotopic composition of methane and co-occurring short-chain hydro-
carbons can be used to assess methane sources and suggest active microbial CO2 reduction
as the primary source in both German and British aquifers (229,230). High concentrations
tend to correlate to organic-rich, low-SO4 geological formations (229).

16.5.4 Hydrocarbon Reservoirs

Hydrocarbon reservoirs were among the earliest studied continental deep biospheres, with
experiments beginning in the 1920s by Colwell and D’Hondt (213). These systems are
characterized by large accumulations of liquid and gaseous hydrocarbons, providing
abundant sources of carbon and electron donors, but they tend to be correspondingly
depleted in oxidants and nutrients. Extremely high concentrations of volatile organic acids
(particularly acetate) comprise the majority of DOC in the water phases of hydrocarbon-
bearing basins, reaching concentrations of up to hundreds of mM (232,260,261).

The most significant metabolisms in hydrocarbon reservoirs are sulfate reduction,
methanogenesis, acetogenesis, iron reduction, and fermentation (260–262), the balance
of which is determined by electron acceptor supply. Spatially, biodegradation of oil is
concentrated at the oil–water interface and is limited by reservoir temperature, with limited
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activity being observed above 80�C (234,263). Anthropogenic influence through drilling,
water introduction, casing, and fracturing of reservoirs and the introduction of exogenous
microbes can significantly change in situ carbon cycling, most notoriously causing reser-
voir souring by stimulating sulfate-reducing populations in previously methanogenic
reservoirs. For more a complete description of carbon cycling and biodegradation in
hydrocarbon reservoirs, see the reviews by Larter et al. (263), Means and Hubbard
(232), and Head et al. (260).

16.5.5 Deep Coal Beds

Coal is formed through the burial and diagenesis of large accumulations of terrestrial plant
matter and therefore contains an extremely high organic carbon content. The bioavailablity
of this OM to deep subsurface microbes depends on thermal maturity and burial history,
which control the form and speciation of OM as well as the sterilization history of resident
microbial populations (235). Low-maturity (rank) coals are the most bioavailable and
actively accumulate biogenic methane. Aqueous extracts of low-maturity coals and lignites
produce extremely high concentrations of organic acids, including acetate, formate, and
oxalate in the range of 0.37–2.5.0 mg/g sediment (247,264). Yields of labile OM decrease
significantly with increasing thermal maturity (247,264).

Biogenic methane appears to universally accumulate in coals at<80�C (235). Microbial
processing of coal to methane is a multistep process that requires and supports an ecosys-
tem of microbes. First, organic polymers are fragmented into hydrocarbon intermediates,
followed by a secondary fermentation to methanogenic substrates like CO2, H2, organic
acids, and alcohols. These substrates then fuel acetoclastic, methylotrophic, and hydro-
genotrophic methanogens (235). The rate and efficiency of these processes in different
coal deposits and the accessibility of this methane for extraction are of considerable
economic importance. For a more complete review of coal bed biogeochemistry, see
Strapoc et al. (235).

16.5.6 Deep Bedrock

Deep crystalline bedrock-hosted biospheres stand in contrast to the aforementioned set-
tings in their constituent reservoirs and fluxes of carbon and energy. Here, inputs from the
surface are limited, with water residence times reaching millions to billions of years (e.g.
(211,265)) and sedimentary carbon (where present) is recalcitrant to graphitic carbon
(266). The largest pool of organic carbon is often as methane, although considerable
variability is present with depth and lithology (248,266). Porosity and permeability is
fracture based, adding a stochastic temporal dynamic to fluxes and mixing (265,267).

Hydrogen, methane, sulfate, and iron cycling drive primary production in deep crystal-
line bedrock settings. The relative importance of these processes is variable with depth,
host lithology, and fluid chemistry (221,248). Precambrian rocks, which constitute the
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best-studied deep crystalline biospheres, are prolific producers of hydrogen (up to mM
concentrations) (238,267), which can serve as the terminal electron donor for either sulfate
reduction or CO2 reduction-based metabolisms (249,265,268–272).

Analysis of subsurface genomes shows that enzymes of hydrogen metabolism are
overrepresented, emphasizing the potential dominance of this metabolic strategy (273).
Metagenomic surveys suggest that carbon fixation is performed primarily using the
reductive acetyl CoA pathway (256,271,272). Extreme metabolic flexibility has been
observed in the cosmopolitan subsurface dweller Candidatus Desulforudis audaxviator,
which can grow in near monoculture in isolated fracture systems (220) and has been found
globally (221,274).

Heterotrophic microbes and metabolisms have been found to dominate in some deep
crystalline settings, despite the apparent limited availability of exogenous carbon. Abio-
genic sources of methane in addition to limited populations of microbial methanogens
supply a significant flux of methane to fuel methanotrophic communities reaching tens of
mM concentrations (248,266,275,276). Methane cycling has been observed to be most
active at moderate depths (0.5–1.5 km) rather than in the deepest, most isolated settings
(248,266,277). Other sources of carbon for heterotrophic communities include biofilm-
based small organic compounds (265,278), free organic acids formed through fermentation
or abiogenesis, and ancient organic carbon (279).

Mineral and biofilm-based metabolisms may be particularly important in deep crystal-
line settings. Increasing evidence of extensive adaptation to life in biofilms is emerging
from these environments in the form of physical adaptations like grappling appendages
observed in putative Candidatus “Altiarchaeum” (256), as well extracellular electron
transport in subsurface isolates (280). In high-pH settings, autotrophic populations may
depend on solid carbonate minerals due to carbon speciation in ultrabasic environments
(269). Differences between the attached and planktonic communities have long been
observed in crystalline aquifer settings (221,277,281), often with orders of magnitude
higher cell densities present within the biofilms (278). The net suggestion of these
observations is that mineral and biofilm-based lifestyles are the norm for the deep contin-
ental subsurface, but are as yet undersampled. Efforts to cultivate and characterize the
metabolic capacities of these attached communities are underway.

16.6 Conclusion

16.6.1 Broad Similarities across Systems

The deep biosphere spans an incredible range of physical and chemical conditions. Despite
their heterogeneity, some broad similarities are present across systems. Organic carbon
concentrations reach their highest levels in regions that have large inputs from primary
producers, either presently (continental margins, shallow sedimentary aquifers, diffuse
hydrothermal vents) or in the past (hydrocarbon reservoirs, coal beds). In contrast, concen-
trations are lower in rocky areas with little sedimentary input and low amounts of
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chemolithoautotrophy in both continental (shallow igneous aquifers, deep bedrock) and
marine (ridge flanks, high-temperature hydrothermal vents) systems. Elevated concen-
trations of methane are related to the anaerobic breakdown of OM and associated metha-
nogenesis (sedimentary porewaters, sedimented hydrothermal systems, hydrocarbon
reservoirs, coal beds), but also due to hydrogenotrophic methanogenesis, with the hydro-
gen supplied by water–rock reactions (basalts) and from mantle inputs (hydrothermal
systems). Somewhat surprising is the persistence of some forms of organic carbon that
are generally thought to be readily accessible to microorganisms, such as acetate, in many
systems (sedimentary porewaters, shallow igneous aquifers, deep bedrock).

16.6.2 Limits to Knowledge and Unknowns

(1) Exchange/transformation of carbon between aqueous and solid phases. A characteris-
tic of subsurface environments is the ubiquitous presence of a solid phase, be it from
surface-derived particles or crystalline rocks. The exchange and transformation of
carbon between the aqueous and solid phases is therefore a major mechanism for control-
ling the form and fate of carbon in the subsurface. Major questions remain as to what
controls these exchanges and the degree to which they are catalyzed by minerals and
microorganisms.

(2) Bioavailability of organic carbon. Microbial respiration has been invoked to
account for the oxidation of OM that is millions of years old in sediments (67) and the
removal of oceanic dissolved OM that is thousands of years old in the basaltic basement
(135). Even 365 million-year-old shale carbon can be incorporated into cellular biomass
given the right conditions (282). These studies raise the intriguing question of whether all
OM is, ultimately, bioavailable give enough time and a favorable setting, or whether there
is some pool that will resist remineralization to CO2 under all circumstances. This question
ties directly into point (3) below.

(3) Controls on reaction rates of biogeochemical processes. The rate at which carbon is
transformed or remineralized is fundamentally important to understanding the short- and
long-term controls on the global carbon cycle and to identifying the distribution of
subsurface life. The processes occurring in the marine and continental subsurface are
inherently difficult to accurately mimic in laboratory experiments. While short-term experi-
ments can address the more reactive portions of the organic pool, our understanding of the
transformations that occur over century or millennium timescales, particularly when
uncultured microorganisms mediate the reactions, is more challenging but no less
important.

(4) Predictive ability. This review describes what types of carbon are present in distinct
geological, geochemical, and biological environments. Ultimately, however, the reverse is
a major goal: the ability to have such a fundamental grasp of the mechanistic controls on
carbon cycling that it is possible to accurately predict what types and abundances of carbon
will be present in a given system.
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(5) Characterization of OM. Despite decades of effort and major progress on several
fronts, the molecular structure of the vast majority of OM in the subsurface remains
uncharacterized. This gap in our knowledge will continue to inhibit our understanding of
carbon biogeochemical cycling in the subsurface.
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Questions for the Classroom

1 Continental and oceanic subsurface crystalline aquifers are similar in many ways.
How do the characteristics of carbon in, for example, the oceanic North Pond and the
continental South African gold mine systems compare and differ? Why?

2 Are the sites studied thus far representative of globally relevant locations where
carbon is processed in the subsurface? What locations or geological systems are
missing? Why have these not yet been studied? What are the prospects for studying
these locations?

3 What effect are humans having on carbon in the deep biosphere?
4 What are the next steps to improve our ability to computationally model different

forms of carbon in the subsurface and how they change in the subsurface?
5 Imagine a hypothetical microorganism that is capable of remineralizing any type of

nonbioavailable OM back to CO2. If this microorganism proliferated in subsurface
environments, what would the effect be?

6 Ultraviolet radiation can create radical species (compounds that are highly reactive
due to the presence of an unpaired electron) that can oxidize organic molecules via
random reactions. What is the likely effect of a change in atmospheric ozone concen-
trations, and therefore ultraviolet flux to Earth’s surface, on organic carbon
burial rates?
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