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ABSTRACT: 

The resistive dissipation of Alfven waves in magnetically structured media is 
examined within the framework of an analytically solvable model in plane geometry. A 
new class of rapidly oscillations solutions is found, for which the role of resistivity 
extends to the whole system. 

1. INTRODUCTION 

Alfven waves are the inevitable result of the response of a magnetized plasma to 
relatively slow perturbations. By travelling along field lines Alfv&i waves transport 
energy away from the source region. They might therefore constitute an ideal heating 
mechanism, if their energy could be damped at the appropriate rate where heat is 
needed. The dissipation of Alfv6n waves is tied to the formation of small spatial scales 
across the ambient field. In homogeneous fields the only transverse spatial scale is 
given by the wavelength in the direction normal to the field. To achieve an efficient 
dissipation, the ratio between perpendicular and parallel wavelengths has to be 
unacceptably small. Perfectly homogeneous systems, on the other hand, are not likely 
to be found in nature. 

If the system is non-uniform, the propagation and dissipation properties of Alfven 
waves may change dramatically, as a large number of studied has shown in recent years 
(Sedlacek 1971, Tataronis and Grossman 1973, Kappraff and Tataronis 1977, 
Hasegawa and Uberoi 1982, Heyvaerts and Priest 1983, Dewar and Davies 1984, Pao 
and Kerner 1985, Mok and Einaudi 1985, Lee and Roberts 1986, Einaudi and Mok 
1987, Davila 1987). 

Most of these studies model the non homogeneous nature of the problem in slab 
geometry by assuming that the magnetic field and/or the density depend on a single 
coordinate. They also adopt asymptotically flat profiles for the above quantities and 
assume that resistivity can be neglected altogether in the asymptotic regions. The 
solutions then describe the so-called resonant absorption phenomenon, consisting of an 
enhanced resistive dissipation localized in a narrow region around the point where the 
propagating frequency matches the local Alfven frequency. These models however, do 
not exhaust the possible solutions of the fourth-order resistive differential equation. 
Another class of solutions is investigated in the present paper and their relevance to the 
heating problem discussed. 
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2. BASIC EQUATIONS 

We shall work in a resistive MHD perturbative scheme in plane geometry and 
assume that the equilibrium quantities depend only on the x coordinate. The equilibrium 
field is supposed to have a constant direction that defines the z-axis. 

We adopt as basic scales: £, the typical scalelength of the equilibrium field, p (<») 
and B (oo), the asymptotic values of the density and magnetic field. All other scales are 
derived from them. 

The absence of structural variations with y and z in the equilibrium allows to 
write the perturbed quantities as: 

f(r, t) = f(x) exp [i (k y y + k z z - cot)] 

The linearized resistive MHD equations can be combined into a single fourth-order 
differential equation for the x-component of the velocity, w, that reads (Mok and 
Einaudi 1985): 

(ewV-k 2 ew = - ico _ 5 ° _ a ) { J _ [ (p o wV - k 2 p 0 w ] } " (1) 
S ( P O C A ) 

where 

e = p f t (k 2 c 2 - co 2 - i co k 2 /S) 
° z a 

k = ( k 2 + k 2 ) 1 / 2 ; 
y z 

S = x/Xa = (4 7i a /c 2 ) a ca(c*>) , 

o being the electrical conductivity andx r the resistive timescale. As usual, a subscript 
"o" indicates equilibrium quantities and a prime the x-derivative. 

All the quantities entering the equations must be understood as non-dimensional 
each having been normalized with respect to the appropriate scale. 

Since B Q and p 0 are asymptotically constant, in the asymptotic region the 
coefficients or equation (1) are constant and four independent solutions can be easily 
found. They read, 

w 1 2 ~ e ± ^ z X ; w 3 4 ~ e ± ^ X 

where 

. (2) 

We thus see that besides the well known "ideal" solutions (wj 7 ) , we have a 
couple of "resistive" solutions. One solution in each pair is well - behaved at x -» 
+ 0 0 , the other at x —> - «>. 

The solutions of the asymptotic fourth order resistive equation thus separate 
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naturally in two distinct classes. The asymptotically ideal solutions and their extension 
to the whole x-axis have been extensively studied in the past years. They give rise to 
the well-known "resonant" solutions, where resistivity plays a role only in the vicinity of 
the locations where © = 1 ^ ^ . 

On the other hand, the existence of "resistive" asymptotic solutions implies the 
possibility of finding complete solutions of equation (1) for which the resistive terms 
are important everywhere. The physical distinction between the two possible choices of 
asymptotic solutions becomes more apparent when we move into the non-homogeneous 
region. In the "ideal" case we essentially insist in keeping the system non-dissipative as 
long as possible. As a result the dissipation is concentrated in a thin boundary layer. By 
choosing the "resistive" asymptotic solutions we investigate the possibility of a more 
widespread influence of the resistivity in the non-uniform region. 

Equation (2) shows that the resistive solutions vary asymptotically on a spatial 
scale proportional to S" 1' 2. We notice that, if the complete solution (i.e. valid for every 
x) also varies on the same scale, the dominant resistive term of equation (2.1) ( ~ to 
w ? v ) is always comparable with the dominant ideal term ( ~ to w ), since each 
derivative introduces a factor proportional to (S" 1^ 2). 

Retaining only the dominant terms of equation (1), we finally arrive at the equation 
that governs the resistive solutions: 

(k 2 c 2 - co 2 ) w M =- ^ w , v . (3) 
z a S 

3. THE MODEL 

We assume for c 2

a (x ) the only quantity entering equation (3), the following form: 

c 2

a (x ) = l+Asech 2 (x) , (4) 

When A > 0 , such a profile may represent a configuration where the magnetic field 
stays essentially constant and the density shows a central depression (as in solar coronal 
holes) or the cut through a magnetic flux tube where the field intensity is considerably 
larger than outside. Introducing equation (4) into equation (3) we get: 

k A k 2 A 
(w 1 1 )" + i S [ ( c o - - ^ — ) — sech 2 (x) ] w M = 0 (5) 

c o c o 

Defining: 

tgh(x) , <)>(!;) = w"(x) 

k 2 i S k 2 A 
X2 = - i S ( c o - ) , v (v+l) = — • (6) 

G ) CO 

we obtain, from equation (5), 

( 1 - ¥) * J ( l + [ v ( v + l ) - ] <|>=0 (7) 
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It is possible to show that in order to satisfy the boundary conditions: <|) -> 0 
when I % 1 -» 1, v and X cannot be arbitrary but must satisfy: 

R e A , > 0 and v - X = n , n = 0, 1 ,2 . . . (8) 

The solution of equation (7) can then be conveniently written as: 

where d l t ^ 2 is the n-th Gegenbauer polynomial (Magnus et al. 1966). 
Recalling the definitions (6) we see that the conditions (8) completely determine the 

(complex) eigenvalues co as functions of k , A and S. General solutions of the 
dispersion relation, eq. (8), must be found numerically However, since S » l , 
approximate solutions can be found by expanding co in powers of (l^S)' 1^ 2. Retaining 
only the leading terms we get: 

co = \ {(1+A) 1 ' 2 - (1+i) (n+1/2) (A/2) 1^ 2 (1+A)" 1 / 4 (k^)" 1 ' 2 } (10) 

It can further be shown that Re X > 0 implies the existence of a maximum value of 
n , n m ? l x , that scales as n ~ A 1^ 2 (k z S ) 1 ' 2 . For a given set of parameters therefore 
only a finite number of solutions exist. 

The results of the numerical evaluation of the dispersion relation are shown in Fig. 
1 as solid lines. The open circles give the values predicted by the approximate formula, 
eq. (10). The agreement turns out to be remarkably good for the physically interesting 
range l^S > 10° 

Fig. L 

The damping rate, cchlkz, 
as a function ofkSfor 
different values of n. 
Solid line: numerical 
evaluation of eq. (8). 
Open circles: approximate 
expression, eq. (10). 
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Eq. (9) allows us to figure out the spatial structure of the eigenfunctions. The term 
(1- £ 2 ) r / 2 = [sech ( x ) ] A is a rapidly oscillating one, that quickly damps out for large 
values of x. The spatial scale of both the oscillation and the damping are proportional to 
A,"1 ~ S" 1/ 2, as expected. The polynomial term is a modulating factor that, for large n's 
becomes increasingly small in an increasingly wide region around x = 0. The 
combined effects of the two terms for large n's is to confine the oscillations in two 
symmetrical regions that move away from the origin as n increases. This behaviour is 
clearly born out by Fig. 2. 

~I 1 1 1 1 1 1 1 1 1 1 1 R—I R- -I 1 1 1 1 1 1 1 R-

2 -

-2 -

I I I 1 1 I I I I + — i — | - H — h H — h — i — i — i — i — i "r i—^ 

-4 -

Fig. 2. - The real part of the eigenfunction, eq. (9), for S = 104, kz = 0.1, 
A = 4. For this case nmax = 38. The broken line is the profile 
ofc2, eq. (4). 

a 
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4. CONCLUSIONS 

We have shown that consideration of non-ideal asymptotic boundary conditions 
gives rise to a new type of solutions for the resistively damped Alfv6n waves. These 
solutions are characterized by the appearance of very small scales in the x-direction. 
Their relevance to the heating problem can be appreciated by noticing that for each k z 

there are now n x solutions, whose superposition spans the entire non-uniform 
region. The spatial structure of the normal modes, previously discussed, makes likely 
an efficient resistive dissipation. Since the normal modes can be thought as the 
asymptotic state of the temporal evolution of an initial perturbation of arbitrary scale, we 
may interpret the appearance of the small scales as the result of the bilinear interaction of 
the initial perturbation and the non-uniform equilibrium structure. If this interpretation 
is correct, we expect that energy will cascade towards the small scales in the x-direction 
already in the linear phase. The timescale of this cascade can only be determined by an 
initial value approach. 

The preceding interpretation has been confirmed by a preliminary series of 
numerical experiments (Carbone and Malara 1989) that show the development of an 
energy cascade towards the small scales in the x-direction on times of the order of *-xa, 
the Alfven time of the large scales and the subsequent damping of arbitrary initial 
perturbations. The transient time, needed to establish the normal modes, turns out to be 
also of the order of few x . 

During the transient the spectrum of modes in the z-direction remains essentially 
unchanged, thus showing that the formation of the small scales across the field takes 
place well before the possible developpment of the non-linear mode-mode coupling 
along the field. 
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DISCUSSION 

UBEROI: The fourth-order differential equation of MHD resistive effects has been 
previously considered by many workes who found an absorption rate varying as S 1 / 2 , 
similar to your calculations. W ĥat is new in your work? 
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CHIUDERI: There are essentially two new features. Firstly, the choice of "resistive" 
rather than ideal asymptotic boundary conditions makes the dominant resistive term balance 
the dominant ideal term everywhere and not simply at the resonant layer. Secondly, we 
have worked out an analytical solution, showing that, even with a single k z , instead of one 
(or few) "resonant" region we have an extended region where large gradients of the physical 
quantities are present. 

BUTI: I believe that your model is restricted to classical resistivity. Turbulent resistivity 
could be more important Also one should consider a space-dependent resistivity consistent 
with the inhomogeneous magnetic field. Hasan has done this in connection with fusion 
plasmas and we are doing this exercise for the solar corona. Also, Alfv6n waves, in the 
presence of a driver, can become chaotic and lead to very efficient heating. 

CHIUDERI: We wanted to prove a point of principle. Therefore we used the simplest 
possible model. One could add other effects, but at the cost of not being able to find 
analytical solutions. Anyway, if dissipation works with classical resistivity it will work 
even better with an anomalous one. 

RYUTOVA: Did you estimate the energy density of the power, released in the region of 
n m a x where the scale in the x-direction is a minimum? Due to your cascade the heating 
power must have a very characteristic shape with a pronounced maximum. Calculations 
similar to yours show that the heating power grows with increasing n and at n m a x reaches 
the maximum, and then rapidly decreases. This effect can lead to strong heating and 
brightening of the region where n = n m a x . 

CHIUDERI: So far we wanted simply to invesigate the possible existence of solutions 
different from the resonant one. A more complete study of the energetics is in progress. I 
was aware of your results and I am very pleased at the similarity you pointed out 

RUDERMAN: How does the damping rate of Alv6n waves depend on the ratio of the 
magnetic field scale to wave length? 

CHIUDERI: There is no "wave length" along x, since the problem is non-homogeneous in 
that direction. As far as the z-direction is concerned the dependences are those shown in 
the paper. 

DAVILA: If I have understood your presentation correctly, the results you have presented 
demonstrate the existence of two new non-singular modes which exhibit resistive effects, 
and these are in addition to the better known singular modes of the ninth order dissipative 
wave equation. 

CHIUDERI: Yes, completely correct 
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