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First order coupled partial differential equations are ubiquitous in science and engineering and form 
the basis for a number of mathematical models. Examples range from economic modeling, predator-prey 
models and supersymmetric and string theory. In the context of high energy electron microscopy, these 
equations describe the dynamical scattering of amplitudes between different reciprocal lattice vectors and 
are known as the Darwin-Howie-Whelan (DHW) equations. These equations have a well known solu-tion 
which involves the calculation of a matrix exponential. With continual improvements in computer 
hardware, it has been possible to compute these exponentials for a large number of scattered beams re-
sulting in very accurate n−beam dynamical diffraction simulations. This has found application in various 
microscopy techniques such as Electron Back-Scatter Diffraction (EBSD), Electron Channeling Contrast 
Imaging (ECCI), phase contrast microscopy etc. However, with improvements in the microscope hard-
ware, new modalities, such as 4−D Scanning Transmission Electron Microscopy Diffraction Contrast 
Imaging (STEM-DCI), have emerged as new state-of-the-art tools in the field. These techniques routinely 
generate enormous amounts of data and require the availability of fast and efficient forward models to 
interpret contrast features seen in real complex microstructures. This necessitates the need to speed up the 
key step in the dynamical diffraction computations, namely the matrix exponentiation. The speed-up in 
computation time allows simulations for addition parameters to the 4−D STEM, such as time series, load 
series etc. In this contribution, we discuss a GPU based matrix exponentiation algorithm, targeted mainly 
for the STEM-DCI modality, but easily extendable to other diffraction modalities both in the backscatter 
and forescatter geometries. Comparisons with existing CPU based algorithms are made showing impres-
sive speed-ups. Finally, we will present results of STEM-DCI image calculations for a complex two phase 
γ − γ′ microstructure with misfit displacements at the interfaces.

The n−beam DHW equations for a single phase microstructure in the presence of lattice defects are 
given by a set of coupled first order differential equations, where the number n denotes the number of 
reflections. This equation is usually written in the concise matrix notation shown in eq. 1, where the 
modified wave function, Φ = [φg1 φg2 · · · ]

T is a column vector with the amplitudes of the electron wave 
functions for each reciprocal vector; the matrix A contains the geometry of the diffraction (diagonal sg 
terms) and coupling coefficients (off-diagonal qg terms). The true wavefunction is related to the modi-fied 
wavefunction through a simple Hadamard product (denoted by ◦) with a column vector phase factor,
Θ = [θg1 θg2 · · · ]

T. These coupled differential equations have a well known solution involving the expo-
nential of the structure matrix and the wavefunction at the crystal-vacuum boundary (Φ (0)) as shown in
eq. 1.

dΦ

dz
= iAΦ; Agg′ =

{
2πsg : g = g′

e
iαg−g′

qg−g′
: g 6= g′

; Ψ = Φ ◦Θ; Φ (z) = eiAzΦ (0) (1)

For parallel illumination, which is the case in a conventional transmission electron microscope (CTEM)
mode, the wavefunction at the boundary is given by Ψ (0) = eik·r. Thus the boundary condition for
the parallel illumination is given by Ψ ≡ [1 0 · · · ]T. For the converged probe in the STEM mode, the
electron wave functions in the crystal is given by a sum of plane waves with slightly different wave vectors;
Ψ (0) =

∑
k eik·r. Therefore, the electron wave function is computed for a set of different k vectors. For

accurate computations, the number of k vectors for the computations is of the order, nk ≈ 400. A naive
implementation of the STEM modality would increase the computation time to nk times compared to the
CTEM modality. This necessitates the case for smart approximations as well as massive parallellization
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of the exponential algorithm.
The structure matrix is split up as a sum of a wavevector dependent diagonal matrix,Akd and a “Hollow”

off-diagonal matrix, AH insensitive to the beam direction. For a small slice thickness, ε, the exponential
of the sum of these matrices can be approximated by neglecting the higher order terms in the Zassenhaus
expansion. These expressions are given by the following equations:

Ak = Ak
d +AH ; eiAkε = eiAk

d
ε
2 eiAHε eiAk

d
ε
2 . (2)

Thus, the exponential for different k vectors involves evaluating the exponential of off diagonal compo-
nents only once. The exponential of the diagonal matrix is trivial to evaluate. In our implementation, the
matrix exponential is calculated using the 9th order Taylor’s series expansion. The 9th degree polynomial
is split into three 3rd order terms with complex coefficients. Thus, only A2 and A3 need to be evaluated
which involves only 4 matrix products. These equations have been listed in [3]. In addition to the Taylor
series approximation, scaling and squaring is used to make the method numerically stable. Since matrix
multiplication is highly parallellizable on the GPU, the exponential was implemented as a series of matrix
multiplications.

eiAε = I +
9∑

n=1

An

n!
=

2∏
n=0

(
A3 + c3n+1A2 + c3n+2A+ c3n+3I

)
. (3)

Figure 1(a) shows the initial γ − γ′ microstructure with 50% contour surfaces for the four translational
variants in different color. The bright field image is shown in Fig. 1(b). 1(c) shows the annular dark field
image with the detector geometry shown in the figure. Finally, Fig. 1(d)-(f) show the full convergent beam
diffraction (CBED) pattern at location marked in 1(b).
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Figure 1. (a) Initial microstructure (b) bright field image (c) Annular dark field images with detector geometry and 
(d)-(f) full CBED patterns from locations marked in (b).
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