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Abstract

Denning a Radon-type integration process we extend the Alexandras', Fichtengolts-Kantorovich-
Hildebrandt and Riesz integral representation theorems in partially ordered vector spaces.

We also identify some classes of operators with other classes of operator-valued set func-
tions, the correspondence between operator and operator-valued set function being given by
integration.

All these established results can be immediately applied in C*-algebras (especially in W*-
algebras and AW '-algebras of type I), in Jordan algebras, in partially ordered involutory
(0*-)algebras, in semifields, in quantum probability theory, as well as in the operator Feynman-
Kac formula.

1980 Mathematics subject classification (Amer. Math. Soc.) (1985 Revision): 28 B 15; secondary
28 B 05, 46 G 10.

1. Introduction

The main object of this paper is to characterize the Alexandroff, Fichtengolts-
Kantorovich-Hildebrandt and Riesz celebrated integral representation theo-
rems, in partially ordered vector spaces.

The basic tool used in this approach is a good notion of a Radon-type
integration process based on the order structure of the corresponding vector
spaces.

For simplicity we confine our attention to finite partially ordered vector-
valued ex-measures (respectively measures) and uniform order convergence,
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188 Panaiotis K. Pavlakos [2]

but our process can be easily developed in the more general setting of locally
finite partially ordered group-valued <r-meausres (respectively measures) and
uniform order convergence almost everywhere, thus extending our results in
[50].

Following this pattern our results generalize previous ones of S. Bochner
[9], R. R. Christian [15], J. D. M. Wright [76-79] and S. Khurana [41], who
established their results in integrable spaces of real or complex-valued func-
tions with respect to partially ordered vector-valued er-measures or measures,
as well as of A. W. Wickstead [75] and R. Cristescu [17], who also denned
types of integrability concerning vector lattice-valued functions with respect
to vector lattice-valued er-measures.

In the construction of our integral, in contrast to various concepts of vec-
tor integrals in topological vector spaces of R. G. Bartle, N. Dunford and J.
Schwartz [5], R. G. Bartle [6], J. Batt and E. J. Berg [7], J. K. Brooks and
P. W. Lewis [12], J. K. Brooks and N. Dinculeanu [13], N. Dinculeanu [22],
I. Dobrakov [25, 26], N. Dunford [27], R. J. Easton and D. H. Tucker [28],
J. R. Edwards and S. G. Wayment [31], R. K. Goodrich [35], A. Shuchat
[64], K. Swong [68] and D. J. Uherka [72], there are no finiteness restric-
tions on variation or semivariation (respectively Gowurin, in terminology of
[28], [31], [35], [72] of the corresponding vector cr-measures (respectively
measures)).

On the other hand, J. J. Diestel and J. J. Uhl [21], N. Dinculeanu [22] and
A. Shuchat [64], have shown the existence of Banach lattice valued positive o-
measures (respectively measures) with unbounded variation or semivariation.

As has been indicated in [21], even if the vector a -measure (respectively
measure) is real-valued, it need not to be of bounded variation or semi-
variation.

Thus covering another aspect of the problem of integration of vector-
valued functions with respect to vector-valued cr-measures (respectively mea-
sures), we obtain integral representations analogous to those of the authors
mentioned previously.

In particular the examined cases under considerations give extensions of
the crucial concept of Radon measure in the sense of N. Bourbaki [11].

For other extensions of this very interesting concept of Radon measure (in
the sense of N. Bourbaki) see also R. Cristescu [16, 17] and L. N. Tsitsas
[71].

A cr-measure (respectively measure) on a er-algebra Ha[T) (respectively
algebra H(T)) of subsets of a space T with values in a partially ordered
vector space (p.o.v.s) Y, is a positive er-additive with respect to order con-
vergence (respectively finitely additive) set function m : Hg(T) -* Y (respec-
tively m:H(T)^Y).
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[3] Integral representation theorems 189

The defined integral has the form JTf(t)dm(t), where the function /
is defined on T and takes values in a second p.o.v.s. X. The integral has
values in the Dedekind completion V of a third p.o.v.s. V via a positive
bilinear separately order continuous function from XxY into a forth p.o.v.s.
Z (denoted by " • " ) .

In Section 2 we summarize some general definitions and preliminary re-
sults which will be needed for the later development.

In Section 3 we define the p.o.v.s. M(T, X) (respectively Mt(T, X)) of
i/CT(r)-measurable (respectively totally i/( jT)-measurable) functions from T
into X and derive some approximation-type results in those spaces.

Next (Section 4) we develop an integration process for functions in
M(T, X) (respectively Mt(T, X)) with respect to a cr-measure (respectively
measure) m and establish the continuity of this integral with respect to uni-
form order convergence on the p.o.v.s. ^(T, X) (respectively Mt(T, X))
of //(7(r)-integrable (respectively totally #(7>measurable) functions, which
contains the i/(7(r)-elementary integrable (respectively H(T)-simple) func-
tions.

It is worth noting that S. Mazur and W. Orlicz [46] and D. Przeworska-
Rolewicz and S. Rolewicz [53] have shown that the Riemann, Lebesgue or
Bochner integrals do not behave well in some metric linear lattices. So those
integrals are not continuous for the topology of uniform convergence on the
space of simple functions.

N. Dunford has defined in [27] a spectral integral which also has the sur-
prising and unexpected property of being discontinuous with respect to the
topology of uniform convergence on the space of simple functions.

Section 5 treats Fichtengolts, Kantorovich and Hildebrand type theorems
for some classes of operators defined on the space S?X{T, X) (respectively
Mt{T, X)) and having values in Y.

Up to this point we have considered only order structure on the vector
spaces X, Y, Z and no structure for the space T.

So in Sections 6, and 7, T (respectively X) is endowed with Hausdorff
(respectively norm) topologies and Y, Z are p.o.v.s.

We compare notions of measurability with total boundness or continuity
in M(T,X) (respectively Mt(T,X)).

We also examine relations between (TMO)- and (wo)-continuous linear op-
erators with domain a subspace Q(T, X) of F(T, X) equipped with topol-
ogy TU of uniform convergence and range Y.

We recall that classes of "topological-order" continuous linear operators
have been extensively investigated in normed lattices by L. V. Kantorovich,
B. Z. Vulikh and A. G. Pinsker in [37], [38], [74].

Further we examine two distinguished cases for T and establish general
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forms of the following famous theorems in analysis.
The Alexandroff representation theorem (Section 8): If T is a normal

topological space, U a positive (fuo)-continuous linear operator with do-
main the partially ordered normed space Ctb{T, X) of totally bounded con-
tinuous functions from T into X and with range Y then

U(f)= f f(t)dm(t),
JT

for a unique operator-valued Borel measure m.
The Riesz representation theorem (Section 9): If T is a locally com-

pact topological space, U a positive (Tuo)-continuous linear operator with
domain the partially ordered normed space Co0(T, X) of continuous func-
tions with compact support from T into X and with range Y then U{f) =
jTf(t) dm(t), for a unique operator-valued Borel c-measure m.

We use these representation theorems to identify some classes of (TUO)-

continuous linear operators from Ctb{T, X) (respectively C00{T, X)) into
Y with other classes of operator-valued Borel set functions, the correspon-
dence between operator and set function being given by integration.

Next, if Jf is a partially ordered normed algebra and Y a partially or-
dered algebra, it makes sense to consider operators from Ctb(T, X) (respec-
tively C00(T, X)) into Y which are not only (Tuo)-continuous and linear
but which also preserve multiplication.

Section 10 is devoted to answering the natural question: how the additional
property of these operators being multiplicative is reflected in the representing
^-measures (respectively measures)?

We conclude the paper with significant and important applications in C*-
algebras, especially in W* -algebras and in A W* -algebras of type I [10, 18,
23, 24, 55, 80, 81], in Jordan algebras [2, 32, 65-67, 70, 82] in O*-algebras
[59, 61], in semifields [3, 44, 45, 56-58, 60, 62], in quantum probability
theory [14, 18-20, 29, 30, 36, 51] as well as in the operator Feynman-Kac
formula [34, 42, 43].

The subject of a-measures (respectively measures) and integrals taking
values in partially ordered vector spaces of operators acting on a Hilbert
space H has received much attention in the recent mathematical and physics
literature [8, 14, 18-20, 29, 30, 36, 51, 79].

Thus our results can be immediately applied to integrating operator-valued
measurable functions with respect to positive operator-valued (7-measures
(respectively measures) acting on H.

In particular the results of Section 10 answer the question when the rep-
resenting (7-measures (respectively measures) are projection-valued.

On the other hand our results have important applications to semifield-
valued tr-measures (respectively measures) and integrals.
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This very interesting concept has been denned and studied by the Russian
school of Sarymsakov, Benderskil, Cilin, Rubstein, Halikulov, Kuckarov and
others in a series of papers [44, 45, 56-58, 60, 62].

The class of semifields is much wider than the class of topological semi-
fields [3], and it is contained in the class of Ka-spaces.

As is well known, many attempts have been made to use the setting of
p.o.v.s. in the theory of the mathematical foundation of quantum mechanics
(see, for example, [36]).

To this end we describe in Section 11 how the presented results can be
directly applied to a state space of quantum mechanics, integrating vector-
valued random variables in a sense similar to that of E. Rowecka [54] or H.
Umegaki and A. T. Bharucha-Reid [73] with respect to an operator-valued
instrument (respectively observable).

The fruitful concept of instruments has been introduced by E. B. Davies
and J. T. Lewis in [20], generalizing that of observables in a statistical system
of quantum probability theory. Accordingly there is a canonical procedure
for associating an observable to an instrument. It is easily verified that an
instrument (respectively observable) is a cr-measure (respectively measure)
taking values in a certain partially ordered Banach space of linear operators.

On the other hand, the main problems in mathematical physics concerning
a perturbation formula of the Feynman-Kac type for the solution semigroups
of some initial-value problems lead to the development of an integration
theory which does not presuppose finite variation or semivariation of the
corresponding measures (respectively a-measures) (cf. [42, 43]).

The resulting notions and techniques (based on the partial ordering) can
be immediately applied to express the superpositions of some semigroups of
operators, including those which describe the motion of quantum mechanical
particles in a potential force field.

Now another available application of our methods employed here seems
to be in neutron diffusion theory. In that direction the reader may consult
the excellent treatise of P. M. Morse and H. Feschbach [48].

We refer to [1, 10, 22-24, 34, 37, 52, 55, 63, 69, 74, 83] for general
references about p.o.v.s., measure theory, normed algebras and semigroups
of linear operators.

2. Notation and terminology

We now give the basic properties of a p.o.v.s. that will be needed in the
subsequent development.

Throughout this paper X will denote a p.o.v.s. over the real field R with
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positive cone X+ . We call X positively generated if X = X+ - X+ .
Let (xs)S€ik be a net in X and x eX. We say that (xs)S€A is increasing

(respectively decreasing) if xs > xg, (respectively xs < xgl) whenever 8 >
8'. The notation xs ] x means that the net {xs)S€A is increasing and
x = sup{xs: 8 e A}, and similarly for xs { x. We say that (xs)d€A order
converges to x (xs -^ x or o-limxs = x) if there exists a decreasing net
(yd)S€& such that ys | 0 and -ys < xs - x < ys , for all 8 € A. Recall that
this kind of order convergence does not in general coincide with that defined
in [50], even if X is a vector lattice [49]. For details about various other
concepts of order convergence see [47] and [49].

We call X almost Archimedean (respectively Archimedean) if -ey <
x <ey (respectively ex < y) for some y & X+ and all real numbers e > 0
implies x = 0 (respectively x < 0) .

We call X monotone complete (respectively a-complete) if every ma-
jorised increasing net (respectively sequence) in X has a supremum in X.
We say that X has the diagonal property if whenever {xm n: (m, n) €
NxN} Q X with o-limnjcm „ = xm e X, for each m e N and if o-limjcm = JC
then there exists a strictly increasing sequence {nm: m e N} Q N such that

m,nm

Let Y be another p.o.v.s. A linear operator F: X ^ Y is order (respec-
tively ff-order) continuous if F(xs) ^* 0 (respectively F{xn) -^ 0) whenever
(xs)S€A (respectively (xn)n€ti) is a net (respectively sequence) in X such that
xs -2» 0 (respectively xn A 0) .

We denote by Lr(X, Y) the p.o.v.s. of regular operators from X into Y.
By definition,

Lr(X, Y) := {F: X -» Y: there exist positive linear operators Ft:: X -» Y,

1 = 1,2 with F = Fx - F2}.

Also we put

Ly(X,Y) (respectively La(X,Y))

:= {F : X —• Y : there exist positive order (respectively cr-order)

continuous linear operators Ft: X -> Y,

i = 1, 2 with F = Fx = F2}.

In particular we write X~ , X~ , X~ for Lr{X, R), Ly(X, R), Lg{X, R).
Let Z be a p.o.v. subspace of X~ separating points of the positively

generated p.o.v.s. X. Then the canonical map /: X —> i(X) c Z~ , x •-»
i(x) := Fx (Fx(f) = f(x), for every f e Z) is an algebraic and order
homomorphism of X into the p.o.v. subspace i{X) of Z~ ^ Z ~ . When
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Z = X~ (respectively Z = AT~) i also satisfies the following property: 0 <
i(xs) T Kx) (respectively 0 < i(xn) t i(x)), whenever (xs)S€A (respectively
{xn)n€N) is a net (respectively sequence) in X with 0 < xs t x (respectively
0 < xn T x), x e X. In this case we identify X with its image i(X) and so
X is considered as a p.o.v. subspace of Z~ . We call X order reflexive (or
perfect) if Z = X~ and the embedding / is onto, that is, when X = (-JT~)~ .

As is well known, even if X is a Banach lattice the concepts of topological
reflexivity and order reflexivity are not equivalent.

If U e Lr(X, Y) the restriction of the algebraic dual Ul of U to Y~
will be denoted by U~ and is called the order adjoint of U. Clearly U~ e
Lr{Y~,X~).

Also it is easily verified that if X, Y are positively generated and U €
Ly(X, Y) (respectively U e La(X, Y)) then the restriction U' of U~ to
Y~ (respectively Y~) maps Y~ (respectively Y~) into X~ (respectively
x;). In particular U € Lr(X, Y) implies ([/')' := U" e Ly<XX~)~ , (Y^)
and if Y~ separates points of Y then U"{x") = (U(x))" with x" the image
of x under the canonical map of X into (X~)~ .

The following simple facts concerning "order duals" of p.o.v.s. will prove
to be useful later.

If X is positively generated and Y monotone complete (respectively
cr-complete) then Lr(X, Y), Ly{X, Y) (respectively Lg(X, Y)) are also
monotone complete (respectively <r-complete).

A Dedekind completion for X is a pair (;, X), where X is a Dedekind
complete vector lattice and j : X —* X is a linear injection with the properties

(a) for each x e l , x > 0 if and only if j(x) > 0 (j is bipositive);
(b) {j(x): x € X with j(x) <y}^*Z and y = sup{j(*): x e X with

j(x) < 9} for every y £ X;
(c) j(x) = sup{j(xq): q e Q) in X, whenever {xq : q e Q} C X with

x = sup{x9 : q e Q} in X.
Moreover, a positively generated p.o.v.s. X possesses a Dedekind com-

pletion if and only if X is Archimedean. For a proof of this last result see
[52, Proposition 1.19].

Next, let X be a partially ordered algebra that is a positively generated
p.o.v.s. which is at the same time an algebra such that x • y > 0, whenever
x, y e X with x, y > 0 and let Z be a partially ordered subalgebra of
X~ separating points of X.

Suppose also that the multiplication in X is separately order continuous.
Then the canonical embedding /: X —> ; ' ( I ) c Z ~ Q Z~ is an algebraic

and order isomorphism of X onto the partially ordered subalgebra i(X) of
Z~ if we endow Z~ with the following product, under which Z~ becomes
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a partially ordered algebra. Given F, G e Z~ , let F • G be defined by
(F-G)(u) = F-(G-u), u&Z, where (G-u){a) := Gua and ua(x) := u(a-x),
for all a, x e X.

3. Partially ordered vector-valued measurable functions

In this section Ha(T) (respectively H{T)) will denote a tr-algebra (re-
spectively algebra) of subsets of T and X a positively generated p.o.v.s.

We also denote by F(T, X) the p.o.v.s. of functions from T into X,
where the vector and ordering operation are denned pointwise. We identify
X with the subspace of F(T, X) of all constant functions.

A net (fd)de& pointwise oconverges to / € F(T, X) on T (p-limfs = f
on T) if o-\imfs(t) = f(t), for every t e T. It is well known that there exist
p.o.v.s. F(T, X) in which o-convergence does not imply ^-convergence and
conversely. However the following theorem can be easily verified.

THEOREM 3.1. Let X be monotone complete {respectively a-complete),
(fs)SeA (respectively (fn)n€N) a net (respectively sequence) in F(T,X) and
f e F(T, X). The following assertions are equivalent:

(i) o-lim fs= f (respectively o-lim fn = f);
(ii) /7-lim fs = f (respectively /7-lim fn = f) on T.

On the other hand, a net (^)^€ A in F(T, X) uniformly o-converges to
/ 6 F(T,X) on T(u-limfs = f on T) if there exists a decreasing net

m X s u c h t l i a t

-us < fs(t) - f(t) <us, for all (S, t) e A x T and us | 0.

Now let E(T, X) (respectively S(T, X)) be the set of /fCT(r)-elementary
(respectively H(T)-simple) measurable functions from T into X. By defi-
nition,

E(T, X) := {/ 6 F(T, X): there exists a countable partition (An)neJi of T

in Ha(T) such that f(t) = xn, for every t € An, xne X, n t N}

(respectively S(T, X) := {/ e F(T, X): there exists a finite partition of T
in H(T) such that f(t) = xt, for every t e Al,, xt e X, i = 1, 2 , . . . , n}).

Clearly, given / e E(T, X) there exists a sequence (gn)neN in S(T, X)
such that p-\\m gn = f on T.

Let / G F(T,X); f is //ff(r)-measurable (respectively totally //(Im-
measurable) if there exists a net (fs)s&6k in £ ( r , X) (respectively S(T, X))
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such that u-limfg = / on T. This net will be called an approximating net
for / .

We put

M(T, X) := {/ e F(T, X): / is Ha{T)-measurable}

(respectively Mt(T, X):= { / e F(T, X): / i s totally #(7>measurable}) .
Clearly M(T, X) (respectively Mt(T, X)), E(T, X) and S(T, X)
are p.o.v. subspaces of F(T, X) with S(T, X) Q Mt(T, X), S(T, X) g
E(T,X)QM(T,X).

The following theorems concern the space M(T, X), but similar results
are also valid for the space Mt(T, X).

The proof of the next theorem is similar to that of [50, Theorem 2.2]
(recall that X is of countable type if for every decreasing net (^),56A in X
with xs | 0 there exists an increasing sequence {dn : n e N} Q A such that

V0).

THEOREM 3.2. Let X be a vector lattice of countable type and feM(T,X).
Then there exists an increasing {respectively decreasing) sequence (fn)neN (re-
spectively (gn)neN) in E(T, X) with w-lim^ = / (respectively w-limgn =
f) on T.

THEOREM 3.3. Let X beap.o.v.s. with diagonal property and of countable
type.

(i) / / {fs)Se& is a net in M(T, X) such that u-\imfs = / on T then
feM(T,X).

(ii) For every f e M(T, X) there exists a sequence (hn)n€N in S(T, X)
such that p-Mra hn = f on T.

PROOF, (i) This can be proved similarly to [50, Theorem 2.3(i)].

(ii) Let / G M(T, X). By definition there exists a sequence (fn)n€N in
E(T,X) and (xn)nefi in X such that

-xn < fn(t) - f(t) <xn, for all n e N and t e T.

On the other hand, given t e T there exists (yk n(t)),k n ) e N x N a double
sequence in X such that yk n(t) I 0(k —* oo, « e N) and

-yk,n^<sk,n(t)-fn(t)<yktn(t),

for all (k,n,t)eNxNxT with (gk n),k n ) e N x N a double sequence in
S(T,X).
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Now by the diagonal property for every t e T there exists a sequence
(kH(t))neJt in N (*„(/) < kn+l(t),n e N) such that

and -

for all (p, t) G N x T. Hence p-\imgn = f on T for the sequence {gn)nai

in S ( 7 \ AT) defined by gn(t) := g ^ ^ O , * e 7 \ n e N.

4. Integration

In what follows Z will denote a monotone complete p.o.v.s., V the
monotone complete (so Archimedean) p.o.v.s. ordered by the generating cone
Z + (V = Z + - Z+) and F the Dedekind completion of V.

Assume also in this section that X is positively generated and there exists
a bilinear, positive and separately order continuous function from X x Y
into Z which we shall denote simply by juxtaposition.

Let feE(T,X) (respectively S(T, X)). Then there exists a countable
(respectively finite) partition {An)nen (respectively {At)l<i<n) °f T by el-
ements of the cr-algebra (respectively algebra) Hn{T) (respectively H{T))
such that / ( / ) = ai - bi, whenever t e Ai with ai, bt > 0, i e N (respec-
tively i = I, 2, ... , n).

Let also m: ^ ( T ) -> 7 (respectively m: H(T) ^ Y) be a tx-measure
(respectively measure) on Ha{T) (respectively H{T)), that is, a positive and
cr-additive (respectively finitely additive) with respect to order convergence
in 7 set function on Hg{T) (respectively H{T)) with /n(0) = O. Then /
is H(a(T), w)-integrable on T if o-limX)"=i a, • m(At) and olimX)"=1 *, •
m(Ai) exist in Z + . In this case we put /r/(f)rfm(f) := o-lim£"=1 (a,.-£>,.)•
w(^, ) , (respectively / r / ( 0 rf/»(0 = E-= i ( a , " */) • m(A

t))
 a n d

I{T,X):= lfeE(T,X): there exists f f(t)dm(t)\ .

Obviously, I(T, X) is a p.o.v. subspace of £ ( 7 \ A") and S{T, X) Q

It is not difficult to verify that the integral fTf{t)dm(t) is well defined,
is dependent only on / and is independent of the particular way in which
/ is written as an //(T(r)-elementary (respectively //(r)-simple) function
in E{T, X) (respectively S(T, X)). Moreover it is independent of a rear-
rangement of the series (S"=1(a, - bt) • w(/4;))n€N .

We set fAf{t)dm(t) := JTcAf{t)dm{t), whenever / 6 I(T, X) (re-
spectively S(T, X)) with cA the characteristic function of A in Ha(T)
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(respectively H(T)) and cAf the AT-valued function from T denned by
t h e f o r m u l a cAf{t) := cA(t)f{t), t e T .

The following theorem can be easily proved.

THEOREM 4.1. (i) The integral operator I: I(T, X) -» V {respectively
I : S(T,X) -» V) with I(f) := fTf(t)dm(t), f e I(T, X) (respectively
S(T, X)) is positive, linear and (uo)-continuous (o-liml(fs) = 0, whenever
(fs)SeA is a net in I(T, X) (respectively S(T, X)) with u-\imfs = 0 on
T).

(ii) $Tf(t)xdn(t) = !Tf(t)dnx(t), where fi: Ha(T) - X~ (respec-
tively n: H(T) —> X~) is a a-measure (respectively measure) and nx: Ha(T)
-> K (respectively nx: H(T) -* K) with fix(A) := n(A)(x), whenever A G
Ha(T) (respectively A e H(T)), f e I(T, R) (respectively f e S(T, R)),
xeX+.

(iii) The set function v: Ha(T) -* V (respectively w: H(T) -• V) with
v(A) := fAf(t)dm(t) (respectively w(A) := fAf(t)dm(t)) for every A 6
Ha(T) (respectively A e H(T)) is a a-measure (respectively measure), when-
ever feI(T, X)+ with f o-bounded (respectively f e S(T, X)+).

THEOREM 4.2. Let (fs)SeA be an approximating net in I(T, X) (respec-
tively S(T,X)) of f e M(T,X) (respectively f e Mt(T,X)). Then
u-lim(ff - fy) = 0 on T and the net (fTfs(t)dm(t))SeA is o-fundamental
in V.

Using similar arguments to those in the proof of [50, Theorem 3.10] we
obtain a proof of the preceding statement.

THEOREM 4.3. Let f e M(T, X) (respectively f e Mt(T, X)). Suppose
that (fg)SeA is an increasing approximating net in I(T, X) (respectively
S(T,X)) of f. Then there exists o-limJTfs(t)dm(t) in V.

PROOF. A proof is similar to that of [50, Theorem 3.11].

COROLLARY 4.4. Let f e M(T, X) (respectively MT(T, X)). If(fs)S€&,
(ge)0€e are increasing approximating nets in I(T, X) (respectively S(T, X))
of f, then o-limfTfs(t)dm(t) = o-limfTgg(t)dm(t) in V.

THEOREM 4.5. Let f e M(T, X) (respectively Mt(T, X)) and ^
an approximating net in I(T, X) (respectively S(T, X)) off. Then there
exists the o-limJTfs(t)dm(t) in the Dedekind completion V of V.
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PROOF. Recall that V is Archimedean and may be identified with a.p.o.v.
subspace of its Dedekind completion V. By Theorem 4.2 (fTfs(t)dm(t))Seii

is o-fundamental in V and hence oconverges in V.

COROLLARY 4.6. Let f e M(T, X) {respectively Mt(T, X)). If (fs)Se&

and (gg)eee are approximating nets in I(T, X) (respectively S(T, X)) of
f, then o-limJTfs(t)dm(t) = o-\imJTgg(t)dm(t) in the Dedekind comple-
tion V of V.

The preceding results lead to the following definitions. The (Ha(T), m)-
(respectively (H{T),m)-) integral of an element / in M(T, X) (respec-
tively Mt(T,X)) is defined to be the element fTf(t)dm(t) of V with
JT f{t) dm(t) := o-lim fT fs{t) dm{t), where (fs)ieA is an approximating net
of / in I(T, X) (respectively S(T, X)). We also denote by &1{T, X) the
set of (Ha{T), m)-integrable functions / in M(T, X). Clearly S?X{T, X)
is a p.o.v. subspace of M(T, X) and Mt{T, x) Q5?\T,X).

By Corollary 4.6, JTf(t)dm(t) does not depend on the choice of an ap-
proximating net (f#)geA in I(T, X) (respectively S(T, X)). Further we set
jAf(t)dm(t) := fTcA(t)f(t)dm(t) whenever / e &\T, X) (respectively
Mt{T, X)) and A e Ha(T) (respectively A e H(T)).

On the other hand the propositions and theorems of the (Ha{T), m)-
(respectively (H(T),m)-) integral on the p.o.v.s. I(T, X) (respectively
S(T, X)) remain also valid for p.o.v.s. &l(T, X) (respectively Mt(T, X)).
In particular we state the following monotone-type convergence theorem. The
proof is similar to that of [50, Theorem 3.13].

THEOREM 4.7. Let (fn)n€N be a sequence in Sfx(T,X) (respectively
Mt(T,X)) such that

(i) there exists x e X with 0 < fn+l(t) < fn(t) < x, for all t e T,
neN;

(ii) there exists a sequence (An)neN in Hg(T) (respectively H(T)) with
M-limy^ = 0 on each An, n e N, and o-limm(T - An) — 0;

(iii) V has the diagonal property.

Then o-\imfTfn(t)dm(t) = 0.

5. Fichtengolts-Kantorovich-Hildebrandt-type theorems

Let X, Y be positively generated p.o.v.s. with Y monotone complete.
Recall that a linear operator U: Q(T, X) -> Y, with Q(T, X) a p.o.v.
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subspace of F(T,X), is (wo)-(respectively (po)- or (oo)-) continuous if
o-limU(fs) = 0 whenever (f6)s&A is a net in Q(T, X) with u-hmfs = 0
on T (respectively p-limfs = 0 on T or o-\imfs = 0).

We denote by Lr(Q(T, X),Y)UO (respectively Lr(Q(T, X), Y)po or
Lr(Q(T, X), Y)oo) the p.o.v.s. of all differences of positive (wo)-(respec-
tively (po)-or (oo)-) continuous linear operators from Q(T, X) into Y.

THEOREM 5.1. Let U: Mt(T, I ) - > 7 bea (uo)-continuouspositive linear
operator. Then there exists a unique measure m : H(T) -> Lr(X, Y) such
that U(f) = fTf(t)dm(t), for every f in M,(T, X).

PROOF. Define the measure m: H(T) -> Lr(X, Y) by the formula

m(A)(x) := U(cAx) for all A e H(T) and x e X.

Now let / e Mt(T, X) and take an approximating net (fs)S€A of / in
S(T, X). Since U(fs) = fTf6(t)dm(t) for every 8 e A we get

U(f) = o-limU(fs) = olim f fd(t)dm(t) = f f(t)dm(t).
JT JT

The uniqueness of m is an evident fact.

Similarly we can prove

THEOREM 5.2. Let U :5?l(T, X) -• Y bea (po)-continuouspositive lin-
ear operator. Then there exists a unique a-measure m: Ha(T) -> Lr(X, Y)
such that U(f) = JTf(t)dm(t), for every f in S?X(T, X).

Next let us denote by O(H(T), Lr(X, Y)) the p.o.v.s. of all differences
of Lr(X, 7)-valued measures on the algebra H(T).

The following assertion is an immediate consequence of Theorem 5.1.

THEOREM 5.3. Lr(Mt(T, X), Y)uo is isomorphic to O(H(T), Lr(X, Y)).

6. Approximation and measiirability in partially ordered normed spaces

In this section, X will denote a partially ordered normed space, || • || the
corresponding norm, T the norm (strong) topology of X and Ha(X) the
a-algebra of Borel subsets of X.

An element e > 0 of X is called an orderunit norm if ||x|| < k implies
- k e < x < k e , k > 0 , x e X .
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The norm || • || is order continuous (respectively cr-continuous) on X if
o-lim^ = x (respectively o-limxn = x) implies o-limx^ = x (respectively
o-limxn= x) whenever (xs)SeA (respectively (xn)nefi) is a net (respectively
sequence) in X and x e X.

The norm || • || is called absolute monotone on X if —y < x < y implies
11*11 < \\y\\, whenever x, yeX.

Let Ha{T) be a tr-algebra of subsets of T and m: Hg{T) -» Y a a-
measure. A function f:T—>X is called {Ha(T), w)-partitionable if for
every neighborhood G of 0 there is a countable partition (An)neN of T in
Ha{T) such that m(T-\JnefiAn = 0 and f(An)-f{An) Q G, for aU n e N.

Also / is called totally bounded (respectively (Ha(T), Ha(X))-measuT-
able) if its range f(T) is a totally bounded subset of X (respectively f~l(F)
&Ha(T), whenever F e Ha(X)).

THEOREM 6.1. Let f:T^>X be an (Ha(T), Ha(X))-measurable func-
tion. Assume that X is almost Archimedean, separable and possesses an
orderunit norm e. Then f 6 M{T, X).

PROOF. This can be proved analogously to [50, Theorem 4.1].

THEOREM 6.2. Let f e M(T, X). Assume that X is almost Archimedean
and the norm \\-\\ is absolute monotone. Then

(i) / is (Ha(T), m)-partitionable,
(ii) / is {Ha{T),Ha{X))-measurable.

PROOF. This is proved similarly to [50, Theorem 4.2].

THEOREM 6.3. Let f e Mt(T, X). Suppose that the norm \\ • || of X is
absolute monotone and order continuous. Then f is totally bounded.

PROOF. There exists nets (fs)S€A and (xs)SeA in S(T, X) and X+, re-
spectively, such that -xs < fs(t) - f{t) < xs , for every t e T and xs I 0.
Hence the assertion follows from [40, page 70].

THEOREM 6.4. Let f:T^X be a totally bounded and (Ha(T), Hn{X))-
measurable function. Assume that X is almost Archimedean and has an
orderunit norm e. Then f e Mt(T, X).

PROOF. Clearly, given n e N there exist a finite partition {At), i =

1, 2, . . . , kn of T and a sequence (/„ := £*!, cAat)n&i in 5(7", X) such
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that -\e < fn{t) - f(t) < \e, whenever ( n , ( ) e N x r . Consequently, the
desired result follows.

We shall now turn our attention to the following cases. Let T be a
normal (respectively locally compact) topological space and Ctb(T, X) (re-
spectively C^(T, X)) the partially ordered normed space of continuous to-
tally bounded (respectively with compact support) functions from T into
X endowed with pointwise ordering and uniform topology TU . In par-
ticular we write Ctb{T) (respectively CW(T)) for Ctb(T, R) (respectively

THEOREM 6.5. Suppose that X is almost Archimedean and has an or-
derunit norm e. Then

(i) for every f in Ctb{T, X) (respectively C00(T, X)) there exists a

sequence (gn := £*!, ̂ , ) n e N ^ith ft e Ctb(T) (respectively ft e C00(T)),
e

t: e X, i=\,2,... ,kn, and n € N such that w-lim gn = f on T.
(ii) Ctb(T, X) g Mt(T, X) (respectively C00(T, X) Q Mt(T, X)).

PROOF, (i) Given / e Ctb(T, X) (respectively / 6 C00(T', X)) and n e
N there exist x. e X, i - 1, 2, ... , kn, with

where Bl.n(xi) denotes the open sphere with center x( and radius 1/n.
Consider a continuous partition of unity (f() subordinated to the preced-

ing finite open covering of T, i = 1,2, ..., kn.
Therefore

whenever t e T, which implies the desired result.
(ii) The assertions follow from Theorem 6.4.

COROLLARY 6.6. Suppose that X is almost Archimedean and has an or-
derunit norm e. Then

(i) for every f in Ctb(T, X)+ (respectively C00(T, X)+) there exists
a sequence (gn := £*; , / , • x,)nGN with ft e Ctb(T)+ (respectively f, e
C00(T)+), xteX+, i = 1, 2,..., kn, and n e N such that

w-lim gn — f on T.

(ii) C(T, X)+ Q Mt(T, X)+ (respectively C00(T, X)+ Q Mt(T, X)+).
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7. Some classes of operators in partially ordered normed spaces

Let A' be a partially ordered normed space and Y a p.o.v.s. A linear oper-
ator U: X —> Y is said to be (ro)-continuous if o-lim U{xs) = 0 whenever
(xg)g€A is a net in X that t-converges to 0 {x-\\mxd = 0).

We denote by Lr(X, Y)xo the p.o.v.s of all differences of positive [ro)-
continuous linear operators from X into Y. In particular we write X~ for
Lr(X,R)t0.

As is easily verified, if U e Lr(X, Y)xo and X, Y are positively generated
then U' (the restriction of U~ on Y~) maps Y~ into X~. Moreover
U" : (X~)~ -> (Y~)~ is order continuous.

Throughout this section, assume that T denotes a Hausdorff topologi-
cal space and Q(T, X) a p.o.v. subspace of F{T,X) with f[T) norm
bounded for every / in Q{T, X), endowed with the uniform topology TU

and the induced pointwise ordering from F(T, X).
Now we proceed to discuss connections between (tuo)- and (Mo)-continu-

ous operators from Q(T, X) into Y.

THEOREM 7.1. Let U: Q(T, X) -» Y be a linear (uo)-continuous opera-
tor. Assume that X is almost Archimedean and has an orderunit norm e.
Then U is (Tuo)-continuous.

PROOF. Let (fs)ieA be a net in Q{T, X) with TM-lim/^ = 0 . Thus there
exists a real decreasing net (rs)SeA such that | |^(/) | | < sup{||/rf(r)||: t e T} <
rs, for every (S,t)eAxT and rs { 0. Hence M-lim fs = 0 on T, which
implies o-lim U(fs) = 0.

Using similar arguments we can prove the following

THEOREM 7.2. Let U: Q(T, X) -> Y be a (Tuo)-continuous linear op-
erator. Suppose that the norm || • || of X is absolute monotone and order
continuous. Then U is (uo)-continuous.

8. Alexandroff-type integral representation theorems

In this section, we assume that X is a positively generated almost Archi-
medean partially ordered normed space with an orderunit norm e and Y a
y-separative (respectively c-separative) positively generated p.o.v.s.

We denote by 4>(H(T), X~) the p.o.v.s. of all differences of A^-valued
measures on the Borel algebra H{T) of a normal topological space T such

https://doi.org/10.1017/S1446788700034194 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034194


[17] Integral representation theorems 203

that nx: H(T) -> R with nx{A) := fi{A)(x) is a real-valued regular Borel
measure, whenever JC e X+ , A e H(T) and n e <t>(H{T), X~)+ .

We also denote by

y/{H{T), Lr{X, (Y~)~J (respectively y/(H(T), Lr{X, ( y ~ £ j

the p.o.v.s. of all differences of

Lr(X, (r~)~)T0- (respectively Lr(X, ( O P * , - )

valued measures on the Borel algebra H(T) such that

my~ e 4>{H(T), *T~) with mr(A) := m(A)(x)(y~) ,

whenever x £ X, y~ £Y~ (respectively y~ e Y~) y~ > 0 and

m 6 y{H{T), Lr(X, ( r ~ ) ; ) (respectively m e yf(H(T), (7~)~ )).
/ 'TO U 'TO

THEOREM 8.1. Let w be a positive element of Ctb(T, X)~ . Then there
exists exactly one Borel measure fi in <f>(H(T), X~) such that w(f) =
JTf(t)dn(t), for every f in Ctb(T, X).

PROOF. Let x e X+ . Define C?b(T, X) := {h • x: h € Ctb(T)} . Clearly
C?b{T, X) is algebraic and order isomorphic to Ctb(T). Therefore we iden-
tify C?b(T,X) with Ctb(T).

Thus by the scalar Alexandroff representation theorem [4, page 577] there
exists a unique regular real-valued measure fix: H(T) —• R such that

(1) w<x(h) = w(h-x)= [ h(t) dnx{t), for every h e Ctb(T),
JT

where wx is the restriction of w to Ctb(T).
Extend (1) to be true for arbitrary x e X with x = xx - x2, xt > 0,

/ = 1, 2 , by the formula

»,(*) = « W * ) := jTh{t)dnXi{t) - jTh{t)dnX2{t),

for every h e Ctb{T). Clearly wx e Ctb{T)~ .

Next define a measure fi: H(T) ^ X~ by the relation

^(^)(x):=/iJC(^), ^ e f f ( r ) , j c e l .

On the other hand, for each h e Clb(T) and x e X, we have

w(h-x)= f h{t)xd(i{t) = / A(0 dnx{t),

obtained by using an approximating sequence in S(T, R) of h e Ctb{T)
and by applying Theorem 4.1 (ii).

Moreover Theorem 6.5 guarantees that n represents w on the whole space
Ctb{T, X). Its uniqueness is evident.
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T H E O R E M 8.2. Let U be a positive element in Lr(Ctb{T,X), Y)T0. Then

there exists exactly one measure m e y/(H(T), Lr(X, {Y~)~)xo) (respectively

m e v(H(T),Lr(X, (Y~);)J such that U(f) = JTf(t)dm(t), for every
f in Ctb{T,X).

PROOF. Let y~ € Y~ (respectively y~ e Y~) with y~ > 0. Consider
the positive linear ru-continuous functional Uy~ : Ctb{T, X) -» R, denned
by the formula Uy~{f) = y~{U{f)). for every / G Ctb(T, X).

Theorem 8.1 guarantees the existence of exactly one measure m in
V(H(T), X;) such that Uy~{f) = fTf(t) dmy~{t), for all / in Ctb(T, X).

Now we define a measure m: H(T) -> Lr(X, (Y~)~)xo (respectively m :
H(T) - Lr(X, (37)pt 0) by the relation

m(A)(x)(y~):=my~(A)(x),

whenever A e H(T), x £ X, and the corresponding integral operator

[/, :Mt(T,X)^ (y~)~ (respectively t/,: Mt(T, X) - (y~)~)

by the relation £/,(/):= JTf(t)dm(t), whenever / € Mt(T, X).
Since Ctb{T, X) g Mt(T, X) we easily establish that

= f f(t)dm(t),
JT

for every / in Ctb{T, X).

To prove uniqueness let / be another measure in

y(H(T), Lr{X, (y~)~)t0) (respectively yr{H{T), Lr(X, (Y^J )

such that
U(f)= I f(t)dm(t)= I f{t)dl{t),

JT JT
whenever f e Ctb(T, X). Consequently JTf(t)dmy~(t) = fTf(t)dly~(t),
for every / e Ctb(T, X), which implies m = I.

THEOREM 8.3. Ctb(T, X)~ is isomorphic to (p(H(T), X~).

PROOF. By the integration process, each ft in <f>(H(T), X~) defines a pos-
itive functional w in Ctb(T, X)~ and the correspondence £ : <p(H(T), X~)
-> Ctb(T, X)~ defined by £(n) := w is positive and linear.

Again, from the scalar AlexandrofF representation theorem it is an easy
matter to prove that £, is one-to-one.

On the other hand Theorem 8.1 guarantees that £ is onto. This completes
the proof of the assertion.

https://doi.org/10.1017/S1446788700034194 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788700034194


[19] Integral representation theorems 205

THEOREM 8.4. Suppose that Y is order reflexive. Then Lr(Ctb(T,X),Y)T 0

is isomorphic to y/(H{T), Lr(X, Y)T0).

PROOF. This is proved analogously to Theorem 8.3.

9. Riesz-type integral representation theorems

Let X be a partially ordered normed space and Y a p.o.v.s. provided
with the properties of the foregoing section.

We denote by (j>a(Ha(T), X~) the p.o.v.s. of all differences of X~-valued
cr-measures on the Borel a-algebras Ha{T) of a locally compact topologi-
cal space T such that /ix: Ha{T) —» R with nx{A) := n(A)(x) is a real-
valued regular Borel measure, whenever x e X+, A e Ha(T) and fi e
<t>B{Ha{T),X;)+.

We also denote by

Ve(Ha(T),Lr(X,(Y~);)xo) (respectively ¥a(Ha(T), Lr(X, (Y^J)

the p.o.v.s. of all differences of

Lr{X,{Y;ry\0- (respectively Lr(AT,(r~)~)TO-)

valued cr-measures on the Borel cr-algebra Ha{T) such that

my~ € 4>a{Ha{T),x;) with mr(A):= m(A)(x)(y~) ,

whenever x € X, y~ eY~ (respectively y~ e Y~), y~ > 0 and

m € ya{Ha{T),Lr{X, (y~)~)T0) (respectively m € ya(Ho(T), ( O p T 0 ) .

Now we can easily obtain proofs of the following theorems by using similar
arguments to those of the corresponding theorems of the preceding section.

THEOREM 9.1. Let w be a positive element of C00(T, X)~ . Then there

exists exactly one Borel a-measure in <f>a{Ha(T), X~) such that w(f) =
fT f(t) dn{t), for every f in C00(T, X).

THEOREM 9.2. Let U be a positive element in Lr(C00{T, X), Y)T0. Then
there exists exactly one a-measure m e y/a{Ha{T), Lr(X, (Y~)~)J0) (respec-
tively m € ¥a{Ha{T),Lr{X, (y~)7)t0)) such that U(f) = JTf(t)dm(t),
for every f in C00(T, X).

THEOREM 9.3. C00{T, X)~ is isomorphic to <f>a(Hg(T), X~).
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THEOREM 9.4. Suppose that Y is order reflexive. Then

Lr(C00(T, X), Y)tu0

is isomorphic to yfa(Ha{T), Lr{X, Y)J .

10. Multiplicative operators

We start with the following assumptions. Let X be a partially ordered
normed algebra positively generated by a normal cone X+ with a separately
order continuous multiplication, T a normal topological space and H(T)
its Borel algebra.

Then Ctb{T, X) is also a partially ordered normed algebra positively gen-
erated by a normal cone under the usual uniform topology xu and pointwise
algebraic-order structure.

As is also well known, Ctb(T, X)~ = Ctb(T, X)' (the topological dual
of Clb(T, X)). Therefore Ctb{T, X)~ is a separating p.o.v. subspace of

clb(T,xr.
Let Y be another partially ordered algebra. Assume that Y is monotone

complete y- (respectively a-) separative and positively generated.
A positive operator U in Lr(Ctb(T, X), Y) is called multiplicative if

U(f-g) = U(f) • U(g), whenever / , g e Ctb[T, X).
We continue with a useful criterion for multiplicativity.

LEMMA 10.1. Let U be a positive element in Lr(Ctb(T,X), Y)x0. Then

U is multiplicative if and only if U"(A • B) = U"(A) • U"{B), for all A, B
in (Cr t (7\ A-)~)~.

PROOF. In order to prove the sufficiency, take any A, B in {Clb(T, X)~)~

and y~ e Y~ (respectively y~ e 7~) , y~ > 0. Thus U"(A-B)(y~) =
' ' " " ' "

Also if / € Ctb(T, X) we have

(B-Ul(y~))(f) = B-(U'(y~))f and U'(

Furthermore for g e Ctb{T, X) we deduce that

U'(y~)f{g) = y~(U(f • g)) and U'(y~{f))(g) = y~(U(f • g)).

Hence U"(A • B) = U"(A) • U"(B).
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Necessity follows from Ctb{T, X) g (Ctb(T, X)~)~ .

On the other hand, in view of preceding definitions and results, the fol-
lowing lemmas can be easily established.

LEMMA 10.2. Let A e H(T) and x e X. Then the function [cAx]:
Ctb(T, X)~ = <f>(H(T), AT~) -> R defined by the formula

[cAx]{m):= f cA(t)xdm(t),
J T

whenever m e $(H(T), X?), belongs in (Ctb(T, X)~)~ .

LEMMA 10.3. The representing measure m e y/{H{T), Lr(X, (Y~)~)T0)
(respectively m G y/(H(T), Lr(X, (Y~)~)ro)) of a positive operator U e
Lr(Ctb{T, X), Y)r 0 is given by the formula m(A)x = U"([cAx]), whenever
AeH(T) and X€X.

LEMMA 10.4. ([cAx1]) • ([cA^x2]) = [cAinAj(xl • x2)], for all Al, A2 in
H{T) and x , , x2 in X.

Now we state and prove the main results of this section.

THEOREM 10.5. A positive element U in Lr(Ctb{T, X), Y)T 0 is multi-
plicative if and only if the representing measure m in

[respectively y(H{T), Lr(X, (Y~);)J) satisfies

m(Al n A2)(x1 • x2) = (m(^,)(x,)) • (m{A2)(x2)),

for all xx, x2 in X and A{, A2 in H(T).

PROOF. First suppose that U is multiplicative. Then it follows easily by
Lemmas 10.2 and 10.3 that

m{Ax C\A2){xx -x2) = {m(Ax){xx)) • (m(A2)(x2)),

ivhenever x , , x2 e X and Ax, A2e H(T).
Conversely suppose that the preceding condition holds. Then for arbitrary

f, g in Ctb(T, X), a similar argument to that in the last part of the proof
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of [15, Theorem 22] indicates that

/ f(t)g(t)dm(t) = [ f{t)dm{t)- f g{t)dm{t).
JT JT JT

This completes the proof.
When T is a locally compact topological space and Ha{T) the Borel a-

algebra of subsets of T, using similar arguments, we can prove the following.

THEOREM 10.6. A positive element U in Lr(C00(T, X), Y)z 0 is multi-
plicative if and only if the representing a-measure m in

{respectively y/a(Ha(T), Lr(X, (r~)~)TO)) satisfies

m{A{ n A2){xl • x2) = (m^jX*,)) • {m{A2){x2)),

for all xx, x2 in X and A{, A2 in Hg(T).

11. Applications

Our results found significant and important applications in partially or-
dered vector spaces of operators acting usually on a Hilbert space H. We
shall briefly outline some definitions and principal results concerning such
kinds of operator spaces.

For more details in this direction consult [2, 3, 10, 18, 23-24, 29, 30, 32,
55, 59, 61, 65-67, 70, 74, 80-82].

(i) C*-algebras. Let sf be a C*-algebra with identity e, H its univer-
sal representation space, A the self-adjoint part of stf and L(H, H) the
bounded linear operators acting on H.

We recall that A is a partially ordered Banach space with positive cone
{a* • a: a e stf} and J / may be regarded as a subalgebra of L{H, H). Also
A is an orderunit space with orderunit and orderunit norm e ; moreover the
orderunit norm on A coincides with the C*-norm.

We call J / monotone (respectively c-monotone) complete if A is mono-
tone (respectively a -monotone) complete. Each W* -algebra and each AW*-
algebra of type / is monotone complete.

Let As be a subalgebra of J / of self-adjoint elements.
Our presented results can be immediately applied in the following cases:

X = A, Y = A', Z = R; or X = Y = Z=AS.

(ii) Jordan algebras. Let / be a Jordan algebra of selfadjoint operators
acting on H, that is, a real vector space of such operators closed under the
product UQV:=^(U-V + V-U).
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By a Banach Jordan algebra / we mean a real Banach space and a Jordan
algebra such that || U Q V\\ < \\ U\\ • || V\\, whenever U, V e / . It is called a
/5-algebra if moreover / has a unit \\U2\\ = \\U\\2 and \\U2\\ < \\U2 + V2\\,
for all U, V €J.

A /C-algebra is a uniformly closed Jordan algebra with unit.
Alfsen, Shultz and Stormer proved in[2] that if / is a /5-algebra with

identity / then the set {U2: U € / } is a (proper) closed convex cone under
which J becomes a partially ordered Banach space with / as an orderunit
norm and -I <U <I implies 0 < U2 < I, whenever U e J.

It is well known that every /C-algebra is a JB-algebra but the converse
is false.

Our included results are directly applied to the cases:

X = J, Y = f, Z = R; and X = Y = Z = J.

(iii) Semifields and O*-algebras. An associative, commutative partially
ordered algebra E is called a semifield if it satisfies the following conditions.

{sx) E contains a subset K such that K + K Q K and K • K Q K with
K := {x e E: there exists a sequence (xn)n^ in K such that x = o-limxn} .

(s2) E = K-K.
(s^) There exists sup{xn: n e N} in E for every bounded sequence

(xJn e N in E.
(s3) E has more than one element and the equation a • x = b has at least

one solution which is an element of K whenever a, b e K.
(s5) # coincides with the set of all non-negative elements of E.
We note that the class of semifields defined here is much wider than the

class of topological semifields studied in [3] and is a subclass of A^-spaces
developed and investigated by L. V. Kantorovich, B. Z. Vulikh and A. G.
Pinsker in [37, 38, 74].

Now a *-involutory (complex) algebra sf with unit e is called an O*-
algebra if there is defined a partial ordering on the vector space A of self-
adjoint elements of s/ , compatible with the algebraic operations and satis-
fying the following axioms:

( o , ) A + + A + Q A + : = { a e A : a > 0 } a n d {a*-a) e A + f o r e v e r y a £ A ;
( 0 2 ) for every majorised increasing net {ag)s^ in A there exists a :=

sup{a^ : d e A} in A such that a-b = ba provided as-b = bas, whenever
5 eA and b e A;

(03) every maximal commutative *-subalgebra of J / is a (complex) semi-
field.

We provided important applications of our results in the following cases:
X = E, Y = E~, Z = R or X = Y = Z = E, with E a semifield and
X = A+ -A+, Y = A', Z = R or X = Y = Z = As, whenever A is the
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self-adjoint part of an O*-algebra s>/ and As an algebra of elements of A.
(iv) Quantum probability theory. E. B. Davies and J. T. Lewis, in order

to describe repeated measurements in quantum mechanical systems, have
denned in [20] the concrete concept of quantum instrument.

More precisely, let (X, X+, e) be a triple consisting of a real Banach space
X, (according to the terminology of [20] a state space), positively generated
by the (strong) closed cone X+ and a positive linear functional e : X —> R
such that e(x) = \\x\\, whenever x e X+ .

Assume moreover that ||JC|| = inf{||x, || + ||x2||: x = x{-x2, x( e X+, i =
1, 2} for every x eX.

As is easily verified, X is monotone complete, the cone X+ is normal
and e e X~ . Also every positive operator in Lr(X, X) is continuous, and
hence Lr(X, X) = Ly(X, X).

Let Ha{T) be a a -algebra of subsets of a space T. In the terminology of
[20] an observable is a positive set function a: Ha{T) -» X' satisfying

{ob)l 0 < a(A) < a{T), for all A e Ha(T) and a(T) = e,
(ob)2 a is a-additive with respect to the weak *-topology of X'. We say

a is multiplicative if a{Ax DA2) = a(Al)-a(A2), whenever Al, A2 e Ha(T).
On the other hand an instrument is a positive set function £?: Ha(T) -*
Lr(X,X) such that

(in), " e(?(T)(x) = e(x), for every x e X,
(in) 2 " W is c-additive with respect to strong operator topology.
It is an easy matter to prove that f (respectively a) is an Lr(X, X)-

(T-measure (respectively X'-measure) on Ha(T). Furthermore, it has been
shown in [20] that given an instrument f there is a unique observable a
such that e(&(A)(x)) = a(A)(x), for all x e X and A e Ha(T). Also every
observable a is determined in such a way by at least one instrument %.

Recall that the example most significant to quantum mechanics is to take
X the self-adjoint trace class operators &~S{H) on a separable Hilbert space
H, e the usual trace o n l , T & separable locally compact topological space
and Ha{T) the Borel cr-algebra of T.

As we may know, a corresponding integration process of X-, X1- or
Lr(X, X)-valued random variables in a similar sense of E. Rowecka [54]
and H. Umegaki and A. T. Bharucha-Reid [73] with respect to an Lr{X, X)-
(respectively X-) instrument (respectively observable) is lacking from this
operational approach to quantum probability theory.

So our presented results can be immediately applied to cover this missing
process.

(v) The operator Feynman-Kac formula. Let X be a partially ordered
Banach space, L(X, X) the space of bounded linear operators acting on X,
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T a locally compact Hausdorff space, Ha(T) the cr-algebra of Borel or Baire
subsets of T and a er-measure m: Ha{T) -> L(X, X).

Let / : T -> R be a Borel or Baire function. Define the operator m(f): X
-» X with m(f)(x) := jTf(t)dm(t)(x), for every x e X, whenever the
right-hand side exists.

Given such a function / , we assume that the operator m{f) is the in-
finitesimal generator of a C0-semigroup Q(u), u € R+ of linear operators
on X (cf. [34, 69]).

We also consider another C0-semigroup W(u), u e R+ , of linear opera-
tors on X, whose infinitesimal generator is the operator A.

Now we are looking for a third semigroup U(u), u e R+ , satisfying the
initial value problem

(11.1) U'(s) = AU(s) + m(f)U(s), s>0, U(0) = I.

In many cases there are difficulties in deriving the semigroup U(u), u e
R+ , since the preceding initial-value problem (11.1) does not in general have
classical or mild solutions.

So we try to construct U(u), u e R+ , using an operator formula of the
Feynman-Kac type. For this purpose let s e R+ and let Ts be the set of all
continuous paths p: [0, s] -> T based on the closed interval [0 ,5] . Let also
Ps be the semialgebra of sets

A:= {p € Ts: p(Sj) e Bj, j = I, 2, ... , k}

f o r a r b i t r a r y k = 1 , 2 , ... ,

0<sl<s2<---<sk_l<sk<s and Bj£Ha(T), j = 1, 2, . . . , k.

Then a measure (respectively tr-measure) ms: Ha{Ts) ->• L(X, X) such
that

ms(A):=W(s-sk)m(BkW(sk-sk_l)m(Bk_l)---W(s2-sl)m(Bl)W(sl),

for every A € Ps, will be called a (W, m, s)-measure, where Ha(Ts) denotes
the cr-algebra generated by Ps.

Now the semigroup U(u), u e R+ , can be interpreted in the following
operator formula of the Feynman-Kac type (cf. [42, 43]):

(11.2) U(s) = j^ [exp (£/(!>(/•))<*/•)] dms{p).

We recall that a Riemann-Stieltjes or Bochner-type integration process of
R. G. Bartle, N. Dunford, J. Schwartz [5], R. G. Bartle [6], J. Batt and
E. J. Berg [7], J. K. Brooks and P. W. Lewis [12], J. K. Brooks and N.
Dinculeanu [13], N. Dinculeanu [22], I. Dobrakov [25, 26], N. Dunford [27],
R. J. Easton and D. H. Tucker [28], J. R. Edwards and S. G. Wayment [31],
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R. K. Goodrich [34], A. Shuchat [64], K. Swong [68] and U. J. Uherka [72],
cannot be applied to define the right hand side of (11.2) since ms is not in
general of finite variation (cf. [43]).

On the other hand, our presented integration theory does not presuppose
finite variation of the corresponding measures (respectively er-measures) so
the obtained integrals can be immediately applied to define the desired semi-
group U(u), ueR+ , from formula (11.2).

REMARK. In mathematical physics, the Co-semigroup W(u), u e R+,
usually describes the motion of a free quantum mechanical particle with n
degrees of freedom (T = E." , n > 1) in a force field with a given poten-
tial, and the "solutions" u{s) = U(s)x0 of (11.1) characterize the states of
such a particle at time s > 0, with initial state JC0 in X = ^2(Rn) and
superposition of Q(u), W{u) the C -semigroup U(u), u e R+ .
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