PAIRS OF CONSECUTIVE RESIDUES OF POLYNOMIALS

KENNETH S. WILLIAMS

1. Introduction. Let p be a large prime and let $f(x)$ be a polynomial of fixed degree $d \geqslant 4$ with integral coefficients, say,

$$
\begin{equation*}
f(x)=a_{0}+a_{1} x+\ldots+a_{d} x^{d} \quad\left(a_{d} \not \equiv 0(\bmod p)\right) . \tag{1.1}
\end{equation*}
$$

Recently Mordell (8) has considered the problem of estimating the least positive residue of $f(x)(\bmod p)$, that is, the unique integer $l(0 \leqslant l \leqslant p-1)$ such that the congruence

$$
\begin{equation*}
f(x) \equiv r \quad(\bmod p) \tag{1.2}
\end{equation*}
$$

is soluble for $r=l$ but not for $r=0,1, \ldots, l-1$.
Let $N_{r}(r=0,1, \ldots, p-1)$ denote the number of solutions of (1.2). Then

$$
\begin{equation*}
\sum_{r=0}^{p-1} N_{r}=p \tag{1.3}
\end{equation*}
$$

This proves that l always exists and Mordell establishes that

$$
\begin{equation*}
l \leqslant d p^{\frac{1}{2}} \log p \tag{1.4}
\end{equation*}
$$

If we let $e(u)$ denote $\exp \left(2 \pi i u p^{-1}\right)$, for any real number u, we have

$$
\begin{equation*}
N_{r}=\frac{1}{p_{x, t=0}^{p-1}} \sum^{p-1} e(t(f(x)-r)), \tag{1.5}
\end{equation*}
$$

since as the sum in t is zero if $f(x) \not \equiv r$ and is p if $f(x) \equiv r(\bmod p)$. (We usually omit " $\bmod p$ " hereafter.) Mordell's proof of (1.4) consists of using (1.5) and a deep result of Carlitz and Uchiyama (3) to show that

$$
\begin{equation*}
l p=\left|p \sum_{r=0}^{l-1} N_{\tau}-l p\right| \leqslant d p \sqrt{p} \log p \tag{1.6}
\end{equation*}
$$

The deep result quoted, which is a consequence of Weil's proof of the Riemann hypothesis for algebraic function fields over a finite field (10), is the following:

$$
\begin{equation*}
\left|\sum_{x=0}^{p-1} e(f(x))\right| \leqslant d \sqrt{p} \tag{1.7}
\end{equation*}
$$

The purpose of this paper is to consider the similar problem for pairs of consecutive residues of $f(x)$, that is we require an estimate for the least
integer $e(0 \leqslant e \leqslant p-1)$ with the property that both e and $e+1$ are residues of $f(x)$, i.e. the pair of congruences

$$
\begin{equation*}
f(x) \equiv r, \quad f(y) \equiv r+1 \tag{1.8}
\end{equation*}
$$

are soluble for $r=e$ but not for $r=0,1, \ldots, e-1$.
The number of incongruent solutions (x, y) of (1.8) is, of course, $N_{r} N_{r+1}$ and it is easy to see that

$$
\begin{equation*}
\sum_{r=0}^{p-1} N_{r} N_{r+1}=N_{f} \tag{1.9}
\end{equation*}
$$

where N_{f} denotes the number of solutions (x, y) of the congruence

$$
\begin{equation*}
f(y)-f(x)-1 \equiv 0 \tag{1.10}
\end{equation*}
$$

If $N_{f}=0$, then each summand in (1.9) (being non-negative) is zero and e does not exist. It is clear then that a necessary and sufficient condition for the existence of e is that $N_{f}>0$. In Theorem 1 we show, using a deep result of Lang and Weil (6), that

$$
\begin{equation*}
N_{f}=p+O\left(p^{\frac{1}{2}}\right) \tag{1.11}
\end{equation*}
$$

where the constant implied by the O-symbol depends only on d. This implies that

$$
\begin{equation*}
N_{f} \geqslant c_{d} p \tag{1.12}
\end{equation*}
$$

where c_{d} is a constant depending only on d, for sufficiently large primes p and so e always exists for large enough p. However, when p is small, e may not exist, for consider $f(x)=2 x^{4}$ when $p=5$. In this case the residues are 0 and 2 and so there are no consecutive ones.

Our method for estimating e for large p follows that of Mordell for l. Instead of considering

$$
\sum_{r=0}^{l-1} N_{r}
$$

(as in (1.6)) we consider

$$
\begin{equation*}
\sum_{r=0}^{e-1} N_{r} N_{r+1} \tag{1.13}
\end{equation*}
$$

After replacing N_{r} and N_{r+1} by exponential sums (see $\S 5$) we find that we need to consider the sums

$$
\begin{equation*}
S(v)=\sum_{r=0}^{p-1} N_{r} N_{r+1} e(-r v) \quad(v=1,2, \ldots, p-1) \tag{1.14}
\end{equation*}
$$

We, in fact, need an upper bound for $|S(v)|$, which is independent of v. From (1.14) it is easy to see that we require a suitable estimate for an exponential sum of the type

$$
\begin{equation*}
\sum_{\substack{x, y=0 \\ h(x, y) \equiv 0}}^{p-1} e(g(x, y)) \tag{1.15}
\end{equation*}
$$

where g and h are polynomials in the two variables x and y. (In our case $g(x, y)=v f(x)$ and $h(x, y)=f(y)-f(x)-1$.) It seems very difficult to estimate such a sum effectively. In fact our knowledge of the similar sum

$$
\begin{equation*}
\sum_{x, y=0}^{p-1} e(g(x, y)) \tag{1.16}
\end{equation*}
$$

is slight, except in a few special cases (5). We are thus forced to estimate $|S(v)|$ for almost all polynomials of fixed degree d. This involves determining an upper bound for

$$
\begin{equation*}
S=\sum_{\substack{f \\ \operatorname{deg} f=d}}|S(v)|^{2}, \tag{1.17}
\end{equation*}
$$

which is independent of v. (Without loss of generality, the summation over f involves summing a_{i} from 0 to $p-1(i=1,2, \ldots, d-1)$ and a_{d} from 1 to $p-1$.) This is done in Theorem 2. Our final result is

Theorem 3. For almost all polynomials of fixed degree d, we have

$$
e=O\left(p^{\frac{1}{2}} \log p\right)
$$

where the constant implied by the O-symbol depends only on d.
2. Proof of Theorem 1. In this section we regard the coefficients of f as reduced modulo p and considered as belonging to [p], the Galois field with p elements.

Theorem 1. $N_{f}=p+O\left(p^{\frac{1}{2}}\right)$, where the constant implied by the O-symbol depends only on d.

Proof. Let

$$
\begin{equation*}
g(x, y, z)=z^{d}+z^{d}(f(x / z)-f(y / z))=z^{d}+g_{1} z^{d-1}+\ldots+g_{d} \tag{2.1}
\end{equation*}
$$

where

$$
\begin{equation*}
g_{i} \equiv g_{i}(x, y)=a_{i}\left(x^{i}-y^{i}\right) \quad(i=1,2, \ldots, d) \tag{2.2}
\end{equation*}
$$

As $x-y \mid g_{i}$ for $i=1,2, \ldots, d$ and $(x-y)^{2} \nmid g_{d}$ over [p], by Eisenstein's irreducibility criterion, $g(x, y, z)$ is irreducible over $[p]$. Suppose, however, that g is not absolutely irreducible over $[p]$; then there is a normal extension $N[p]$ of $[p]$ over which g splits into $c \geqslant 2$ conjugate factors, say

$$
\begin{equation*}
g(x, y, z)=\prod_{i=1}^{c} f_{i}(x, y, z) \tag{2.3}
\end{equation*}
$$

Let

$$
\begin{equation*}
k_{i}(x, y)=f_{i}(x, y, 0) \quad(i=1,2, \ldots, c) ; \tag{2.4}
\end{equation*}
$$

then

$$
\begin{equation*}
\prod_{i=1}^{c} k_{i}(x, y)=a_{d}\left(x^{d}-y^{d}\right) \tag{2.5}
\end{equation*}
$$

Hence $x-y \mid k_{i}(x, y)$ over $N[p]$ for some i, and so by conjugacy for all i. Let

$$
\begin{equation*}
k_{i}(x, y)=(x-y) h_{i}(x, y) \tag{2.6}
\end{equation*}
$$

then

$$
\begin{equation*}
a_{d}\left(x^{d}-y^{d}\right)=(x-y)^{c} h(x, y) \tag{2.7}
\end{equation*}
$$

where

$$
h(x, y)=\prod_{i=1}^{c} h_{i}(x, y)
$$

has coefficients in $[p]$. This is a contradiction since $c \geqslant 2$, and so $g(x, y, z)$ is absolutely irreducible over [p]. Hence by a result of Lang and Weil (6) the number of solutions (x, y, z) of

$$
\begin{equation*}
g(x, y, z)=0 \quad(\bmod p) \tag{2.8}
\end{equation*}
$$

is

$$
\begin{equation*}
p^{2}+O\left(p^{3 / 2}\right) \tag{2.9}
\end{equation*}
$$

where the constant implied by the O-symbol depends only on d. Now the number of solutions (x, y) of

$$
\begin{equation*}
g(x, y, 0) \equiv 0 \quad(\bmod p) \tag{2.10}
\end{equation*}
$$

that is of

$$
\begin{equation*}
x^{d}-y^{d} \equiv 0 \tag{2.11}
\end{equation*}
$$

is certainly $O(p)$, so the number of solutions (x, y, z) with $z=0$ of (2.8) is also given by

$$
\begin{equation*}
p^{2}+O\left(p^{3 / 2}\right) \tag{2.12}
\end{equation*}
$$

Hence the number of solutions (x, y) of

$$
\begin{equation*}
g(x, y, 1) \equiv 0 \tag{2.13}
\end{equation*}
$$

that is, of

$$
\begin{equation*}
f(y)-f(x)-1 \equiv 0 \tag{2.14}
\end{equation*}
$$

is just

$$
\begin{equation*}
\frac{1}{p-1}\left\{p+O\left(p^{3 / 2}\right)\right\}=p+O\left(p^{1 / 2}\right) \tag{2.15}
\end{equation*}
$$

as required.

3. Some useful lemmas.

Definition. Let $N_{d} \equiv N_{d}\left(a_{1}, \ldots, a_{k}\right)$ denote the number of solutions $\left(x_{1}, \ldots, x_{k}\right)$ of the system of d congruences

$$
\begin{align*}
& a_{1} x_{1}+\ldots+a_{k} x_{k} \equiv 0, \\
& a_{1} x_{1}^{2}+\ldots+a_{k} x_{k}^{2} \equiv 0, \quad(\bmod p) . \tag{3.1}\\
& \cdot \\
& a_{1} x_{1}^{d}+\ldots+a_{k} x_{k}^{d} \equiv 0 .
\end{align*}
$$

We require the following lemmas for the proof of Theorem 2. They give asymptotic formulae for $N_{d}\left(a_{1}, \ldots, a_{k}\right)$, when $k=2, d \geqslant 2 ; k=3, d \geqslant 3$; and $k=4, d \geqslant 4$.

Lemma 3.1. If $a_{1}, a_{2} \not \equiv 0$ and $d \geqslant 2$,

$$
N_{d}\left(a_{1}, a_{2}\right)= \begin{cases}1, & \text { if } a_{1}+a_{2} \neq 0, \tag{3.2}\\ p, & \text { if } a_{1}+a_{2} \equiv 0 .\end{cases}
$$

Proof. The result is obvious, since the only solution when $a_{1}+a_{2} \not \equiv 0$ is $\left(x_{1}, x_{2}\right)=(0,0)$ and the only solutions when $a_{1}+a_{2} \equiv 0$ are given by $\left(x_{1}, x_{2}\right)=(x, x)(x=0,1, \ldots, p-1)$.

Lemma 3.2. If $a_{1}, a_{2}, a_{3} \neq 0$ and $d \geqslant 3$,

$$
N_{d}\left(a_{1}, a_{2}, a_{3}\right)=\left\{\begin{array}{c}
O(1), \quad \text { if } a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{1}, a_{1}+a_{2}+a_{3} \neq 0, \tag{3.3}\\
p+O(1), \quad \text { if } a_{1}+a_{2}+a_{3} \equiv 0 \text { or } a_{1}+a_{2}+a_{3} \neq 0, \\
\text { and exactly one of } a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{1} \equiv 0 \\
2 p+O(1), \text { if } a_{1}+a_{2}+a_{3} \neq 0 \text { and exactly two of } \\
a_{1}+a_{2}, a_{2}+a_{3}, a_{3}+a_{1} \equiv 0 .
\end{array}\right.
$$

Proof. Let $N_{d}{ }^{*}\left(a_{1}, a_{2}, a_{3}\right)$ be the number of solutions of (3.1) $(d \geqslant 3$, $k=3)$ with $x_{i} \not \equiv x_{j}(1 \leqslant i<j \leqslant 3)$. Since $d \geqslant 3$, for these solutions,

$$
\operatorname{rank}\left[\begin{array}{ccc}
a_{1} & a_{2} & a_{3} \tag{3.4}\\
2 a_{1} x_{1} & 2 a_{2} x_{2} & 2 a_{3} x_{3} \\
\cdot & \cdot & \cdot \\
d a_{1} x_{1}^{d-1} & d a_{2} x_{2}^{d-1} & d a_{3} x_{3}^{d-1}
\end{array}\right]=3
$$

and so by a result of Min (7, Theorem 1)

$$
\begin{equation*}
N_{d}^{*}\left(a_{1}, a_{2}, a_{3}\right)=O(1), \tag{3.5}
\end{equation*}
$$

where the constant implied by the O-symbol depends only on d. Let $N_{d}^{(i j)}$ (a_{1}, a_{2}, a_{3}) ($1 \leqslant i<j \leqslant 3$) denote the number of solutions of (3.1) $(d \geqslant 3$, $k=3)$ with $x_{i} \equiv x_{j}$. Also let $N_{d}^{(123)}\left(a_{1}, a_{2}, a_{3}\right)$ denote the number with $x_{1} \equiv x_{2} \equiv x_{3}$. Then

$$
\begin{align*}
& N_{d}\left(a_{1}, a_{2}, a_{3}\right)=N_{d}^{*}\left(a_{1}, a_{2}, a_{3}\right)+\left\{N_{d}^{(12)}\left(a_{1}, a_{2}, a_{3}\right)\right. \tag{3.6}\\
& \left.\quad+N_{d}^{(13)}\left(a_{1}, a_{2}, a_{3}\right)+N_{d}^{(23)}\left(a_{1}, a_{2}, a_{3}\right)\right\}-2 N_{a}^{(123)}\left(a_{1}, a_{2}, a_{3}\right)
\end{align*}
$$

and so by (3.5) we have

$$
\begin{align*}
N_{d}\left(a_{1}, a_{2}, a_{3}\right)=\{ & N_{d}\left(a_{1}+a_{2}, a_{3}\right)+N_{d}\left(a_{2}+a_{3}, a_{1}\right) \tag{3.7}\\
& \left.\quad+N_{d}\left(a_{3}+a_{1}, a_{2}\right)\right\}-2 N_{d}^{(123)}\left(a_{1}, a_{2}, a_{3}\right)+O(1)
\end{align*}
$$

The result then follows from Lemma 3.1 and the obvious result

$$
N_{d}^{(123)}\left(a_{1}, a_{2}, a_{3}\right)= \begin{cases}p, & \text { if } a_{1}+a_{2}+a_{3} \equiv 0, \tag{3.8}\\ 1, & \text { if } a_{1}+a_{2}+a_{3} \equiv 0 .\end{cases}
$$

Lemma 3.3. If $a_{1}, a_{2}, a_{3}, a_{4} \not \equiv 0$ and $d \geqslant 4, N_{d}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ is given by the expression (3.12), the terms of which are given by Lemmas 3.1 and 3.2 and (3.13).

Proof. Let $N_{d}{ }^{*}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ denote the number of solutions of (3.1) ($d \geqslant 4$, $k=4)$ with $x_{i} \not \equiv x_{j}(1 \leqslant i<j \leqslant 4)$. For these solutions

$$
\operatorname{rank}\left[\begin{array}{cccc}
a_{1} & a_{2} & a_{3} & a_{4} \tag{3.9}\\
2 a_{1} x_{1} & 2 a_{2} x_{2} & 2 a_{3} x_{3} & 2 a_{4} x_{4} \\
\cdot & \cdot & \cdot & \cdot \\
d a_{1} x_{1}^{d-1} & d a_{2} x_{2}^{d-1} & d a_{3} x_{3}^{d-1} & d a_{4} x_{4}^{d-1}
\end{array}\right]=4
$$

and so, using Min's theorem again, we have

$$
\begin{equation*}
N_{d}^{*}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=O(1) \tag{3.10}
\end{equation*}
$$

where the constant implied by the O-symbol depends only on d. Let $N_{d}{ }^{(i j)}$ $\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \quad(1 \leqslant i<j \leqslant 4)$ denote the number of solutions of (3.1) $(d \geqslant 4, k=4)$ with $x_{i} \equiv x_{j}$ and $N_{d}^{(i j k)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)(1 \leqslant i<j<k \leqslant 4)$ the number with $x_{i} \equiv x_{j} \equiv x_{k}$. Finally let $N_{d}{ }^{(1234)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)$ denote the number with $x_{1} \equiv x_{2} \equiv x_{3} \equiv x_{4}$. Then

$$
\begin{align*}
& N_{d}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=N_{d}^{*}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)+\sum_{1 \leqslant i<j \leqslant 4} N_{d}^{(i j)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \tag{3.11}\\
& -\sum_{\substack{1<j<4 \\
1<j<k \leqslant 4 \\
j, k \neq i}} N_{d}^{(i j k)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)-2 \sum_{1 \leqslant i<j<k \leqslant 4} N_{d}^{(i j k)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
& \\
& +6 N_{d}^{(1234)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)
\end{align*}
$$

and so

$$
\begin{array}{r}
N_{d}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)=\left\{N_{d}\left(a_{1}+a_{2}, a_{3}, a_{4}\right)+N_{d}\left(a_{1}+a_{3}, a_{2}, a_{4}\right)\right. \tag{3.12}\\
+N_{d}\left(a_{1}+a_{4}, a_{2}, a_{3}\right)+N_{d}\left(a_{2}+a_{3}, a_{1}, a_{4}\right)+N_{d}\left(a_{2}+a_{4}, a_{1}, a_{3}\right) \\
\left.+N_{d}\left(a_{3}+a_{4}, a_{1}, a_{2}\right)\right\}-\left\{N_{d}\left(a_{1}+a_{2}, a_{3}+a_{4}\right)+N_{d}\left(a_{1}+a_{3}, a_{2}+a_{4}\right)\right. \\
\left.+N_{d}\left(a_{1}+a_{4}, a_{2}+a_{3}\right)\right\}-2\left\{N_{d}\left(a_{1}+a_{2}+a_{3}, a_{4}\right)+N_{d}\left(a_{1}+a_{2}+a_{4}, a_{3}\right)\right. \\
\left.+N_{d}\left(a_{1}+a_{3}+a_{4}, a_{2}\right)+N_{d}\left(a_{2}+a_{3}+a_{4}, a_{1}\right)\right\}+6 N_{d}^{(1234)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right) \\
+O(1) .
\end{array}
$$

It is clear that

$$
N_{d}^{(1234)}\left(a_{1}, a_{2}, a_{3}, a_{4}\right)= \begin{cases}p, & \text { if } a_{1}+a_{2}+a_{3}+a_{4} \equiv 0 \tag{3.13}\\ 1, & \text { if } a_{1}+a_{2}+a_{3}+a_{4} \not \equiv 0\end{cases}
$$

and that the rest of the terms in (3.12) can be evaluated by Lemmas 3.1 and 3.2.

4. Proof of Theorem 2. We prove

Theorem 2. For almost all polynomials of fixed degree d, there is a constant k_{d} (depending only on d) such that

$$
\begin{equation*}
\max _{1 \leqslant v<p-1}|S(v)| \leqslant k_{d} p^{\frac{1}{2}} \tag{4.1}
\end{equation*}
$$

Proof. We have, on adding in the term corresponding to $a_{d}=0$,

$$
\begin{equation*}
S=\sum_{\operatorname{deg}_{f=d}^{f}}|S(v)|^{2} \leqslant \sum_{a_{0}, a_{1}, \ldots, a d=0}^{p-1}|S(v)|^{2} \tag{4.2}
\end{equation*}
$$

Now

$$
\begin{align*}
|S(v)|^{2} & =\left|\sum_{b=0}^{p-1} N_{b} N_{b+1} e(-b v)\right|^{2} \tag{4.3}\\
& =\sum_{b, c=0}^{p-1} N_{b} N_{b+1} N_{c} N_{c+1} e((c-b) v)
\end{align*}
$$

and because

$$
\begin{aligned}
& N_{b} N_{b+1} N_{c} N_{c+1}=\left\{\frac{1}{p_{x_{1}, t_{1}=0}} \sum^{p-1} e\left(t_{1}\left(f\left(x_{1}\right)-b\right)\right)\right\}\left\{\frac{1}{p_{x}} \sum_{2, t 2=0}^{p-1} e\left(t_{2}\left(f\left(x_{2}\right)-b-1\right)\right)\right\} \\
& \times\left\{\frac{1}{p_{x_{3}}, t_{3}=0} \sum_{-1}^{p-1} e\left(t_{3}\left(f\left(x_{3}\right)-c\right)\right)\right\}\left\{\frac{1}{p_{x_{4}}} \sum_{t_{4}=0}^{p-1} e\left(t_{4}\left(f\left(x_{4}\right)-c-1\right)\right)\right\} \\
& =\frac{1}{p^{4}} \sum_{\substack{x_{1}, x_{2}, x_{3}, x_{4}, 0 \\
t_{1}, t_{2}, t_{3}, t_{4}=0}}^{p-1} e\left(-b t_{1}-(b+1) t_{2}-c t_{3}-(c+1) t_{4}\right) \\
& \times e\left(t_{1} f\left(x_{1}\right)+t_{2} f\left(x_{2}\right)+t_{3} f\left(x_{3}\right)+t_{4} f\left(x_{4}\right)\right) \\
& =\frac{1}{p^{4}} \sum_{x_{1}, \ldots, t_{4}=0}^{p-1} e\left(-b t_{1}-(b+1) t_{2}-c t_{3}-(c+1) t_{4}\right) \\
& \times\left\{\prod_{i=0}^{d} e\left(a_{i}\left(t_{1} x_{1}{ }^{i}+t_{2} x_{2}{ }^{i}+t_{3} x_{3}{ }^{i}+t_{4} x_{4}{ }^{i}\right)\right)\right\},
\end{aligned}
$$

we have

$$
\left.\begin{array}{rl}
p^{4} S \leqslant \sum_{t_{1}, t_{2}, t_{3}, t_{4}=0}^{p-1} e\left(-\left(t_{2}+t_{4}\right)\right) & \sum_{x_{1}, x_{2}, x_{3}, x_{4}=0}^{p-1}\{
\end{array} \prod_{i=0}^{a} \sum_{a_{i}=0}^{p-1} e\left(a_{i}\left(t_{1} x_{1}{ }^{i}+\ldots+t_{4} x_{4}{ }^{i}\right)\right)\right\}, ~+\sum_{b=0}^{p-1} e\left(-\left(v+t_{1}+t_{2}\right) b\right) \sum_{c=0}^{p-1} e\left(\left(v-t_{3}-t_{4}\right) c\right) .
$$

and so
$p^{2} S \leqslant \sum_{t_{1}, t_{3}=0}^{p-1} e\left(t_{1}+t_{3}\right) \sum_{x_{1}, x_{2}, x_{3}, x_{4}=0}^{p-1}\left\{\prod_{i=0}^{d} \sum_{a_{i}=0}^{p-1} e\left(a_{i}\left(t_{1} x_{1}{ }^{i}-\left(t_{1}+v\right) x_{2}{ }^{i}+t_{3} x_{3}{ }^{i}\right.\right.\right.$ $\left.\left.\left.-\left(t_{3}-v\right) x_{4}^{i}\right)\right)\right\}$,
that is

$$
\begin{equation*}
S \leqslant p^{a-1} \sum_{t_{1}, t_{3}=0}^{p-1} e\left(t_{1}+t_{3}\right) N_{d}\left(t_{1},-\left(t_{1}+v\right), t_{3},-\left(t_{3}-v\right)\right) . \tag{4.4}
\end{equation*}
$$

Then

$$
\begin{equation*}
S \leqslant p^{d-1}\left(\sum_{1}+\sum_{2}+\ldots+\sum_{12}\right), \tag{4.5}
\end{equation*}
$$

where $\sum_{i}(i=1,2, \ldots, 12)$ denotes the sum in (44) with t_{1} and t_{3} restricted as below:

1. $t_{1}=0, t_{3}=0$.
2. $t_{1}=0, t_{3}=v$.
3. $t_{1}=-v, t_{3}=v$.
4. $t_{1}=-v, t_{3}=0$.
5. $t_{1}=0, t_{3}=2^{-1} v$.
6. $t_{1}=-v, t_{3}=2^{-1} v$.
7. $t_{1}=-2^{-1} v, t_{3}=0$.
8. $t_{1}=-2^{-1} v, t_{3}=v$.
9. $t_{1}=-2^{-1} v, t_{3}=2^{-1} v$.
10. $t_{1} \neq 0,-v,-2^{-1} v ; t_{3} \neq 0, v, 2^{-1} v ; t_{1}+t_{3} \neq 0 ; t_{1}=t_{3}-v$.
11. $t_{1} \neq 0,-v,-2^{-1} v ; t_{3} \neq 0, v, 2^{-1} v ; t_{1}+t_{3}=0 ; t_{1} \neq t_{3}-v$.
12. $t_{1} \neq 0,-v,-2^{-1} v ; t_{3} \neq 0, v, 2^{-1} v ; t_{1}+t_{3} \neq 0 ; t_{1} \neq t_{3}-v$.

In Case 1

$$
\begin{aligned}
N_{d}\left(t_{1},-\left(t_{1}+v\right), t_{3},-\left(t_{3}-v\right)\right) & =N_{d}(0,-v, 0, v) \\
& =p^{2} N_{d}(-v, v)=p^{3},
\end{aligned}
$$

by Lemma 3.1 and so

$$
\begin{equation*}
\sum_{1}=p^{3} . \tag{4.6}
\end{equation*}
$$

Cases 2, 3, and 4 are exactly similar to Case 1 . We find that

$$
\begin{gather*}
\sum_{2}=e(v) p^{3} \tag{4.7}\\
\sum_{3}=p^{3} \tag{4.8}
\end{gather*}
$$

and

$$
\begin{equation*}
\sum_{4}=e(-v) p^{3} . \tag{4.9}
\end{equation*}
$$

In Case 5

$$
\begin{aligned}
N_{d}\left(t_{1},-\left(t_{1}+v\right), t_{3},-\left(t_{3}-v\right)\right) & =N_{d}\left(0,-v, 2^{-1} v, 2^{-1} v\right) \\
& =p N_{d}\left(-v, 2^{-1} v, 2^{-1} v\right) \\
& =p(p+O(1))=p^{2}+O(p)
\end{aligned}
$$

by Lemma 3.2, and so

$$
\begin{equation*}
\sum_{5}=e\left(2^{-1} v\right) p^{2}+O(p) \tag{4.10}
\end{equation*}
$$

Cases 6, 7, and 8 are exactly similar to Case 5 . We find that

$$
\begin{align*}
& \sum_{6}=e\left(-2^{-1} v\right) p^{2}+O(p), \tag{4.11}\\
& \sum_{7}=e\left(-2^{-1} v\right) p^{2}+O(p), \tag{4.12}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{8}=e\left(2^{-1} v\right) p^{2}+O(p) \tag{4.13}
\end{equation*}
$$

In Case 9

$$
N_{a}\left(t_{1},-\left(t_{1}+v\right), t_{3},-\left(t_{3}-v\right)\right)=N_{d}\left(-2^{-1} v,-2^{-1} v, 2^{-1} v, 2^{-1} v\right)
$$

Now by Lemma 3.2

$$
N_{d}\left(-v, 2^{-1} v, 2^{-1} v\right)=p+O(1)
$$

and by Lemma 3.1

$$
N_{d}\left(0,-2^{-1} v, 2^{-1} v\right)=p N_{d}\left(-2^{-1} v, 2^{-1} v\right)=p^{2} .
$$

Also by (3.13)

$$
N_{d}{ }^{(1234)}\left(-2^{-1} v,-2^{-1} v, 2^{-1} v, 2^{-1} v\right)=p .
$$

Hence, by Lemma 3.3, we have
$N_{d}\left(-2^{-1} v,-2^{-1} v, 2^{-1} v, 2^{-1} v\right)=2(p+O(1))+4 p^{2}-\left(2 p^{2}+p\right)$ $-8 p+4 p+O(1)=2 p^{2}-p+O(1)$
and so

$$
\begin{equation*}
\sum_{9}=2 p^{2}-p+O(1) . \tag{4.14}
\end{equation*}
$$

Cases 10, 11, and 12 are exactly similar to Case 9 . We find that

$$
\begin{align*}
& \sum_{10}=-(e(v)+e(-v)+1) p^{2}+O(p) \tag{4.15}\\
& \sum_{11}=p^{3}-3 p^{2}+O(1) \tag{4.16}
\end{align*}
$$

and

$$
\begin{equation*}
\sum_{12}=O\left(p^{2}\right) \tag{4.17}
\end{equation*}
$$

Hence from (4.5), (4.6), ..., (4.17) we have

$$
\begin{equation*}
\sum_{\operatorname{deg}_{f=d}^{f}}|S(v)|^{2}=O\left(p^{d+2}\right) \tag{4.18}
\end{equation*}
$$

Suppose that there are more than ηp^{d+1} polynomials of fixed degree d which satisfy

$$
\begin{equation*}
\max _{1 \leqslant v \leqslant p-1}|S(v)|>p^{\frac{1}{2}+\epsilon} \tag{4.19}
\end{equation*}
$$

Then

$$
\begin{equation*}
\sum_{\substack{f \\ \operatorname{deg} \\ J=d}}\left\{\max _{1 \leqslant \imath \leqslant p-1}|S(v)|\right\}^{2}>p^{d+2+2 \epsilon} \tag{4.20}
\end{equation*}
$$

which contradicts (4.18) for sufficiently large p; and this is true for every positive η. Hence the number of polynomials which satisfy (4.19) is $o\left(p^{d+1}\right)$ and so almost all polynomials of degree d satisfy

$$
\max _{1 \leqslant v \leqslant p-1}|S(v)|=O\left(p^{\frac{1}{2}}\right)
$$

5. Proof of Theorem 3. We have that

$$
\begin{aligned}
\sum_{r=0}^{e-1} N_{r} N_{r+1} & =\sum_{r=0}^{e-1}\left\{\frac{1}{p_{x, t}} \sum_{t=0}^{p-1} e(t(f(x)-r))\right\}\left\{\frac{1}{p_{y, u=0}^{p-1}} e(u(f(y)-r-1))\right\} \\
& =\frac{1}{p^{2}} \sum_{x, y, t, u=0}^{p-1} e(t f(x)+u f(y)-u) \sum_{r=0}^{e-1} e(-(t+u) r)
\end{aligned}
$$

and so

$$
\begin{aligned}
\sum_{r=0}^{e-1} N_{r} N_{r+1} & -\frac{e}{p^{2}} \sum_{\substack{x, y, t, u=0 \\
t+u=0}}^{p-1} e(t f(x)+u f(y)-u) \\
& =\frac{1}{p^{2}} \sum_{\substack{x, y, t, u=0 \\
t+u \neq 0}}^{p-1} e(t f(x)+u f(y)-u) \sum_{r=0}^{e-1} e(-(t+u) r),
\end{aligned}
$$

that is

$$
\begin{aligned}
\mid \sum_{r=0}^{e-1} N_{r} & \left.N_{r+1}-\frac{e}{p} N_{f} \right\rvert\, \\
& =\frac{1}{p^{2}}\left|\sum_{v=1}^{p-1} \sum_{x, y, u=0}^{p-1} e((v-u) f(x)+u f(y)-u) \sum_{r=0}^{e-1} e(-v r)\right| \\
& =\frac{1}{p}\left|\sum_{v=1}^{p-1}\left\{\sum_{s=0}^{p-1} N_{s} N_{s+1} e(-s v)\right\}\left\{\sum_{r=0}^{e-1} e(+v r)\right\}\right| \\
& \leqslant \frac{1}{p} \sum_{v=1}^{p=1}|S(v)|\left|\sum_{r=0}^{e-1} e(+v r)\right| \\
& \leqslant \frac{1}{p} \max _{1 \leqslant v \leqslant p-1}|S(v)| \sum_{v=1}^{p-1}\left|\sum_{r=0}^{e-1} e(+v r)\right| \\
& <\max _{1 \leqslant v \leqslant p-1}|S(v)| \cdot \log p
\end{aligned}
$$

by a well-known result (see, for example, (8)). Hence

$$
e N_{f} \leqslant \max _{1 \leqslant v \leqslant p-1}|S(v)| \cdot p \log p
$$

and so by Theorems 1 and 2 , for almost all polynomials of fixed degree d, we have
i.e.

$$
\begin{aligned}
c_{d} p e & \leqslant k_{d} p^{\frac{1}{2}} \cdot p \log p \\
e & \leqslant k_{d} / c_{d} p^{\frac{1}{2}} \log p
\end{aligned}
$$

6. Conclusion. We have assumed throughout that $d \geqslant 4$. This was in fact necessary only in one place, namely Lemma 3.3. When $d=2$, a result of Burgess (2) gives

$$
\begin{equation*}
e=O\left(p^{11 / 24} \log ^{2 / 3} p\right) \tag{6.1}
\end{equation*}
$$

Concerning the case $d=3$, the author and K. McCann plan to publish a paper on the distribution of the residues of a cubic which will include the result

$$
\begin{equation*}
e=O\left(p^{\frac{1}{2}} \log p\right) \tag{6.2}
\end{equation*}
$$

valid for all cubics.
As we have only proved an "almost all" result, it would have been sufficient to prove that

$$
\begin{equation*}
N_{f}=p+O\left(p^{\frac{1}{2}}\right), \tag{6.3}
\end{equation*}
$$

for almost all polynomials f. A proof of this can be given on exactly the same lines as that of Theorem 2, by showing that

$$
\begin{equation*}
\sum_{\operatorname{deg}_{f=d}}\left(N_{f}-p\right)^{2}=O\left(p^{d+2}\right) . \tag{6.4}
\end{equation*}
$$

This, together with Theorem 2, proves Theorem 3 in a completely elementary manner but has the disadvantage of not showing the existence of e for all polynomials for all sufficiently large p.

We also remark that in the special case

$$
f(x)=a_{0} x^{d}
$$

we have

$$
\begin{aligned}
S(v)= & \sum_{s=0}^{p-1} N_{s} N_{s+1} e(-s v) \\
= & \sum_{s=0}^{p-1}\left\{1+\chi\left(a_{0}^{-1} s\right)+\ldots+\chi^{d-1}\left(a_{0}^{-1} s\right)\right\} \\
& \quad \times\left\{1+\chi\left(a_{0}^{-1}(s+1)\right)+\ldots+\chi^{d-1}\left(a_{0}{ }^{-1}(s+1)\right)\right\} e(-s v) \\
= & \sum_{i, j=0}^{d-1}\left\{\sum_{s=0}^{p-1} \chi^{i}\left(a_{0}^{-1} s\right) \chi^{j}\left(a_{0}^{-1}(s+1)\right) e(-s v)\right\},
\end{aligned}
$$

where χ denotes a d th order character $(\bmod p)$ (without loss of generality $d \mid p-1$) and so by a result of Perel'muter (9)

$$
S(v)=O\left(p^{\frac{1}{2}}\right)
$$

Hence

$$
e=O\left(p^{\frac{1}{2}} \log p\right)
$$

in this special case. When $a_{0}=1$, much more is known; see for example $(4,1)$ for the cases $d=3$ and 4 respectively.

Finally we make the following
Conjecture. For all polynomials of fixed degree d, we have

$$
e=O\left(p^{\frac{1}{2}} \log p\right)
$$

where the constant implied by the O-symbol depends only on d.

References

1. R. G. Bierstedt and W. H. Mills, On the bound for a pair of consecutive quartic residues of a prime, Proc. Amer. Math. Soc., 14 (1963), 628-632.
2. D. A. Burgess, On Dirichlet characters of polynomials, Proc. London Math. Soc., 13 (1963), 537-548.
3. L. Carlitz and S. Uchiyama, Bounds for exponential sums, Duke Math. J., 24 (1957), 37-41.
4. M. Dunton, Bounds for pairs of cubic residues, Proc. Amer. Math. Soc., 16 (1965), 330-332.
5. L-K. Hua, Die Abschatzung von exponential Summen und ihre Anwendung in der Zahlentheorie, Enzyklopädie der Mathematischen-Wissenschaften, vol. 1, pt. 2 (1959), p. 39.
6. S. Lang and A. Weil, Number of points of varieties in finite fields, Amer. J. Math., 16 (1954), 819-827.
7. S. H. Min, On systems of algebraic equations and certain exponential sums, Quart. J. Math. Oxford, 18 (1947), 133-142.
8. L. J. Mordell, On the least residue and non-residue of a polynomial, J. London Math. Soc., 38 (1963), 451-453.
9. G. I. Perel'muter, On certain sums of characters, Uspehi Mat. Nauk, 18 (1963), 145-149.
10. A. Weil, On the Riemann hypothesis in function fields, Proc. Nat. Acad. Sci. U.S.A., 27 (1941), 345-347.

University of Manchester, Manchester 13, England

