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Abstract
Blowing is often used to alleviate the intense heating rates on blunt noses of hypersonic vehicles. This flow efflux
at the leading edge transforms the flow field in the blunt-nose regions with implications on the dynamic stability
of the vehicles. As a demonstrative exercise, the flow fields past blunt-nosed and truncated-nosed conical bodies
under blowing and no-blowing conditions were perturbed to obtain the unsteady effects using the shock expansion
method to recover the unsteady pressure coefficient. Static and pitching moment derivatives were then duly obtained
by integrating the differential of the unsteady pressure coefficient with respect to the pitch angle (α) or the pitch
rate (θ̇ ) together with the moment arm with reference to the centre of gravity. The results obtained for blunt-nose
and truncated conical bodies show a noticeable drop in dynamic stability. Even when the flow is transformed from
a tangential blowing at the shoulder of the blunt-nosed vehicle shows some degradation in dynamic stability.

Nomenclature
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h(x,t) instantaneous height of a point on the body
l Moment arm
ρ Fluid density
p Pressure
Pb,s Pressure with blowing or on solid surface
p′

b,s Pressure perturbation due to unsteadiness
Pref Pressure at the reference location
P∞ Free stream pressure
RB Base radius
RN Nose radius
S Reference area
T Temperature
X Axial distance
V Velocity magnitude
R(x) Local radius
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Re Reynolds number
M Mach number
Mx Local Mach number
q pitch rate
t time for particle to move from apex to station x
�εp (x) change in angle of inclination of tangent to (projected) streamline (path line) of a particular fluid

element between vertex and point (x, R(x), ϕ) on body surface, measured in osculating plane of
reference

θ b(x) local angle of inclination of body surface to axis of symmetry
θ 0 slope of the body at the designated apex
ϑ pitch angle
ϕ azimuthal direction (360-θ ) measured clockwise from the starboard radius on the horizontal diameter

plane through the vertex

1.0 Introduction
Dynamic stability for vehicles pitching or plunging in hypersonic flow has been studied at length both
experimentally and analytically. Dynamic sability at hypersonic Mach numbers is difficult to resolve as
the disturbances that influence unsteady aerodynamic loads promoting high-frequency model oscilla-
tions are difficult to model. Accounting for the effect of these small-scale disturbances in experiments
or through numerical resolution is difficult and times consuming, respectively. In wind tunnel experi-
ments, the model mounted on a cross flexure or held about a typical CG location in a magnetic field is
subjected to oscillations under wind-off and wind on hypersonic flow conditions. In more sophisticated
free range facilities, the model is literally fired in between two stations up to 100 m apart. The frequency
of oscillations trace and the decay in oscillation amplitude trace under wind-on and wind off condi-
tions along with the spring constant readily provides the static (Cmα

) and dynamic moment coefficients
(Cmθ̇

). The challenge in the experimental method using short duration facilities is being able to main-
tain uniform hypersonic flow to obtain at least 10–15 complete oscillation cycles to ascertain accurate
and adequate amplitude decay and frequency determination. On the other hand, larger industrial level
hypersonic facilities can readily provide the uniform flow for sufficiently long run times to comfortably
recover dynamic stability characteristics.

For numerical simulation using CFD techniques, the unsteady flow field past a blunt model executing
high-frequency oscillation would be extremely difficult and expensive to resolve. The viscous flow field
near the blunt nose would be even more difficult to resolve for an unsteady oscillating model. The use of
LES or DNS would put it beyond the reach of most universities as the mesh requirements and other costs
related to extensive computational times would be absolutely prohibitive. The iterative computational
time step would have to be a very small, as the high-frequency motion would dictate a very small peri-
odic time for a complete cycle necessitating an enormous number of individual time steps at which the
required level of density or other lux residual levels are adequately satisfied. One of the first numerical
modeling was carried out by Rie et al. [1].

Tracking the progress in this discipline, there were important AGARD Refs [2, 3], which took a
comprehensive stock of the dynamic stability parametres from all experimental and numerical sources.
Other important individual contributions have been itemised by Khalid [4, 5] in some earlier publica-
tions. Beyond solid body dynamic stability investigation for sharp- or blunt-nosed configurations, there
have been little effort in recovering static or dynamic moment derivatives when the blowing is turned on
at the nose to alleviate any heating effects. For experimental studies, such mechanisms would be difficult
to install around the blunt nose, where the flow ejection rates from the solid surface in the local region
would have to be higher than the on-coming flow velocities in order to make a noticeable difference
to the heating flux. For the numerical studies, even under steady flow conditions it was found that the
interaction between the on-coming flow and the strong efflux from the nose leads to complex flow insta-
bilities known as the carbuncle flow phenomenon The flow field continues to show signs of convergence
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followed by instantaneous breakdown of flow convergence before it begins to converge again. This com-
plexity is only a small part of the problems experienced when simulating unsteady viscous hypersonic
flows.

The present work makes use of the more exactly flow field past the blunt models equipped with
the blowing near the nose switched on to minimise the heating effects. Dynamic stability for blunt
hypersonic vehicles with blowing has not been investigated in any depth in the past. Computation of flow
field past blunt axi-symmetric bodies is difficult owing to strong shock effects and complexity of flow
in the blunt-nose region where the flow passes through subsonic to sonic to hypersonic flow regimes in
a very small region of the flow. When the flow is equipped with surface blowing out of the blunt surface
it exacerbates the flow further as the efflux boundary condition is difficult to apply invariably leading
to solution breakdown as the solution becomes instable as the physics transforms instantly. It is a non-
trivial exercise to successfully recover the steady pressure flow field on a body with efflux and pitching
in hypersonic flow field. The resulting steady pressure field is then perturbed using the shock expansion
to account for the unsteady effects instead of actually computing the complex and costly unsteady flow
field. The effects of immediate angle–of-attack is duly built into the analytic expression before obtaining
the appropriate static and dynamic moment coefficients, which are in turn integrated over the surface of
the complete model to obtain the dynamic stability characteristics.

In all, four blunt models were investigated, which included two blunt cones of bluntness (RN /RB) 0.34
and 0.12 with a half-angle of 12.5o, as well as a truncated model flat sharp nosed model having a circular
front nose to base diameter ratio of 0.11. In order to assess the effects of tangential blowing as separate
from the previous frontal blowing, a round-nosed model of bluntness 0.34 was also investigated. In each
case, the results from a corresponding solid model were also computed to identify the isolate the effects
of blowing. The steady state results obtained from the computational study were duly compared to the
experiment as reported by Nowak [6]. The results reported by Nowak were directly related to the pure
cones studies in this paper. Elsewhere, there have been other more recent flow field studies on non-pure
cones carried out by Tissera et al. [7] to obtain pressure distribution and heat transfer rates on HB-2
configurations. This study made successful use of the Harten-Lax van Leer contact Riemann solver
in conjunction with fifth and nineth order WENO-M schemes as well as the second order MUSCLE
scheme. Paranas and Drikakis [8] have also numerically simulated unsteady flows at high Mach num-
bers around spiked blunt bodies. The experimental studies as reported by Paranas and Drikakis were
also carried out to know the effect of variations to the spike diameter to blunt body. Along similar vein
the work by Narayan et al. [9] numerically and experimentally investigates the flow at M = 5.8 flow past
varying nose cone configurations such as taper/stepped taper spiked, spherically blunted, and parabolic
nose cones at a fineness ratio of 3.6 and α= 0, in order to determine the best passively modified geom-
etry that provides the control of both the aerodynamic drag coefficient and surface heat flux. Another
important by Wantabe et al. [10] study involves investigating the flow field by allowing the air at M = 7
to enter the stagnation region at the blunt nose and ejected at the base. The alleviation of pressure at the
nose and suction at the nose should allegedly lead to at least 5% drag reduction.

Other than the Newak [6] work dealing with simple conical shapes, most of the above cases deal
with spiked models or the HP-2 configurations. Steady pressure distributions were suitably perturbed
using the shock expansion technique and the deflection of the surface streamlines as the underlying
body oscillates. It was learnt in all cases that blowing leads to deterioration in dynamic stability per-
formance. A parallel observation for dynamic stability of blunt cones was that using classic universal
curve for steady pressure field indiscriminately for blunt cones of any bluntness may lead to erroneous
result.

2.0 Computational approach to steady flow field with and without frontal blowing
The conservative form of the compressible Reynolds-Averaged Navier-Stokes equations as used in the
algorithm is as follows:
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ρ in these equations refers to the density, p the pressure and T is the temperature. E is the total energy
and u is the velocity vector in tensor format. τij is the viscous stress tensor which may be written as:

τij = μ
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∂ui

∂xj

+ ∂uj
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− 2

3

∂uk

∂xk

δij

)
(4)

The above Navier Stokes equations, formulated in strong conservation form to be used in the struc-
tured meshes of the present study, are first cast into curvilinear coordinate scheme following Vinokur
[11] transformation method. The numerical algorithm used to solve the Navier Stokes equations is
an implicit factorisation finite centre difference scheme about a regular rectangular prism, which is
described at length by Beam and Warming [12]. Local time linearisation is applied to the non-linear
terms following Pulliam and Chausee [13]. Approximate factorisation scheme is applied to the resulting
matrices, which factorises the operator itself resulting in efficient matrix equations with narrow band-
width. This results in block tridiagonal matrices, which are easy to solve. The spatial derivatives can
thus be approximated using second order central differences. Explicit and implicit artificial dissipation
terms are added to achieve nonlinear stability. A spatially variable time step is used to accelerate con-
vergence to steady state solutions. The algorithm can be used to solve time accurate or steady state flow
problems.

The fact that the Navier Stokes equations are formulated in a strong conservation form as well as the
implicit treatment of the artificial dissipation and the inclusion of a second order dissipation terms helps
in the shock capturing at high Mach numbers.

We selected k-ε and the Wilcox k-ω turbulence models for this investigation. For the two equations
turbulence models, the convection and diffusion terms of their transport equations are negligible in the
inertial sublayer so that local equilibrium prevails, which implies that the production of the turbulent
kinetic energy k is equal to the dissipation rate. The local equilibrium condition leads to two simple
relations that can be used as boundary conditions for k and the dissipation terms for both incompressible
and compressible flows. The compressible wall functions have been successfully applied to both attached
and separated flows under Mach number ranging from 0.1 to 10.

While the purpose in this study was not to scrutinise the capabilities of the turbulence models, nev-
ertheless for these simple bodies, very little difference in results was observed from the two turbulence
models. The Sutherland law is implemented to compute the laminar viscosity coefficient (μ). Since the
flows computed involve hypersonic Mach number the choice of the Prandtl number is selected to suite
the Mach number whereas the use of specific heat and the specific heat ratio cp/cv (γ) in the algorithm
for one species gas must also respect the high Mach number flow conditions subject to the relations by
Grundmann [14] and Gordon and McBride [15]:
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Figure 1. Mach number (solid surface) and velocity vectors (with frontal blowing) past a blunt cone of
bluntness 0.32.

cp(T)

R
=

n=4∑
n=0

anTn (5)

Where T is temperature, R is the real gas constant, h is Planck’s constant, v is the fundamental
vibrational frequency and k is Boltzman’s constant, and where an are curve-fit constants. As explained
in Khalid and Juhany [16] the input flow conditions (ρ, ρui, E) for the outflow surface are treated like a
new ‘slip’ condition, which remains fixed during the flow applied run. The algorithm iterates between
the successive grid planes near the exit control boundary until the desired flow conditions are matched
at the exit boundary as the convergence criterion is reached. For the corresponding solid surface run
this surface would understandably carry a no-slip boundary condition. Since the present applications
of the code deals with axi-symmetric flow fields produced when a simple two-dimensional mesh is
rotated about the body axis through a 45◦ azimuthal angle. The flow has to be carefully treated near the
polar stations. In such cases a computational coordinate surface may represent a physical 3D line. For
example, with an “O” grid the circles (2D) or cylinders (3D) collapse to points and lines, respectively.
The flow variables at the singular boundary are the average of the points surrounding the singular point.

The flow field as recovered from using above CFD method on a solid blunt cone of bluntness 0.34
and the same body with frontal blowing rate of

ρu local

ρ∞u∞
= 0.576 are shown in Fig. 1. The outflow at

the leading edge was only implemented around the front blunt nose. Following the hypersonic heat
alleviation experiment [6], the efflux rate here corresponds to mass rate of 2.09 kg/s. A similar study
was conducted on a blunt cone of bluntness 0.12.

Another blunt Gasjet configuration with a flat frontal surface of the same circular cross section as
the 0.12 blunt cone was computed at a Mach number of M = 6.8. The Mach number distribution and
velocity vectors for the truncated blunt frontal nose are shown in Fig. 2.

A feature of particular bearing on flow stability is the inherent unsteady flow field (Fig. 3, right), which
evolves as a result of the high Mach number flow field being confronted by the outflow immediately in
front of the flat front surface. As discussed by Khalid and Juhany [17], the flow seems to be numerically
instable as the solution seems to converge followed by a breakdown of the flow field uniformity and
deterioration of convergence. This behaviour seems to repeat near the convergence. This type of flow
behaviour as discussed in reference [18, 19] is due to the carbuncle instability phenomenon.

It was observed in both computations and the shadowgraph that the outflow at the nose causes the
stagnation region to be blown outwards in a spherical bubble shape pushing against the frontal shock.
Note the presence of the supersonic bubble inside of the main shock. The flow region in between the
main jet interface and the nozzle shock contains the slower expanded flow in both simulation and the
experiment.
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Figure 2. Mach number distribution past a solid blunt cone of (left) and with blowing (right).

Figure 3. Gasjet experiment by Nowak (Ref. 8) M = 6.8, with a frontal blowing rate of,
ρu local

ρ∞u∞
= 0.15

(left). Note the unsteady flow near the leading edge (right).

The final set of results deal with a 0.32 bluntness cone with shoulder peripheral blowing just past the
spherical nose. The flow field with and without the blowing from the shoulder jet of the Slatjet is shown
in Fig. 4. It is clear from the viewgraph with shoulder blowing that the boundary layer is blown off from
the surface with the strong peripheral jet from the shoulder.

The most important aspect of the present study was to be able to recover the steady pressure fields
from above cases which are then in turn used in the following analysis to recover dynamic stability
characteristics of blunt bodies. The pressure fields for the above blunt-nosed case bodies are shown in
the following Fig. 5. While grid sensitivity study and the numerical error has been discussed in Khalid
and Juhany [16, 17], it can be seen that the prediction especially on the straight portion of the model lies
within 1–2% of the experiment.

The pressure distributions as computed on the blunt models showed satisfactory agreement with the
measurements on the straight potion away from the blunt nose. The comparison for the blunt region was
difficult, as no measurements had been recorded for this region.

3.0 Analytic approach to dynamic stability from steady flow field
The analytic approach relies on being able to obtain of a reliable pressure flow field and then using
the classic shock expansion approach to perturb this solution. The angular displacement of a typical
streamline near the surface of the body can be evaluated in terms of the pitch rate, the body half-angle
and the flow velocity. The steady pressure distribution in all cases as discussed in previous discussion
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Figure 4. Slatjet solid model (top) and with shoulder blowing (bottom), blowing rate = ρu local

ρ∞u∞
= 0.15.

was used from existing results on heat alleviation study [16, 17] on blunt conical bodies in hypersonic
flow. The unsteady pressure at small angles of attack on an oscillating blunt body with or without blowing
may be expressed in terms of the steady and unsteady component:

Pb,s(x, α, t) = Pb,s(x, α) + p′
b,s(x, α) (6)

Where, the subscripts b and s refer to either solid or frontal blowing condition and p′
b,s refer to the

instantaneous perturbation value as results of the body oscillations.
The unsteady pressure perturbation p′

b,s may be evaluated from the shock expansion expression as
developed by Eggers [20]. The shock expansion as used here will be drawn from Refs [21, 22] without
entering too much detail. Hence:

p′
b,s(x, α) = ρV(x)2√

(M2
x − 1)

�εp (7)
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Figure 5. Pressure distributions on blunt-nosed bodies: R3 (a), R1 (b), Gasjet (c) and Slat-jet (d).

which gives,

Pb,s(x, α, t)

Pb,s(x, α)
= 1 + γ M2

x√
(M2

x − 1)
�εp(x) (8)

Where �εp is the angular change of a particle from the body vertex to a station x along the body
subject to a motion schedule involving plunging and or pitching motion. This angular change may be
written in terms of the instantaneous height of the particle h(x,t) and the expansion of the streamline
along which it traverses. Thus following Scott [23],

�εp (x) = ∣∣tan−1

{
dh(x, τ(x))

dx
. sinϕ + dR(x)

dx

}
(9)

This inclination angle �εp (x) of a path line projected on the surface of the body in purely pitching
motion can be shown [16] as:

�εp = (θb(x) − θ0) + 2 ϑ (θb(x) − θ0) sin θ0 cos θ0 sin ϕ − q

V̄∞
cos θ0 sin ϕ.

{
2x + tan θ0 .

[∫x
0 (θb(x) − θ0) dx − (x − x0) . (θb(x) − θ0)

]

+ 1√
M2

∞ − 1
.

[∫x
0 (θb(x) − θ0) dx − (x − x0) . (θb(x) − θ0)

] }
(10)

where, θ0 is the angle at the vertex and θb(x) is the inclination of the surface at the stations x. q is the
body pitch rate, is the magnitude of the free stream velocity at the nose and M∞is the Mach number,
which corresponds to the free stream velocity at the nose. For a conical body with constant surface slope
(θb(x) = θ0), the above expression simplifies to:
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�εp = −2x
cos θ0 sin ϕ

V∞
(11)

and the effective angle-of-attack of the body pitching at q and instantaneous pitch angle ϑ is given
by:

αe = ϑ − q(x sec θ0 + θ0)

V∞
(12)

The unsteady pressure can thus be written in terms of the instantaneous pressure perturbation and
the effects from pitch rate and the effective angle-of-attack.

Pb,s(x, α, t)

P∞
= Pb,s(x, α, t)

Pb,s(x, α)

Pb,s(x, α)

Px,α=0

Px,α=0

Px,ref

Px,ref

P∞
(13)

The pressure distribution of a body at angle–of-attack with respect to the pressure at zero angle-of-
attack is given by [24]

P,s(x, α) = Px,α=0 − η αe Sin ϕ + α2
e (D − Cos2ϕ) (14)

and where
Px,ref

P∞
represents the location on the spherical nose where the supersonic condition are first

reached. This leads us to write the unsteady pressure coefficient as:

Cp = 2

γ M2
∞

{
Pb,s(x, α, t)

P∞

Pb,s(x, α, t)

Pb,s(x, α)

Pb,s(x, α)

Px,α=0

Px,α=0

Px,ref

Px,ref

P∞
− 1

}
(15)

Static and pitching moment derivatives can now be obtained by obtaining
∂Cp(b,s)

∂α
and

∂Cp(b,s)

∂q
and

integrating the expression over the complete surface of the blunt body under solid and frontal blowing
conditions, i.e.

Cmα = 1

S l
∫l

0 ∫2π

0

∂Cp(b, s)

∂α
R(x) l(x) sin ϕdϕ dx (16)

q = 2V∞
S l

∫l
0 ∫2π

0

∂Cp(b, s)

∂q
R(x) l(x) sin ϕdϕ dx (17)

l(x) is the moment ars l = x Sec2θ0 − x0 and R(x) is the local radius at station x. Pressure distribution
for the blunt body under solid and blowing condition were successively introduced in the expression for
the static and dynamic stability derivatives to obtain the stability characteristics. The above expression
for Cmq assumes that the α̇ effects in the expression Cmθ̇ are very small and, in fact, Cmθ̇ = Cmq .

4.0 Results
Static and dynamic derivatives were computed for the blunt configurations discussed above. For consis-
tency, and also due to absence of measured date in the nose region, only the computed pressure fields
were introduced into the expressions for static and dynamic derivatives. The static derivative Cmα for
the blunt cones is shown on the left side of Fig. 6.

The sharp cone result for the 12.5 deg half-angle (θ o) is only introduced as a reference. The constant
surface pressure from the conical relationships was Pc/P∞ = 3.94, and the surface Mach number used
was M = 5.12. It is clear that for axis position ahead of X0 = 0.66, the static stability deceases with
increasing bluntness for the two blunt cones when compared to a corresponding sharp cone. The trend
reverses after X0 = 0.66. It was learnt that the frontal blowing has no noticeable effect on the static sta-
bility. The blunt cones do, however, show that bluntness causes a consistent decrease in dynamic stability
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Figure 6. Static stability derivative (left) and dynamic stability derivative versus X0/C.

Figure 7. Staic stability (left) and dynamic stability derivatives for the Gasjet and Slatjet versus X0/C.

for all axis positions. It is also noted that, for cones of large bluntness, the blowing leads to deterioration
in dynamic stability. For cones of smaller bluntness, the frontal blowing only has a relatively smaller
surface area through which the outflow can be pumped, whereas the cones of larger bluntness will have
a larger region through which the outflow can be effectuated, which leads to a relative larger interplay
against the oncoming flow.

Examining the flow field physically, it appears that the flow impacting on the nose is opposed by the
flow emerging from the blunt nose, which comprises the existing dynamic instability Cmq between the
flow and pitching cone. Increasing the bluntness leads to increasing interference between the flow and
the underlying oscillating flow. This is certainly borne out by the fact that cones with larger bluntness
experience incrementally more deterioration in dynamic stability. Since the effective angle-of-attack,

αe = ϑ − q (x sec θ0 + θ0)

V∞
is not too adversely affected by the efflux from the blunt nose, the static

stability Cmαremains unaffected by blowing.
The static and dynamic derivative response against axis of oscillation position X/0/C for the Gasjet

and the Slatjet are shown in Fig. 7. Once again the static stability derivative Cmα , although shows a loss
in stability with increased level of bluntness whether for the Gasjet or the Slatjet, yet the blowing does
not cause any noticeable difference to the staic stability. The dynamic stability derivate Cmq, however,
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is affected by the bluntness as well as by the blowing. The Gasjet, which is equipped with a flat surface
to incorprate appropriate blowing, is most effective for creating a cooling bubble in front of the blunt
nose. This cooling bubble produces a virtual bluntness which causes a depreciation of dynamic stability.
Thus cooling in front leads to a decrease in dynamic stability derivative Cmq when compared to the
solid Gasjet body. The Slatjet experment had used a small value of blowing

ρu local

ρ∞u∞
= 0.15 from the

peripheral shoulder, which when applied at the aft conical surface of the Slatjet, may make a difference
to the underlying heating rate, but it makes little difference to the dynamic stability derivative.

Once again, interpreting the flow physically, the model with larger efflux against the on-coming flow
experiences larger adverse effect from blowing. The Gasjet model with a notably large blowing frontal
area opposing the incoming flow and supporting a spherical flow bubble experiences the largest drop
in dynamic stability for almost all axis locations upstream of X0/C = 0.8. Beyond X0/C the bluntness
and blowing effects are reduced as additional mass flow gives rise to body thickness effects showing
some increase in dynamic stability. The slatjet, introduced tangentially into the flow field past the blunt
surface region does not interfere as much with the incoming flow and the underlying blunt body. The
slatjet may help with heat alleviation but does not adversely affect the dynamic stability. The static
stability as alluded to earlier, depends directly upon the instantaneous angle-of-attack and is not affected
by the pitching conditions q or ϑ̇ .

5.0 Conclusion
The present analytic modeling shows that the static stability derivative is not too adversely by blowing
as the expression for Cmα is driven largely by the steady pressure distribution and not by the pitching
conditions q or ϑ̇ . The dynamic stability appears to depreciate with both bluntness and blowing rate.
Cones of smaller bluntness cannot be equipped to force excessive outflow from small blunt regions and
thus their stability is not affected by blowing.

Dynamic stability of cones with sharp square-edged frontal bluntness equipped with blowing suffer
more than the cones with tangential shoulder blowing. This is because the sharp edge in front traps a
larger region of slower air bubble than simple rounded nose, which smoothly diverts the air downstream.
The incoming flow is disturbed with larger bluntness and blowing leading to depreciation of Cmq.
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