A NOTE ON QUASI-METRIZABILITY

GARY GRUENHAGE

1. Introduction. Let X be a set. A function d from $X \times X$ into the nonnegative real numbers is called a (non-archimedean) quasi-metric on X if
(i) $d(x, y)=0$ if and only if $x=y$, and
(ii) for all $x, y, z \in X, d(x, z) \leqq d(x, y)+d(y, z)$ $(d(x, z) \leqq \max \{d(x, y), d(y, z)\})$.

A topological space (X, T) is said to be (non-archimedeanly) quasi-metrizable if there exists a (non-archimedean) quasi-metric on X compatible with T (i.e., the ϵ-neighborhoods form a base for the topology). Denote by N the set of positive integers, and let $g: N \times X \rightarrow T$ be a function such that for each $x \in X, x \in \bigcap_{n=1}^{\infty} g(n, x)$. The above notions can be simply characterized in terms of such a function g (see, e.g., Hodel [1]). Consider the following properties which such a function g could have:
(A) $\{g(n, x) \mid n \in N\}$ is a local base at x;
(B) if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$;
(C) if $y \in g(n+1, x)$, then $g(n+1, y) \subset g(n, x)$;
(D) for each x and each n, there exists $m \in N$ such that if $y \in g(m, x)$, then $g(m, y) \subset g(n, x)$.
Of course, first countable spaces are characterized by those spaces which admit a function g satisfying property (A). Non-archimedeanly quasi-metrizable spaces, quasi-metrizable spaces, and the so-called γ-spaces [1] are characterized by the existence of a function g satisfying (A) and (B), (A) and (C), and (A) and (D), respectively [4]. As demonstrated by Lindgren and Fletcher in [3], the class of γ-spaces is the same as the class of co-Nagata spaces and the class of Nagata first countable spaces. For any space, the following implications hold: n.a.-quasi-metrizable \Rightarrow quasi-metrizable $\Rightarrow \gamma$-space \Rightarrow first countable. Kofner [2] has exhibited a quasi-metrizable space which is not non-archimedeanly quasi-metrizable. However, it is not known whether every γ-space is quasi-metrizable.

A base B for a space X is an ortho-base if whenever $B^{\prime} \subset B$ and $x \in \cap B^{\prime}$, then either $\cap B^{\prime}$ is open or B^{\prime} is a local base at x. In [4], Lindgren and Nyikos ask whether any of the above implications reverse in the presence of an orthobase. To give a partial answer to this question, we consider the class of protometrizable spaces, i.e., the paracompact spaces with an ortho-base. We show that the first two implications do reverse in the class of proto-metrizable spaces.

Received April 30, 1976.

We give an example to show that the third implication does not reverse, however, even for non-archimedean spaces. Recall that X is a non-archimedean space if there is a base \mathscr{B} for X which has rank 1 (i.e., if $B, B^{\prime} \in \mathscr{B}$ and $B \cap B^{\prime} \neq \emptyset$, then either $B \subset B^{\prime}$ or $\left.B^{\prime} \subset B\right)$. Non-archimedean spaces are ultraparacompact and \mathscr{B} is an ortho-base [5]. Our example is also a linearly ordered space with a point-countable base which is not quasi-metrizable, so it also answers a question of Heath [6].
2. It is the purpose of this section to prove the following theorem:

Theorem 1. If X is a proto-metrizable space, then the following are equivalent:
(i) X admits a non-archimedean quasi-metric;
(ii) X is quasi-metrizable;
(iii) X is a γ-space.

Before we embark on the proof of this theorem, we shall state another characterization of proto-metrizable spaces due to Nyikos [5].

Let X be a topological space, and let γ be any ordinal number. A collection $\left\{U_{\alpha}\right\}_{\alpha<\gamma}$ of open collections is called a proto-uniformizing family if
(i) $\cup U_{\alpha}=\cup U_{\alpha+1}$ for every $\alpha<\gamma$;
(ii) if $\beta<\alpha<\gamma$, then U_{α} star-refines U_{β}, i.e., $\left\{\operatorname{st}\left(x, U_{\alpha}\right) \mid x \in X\right\}$ is a refinement of U_{β}; and
(iii) for every $x \in X,\left\{\operatorname{st}\left(x, U_{\alpha}\right) \mid \alpha<\gamma\right\}$ is a base at x.
X is proto-metrizable if and only if there exists a proto-uniformizing family for X.

Lemma 1. Let X be proto-metrizable, and let O be an ortho-base for X. There exists a proto-uniformizing family $\left\{U_{\alpha}\right\}_{\alpha<\gamma}$, where each U_{α} is minimal (i.e., for each $U \in U_{\alpha}, U_{\alpha}-\{U\}$ is not a cover of $\left.\cup U_{\alpha}\right)$, and collections $V_{\alpha} \subset O, \alpha<\gamma$, such that for each $\alpha, U_{\alpha+1}$ star-refines $V_{\alpha+1}$, and $V_{\alpha+1}$ star-refines U_{α}; also if $V \in V_{\alpha}$, then there exists $U \in U_{\alpha}$ with $U \subset V$.

Proof. Let $V_{1}{ }^{\prime}=O$, and let U_{1} be a minimal star-refinement of O. Let $V_{1}=\left\{V \in V_{1}^{\prime} \mid\right.$ there exists $U \in U_{1}$ such that $\left.U \subset V\right\}$.

Suppose U_{α} and V_{α} have been constructed for all $\alpha<\beta$. If $\beta=\beta^{\prime}+1$, we can use the hereditary paracompactness of X to find a subset $V_{\beta}{ }^{\prime} \subset O$ which star-refines $U_{\beta^{\prime}}$. Let U_{β} be a minimal star-refinement of $V_{\beta}{ }^{\prime}$ such that if $\operatorname{st}\left(x, U_{\beta}\right) \subset U \in U_{\beta^{\prime}}$, then either $\operatorname{st}\left(x, U_{\beta}\right) \neq U$, or U is degenerate. Let $V_{\beta}=\left\{V \in V_{\beta}{ }^{\prime} \mid\right.$ there exists $U \in U_{\beta}$ such that $\left.U \subset V\right\}$.

If β is a limit ordinal, let

$$
\begin{aligned}
D_{\beta}=\left\{\operatorname{Int}\left(\bigcap_{\alpha<\beta} \operatorname{st}\left(x, U_{\alpha}\right)\right) \mid x\right. & \in X\} \\
& -\left\{U \in \underset{\alpha<\beta}{\cup} U_{\alpha} \mid U=\{x\} \text { for some } x \in X\right\} .
\end{aligned}
$$

Using the fact that for each $\alpha<\beta$ and $x \in \cup U_{\alpha+1}$, there exists $V \in V_{\alpha+1}$ such that st $\left(x, U_{\alpha+1}\right) \subset V \subset \operatorname{st}\left(x, U_{\alpha}\right)$, and that O is an ortho-base, it is easy to see that if $x \notin \cup D_{\beta}$, then $\left\{\operatorname{st}\left(x, U_{\alpha}\right) \mid \alpha<\beta\right\}$ is a base at X. Let V^{\prime} be a subset of O which star-refines D_{β}. Let U_{β} be a minimal star-refinement of $V_{\beta}{ }^{\prime}$, and let $V_{\beta}=\left\{V \in V_{\beta}{ }^{\prime} \mid\right.$ there exists $U \in U_{\beta}$ such that $\left.U \subset V\right\}$. We continue until $D_{\gamma}=\{\emptyset\}$ for some ordinal γ. It is easy to check that $\left\{U_{\alpha}\right\}_{\alpha<\gamma}$ and $\left\{V_{\alpha}\right\}_{\alpha<\gamma}$ satisfy the desired properties.

Proof of Theorem 1. It is clear that (i) \Rightarrow (ii) \Rightarrow (iii). We shall prove (iii) \Rightarrow (i).

Suppose $X,\left\{U_{\alpha}\right\}_{\alpha<\gamma}$, and $\left\{V_{\alpha}\right\}_{\alpha<\gamma}$ are as in Lemma 1, and suppose also that $g: N \times X \rightarrow T$ satisfies properties (A) and (D). Without loss of generality, we can assume $g(n, x) \supset g(n+1, x)$ for all $x \in X$ and $n \in N$. Call an ordered pair $\left(V, V^{\prime}\right) \in V_{\alpha} \times V_{\alpha^{\prime}}$ an (n, m)-pair of x corresponding to z if
(i) $x \in V \cap V^{\prime}$,
(ii) $V \subset g(n, z)$ and $V^{\prime} \subset g(m, z)$,
(iii) $y \in g(m, z)$ implies $g(m, y) \subset g(n, z)$, and
(iv) if ($V^{\prime \prime}, V^{\prime \prime \prime}$) $\in V_{\beta} \times V_{\beta^{\prime}}$ satisfies (i)-(iii), then $\alpha \leqq \beta$ and $\alpha^{\prime} \leqq \beta^{\prime}$.

Fix $x \in X, x$ not isolated, and integers n and m, with $n \leqq m$. Define $\alpha_{0}(x, n, m)=\inf \left\{\alpha^{\prime}<\gamma \mid\right.$ there is an (n, m)-pair $\left(V, V^{\prime}\right)$ for x with $\left.V^{\prime} \in V_{\alpha^{\prime}}\right\}$, providing this set is non-empty. If $\alpha(x, n, m)$ has been defined for all $\beta<\beta^{\prime}$, define $\alpha_{\beta^{\prime}}(x, n, m)=\inf \left\{\alpha^{\prime}<\gamma \mid\right.$ there is an (n, m)-pair $\left(V, V^{\prime}\right)$ for x with $\left(V, V^{\prime}\right) \in V_{\alpha} \times V_{\alpha^{\prime}}$, and $\alpha>\alpha_{\beta}(x, n, m)$ for all $\left.\beta<\beta^{\prime}\right\}$, providing this set is non-empty. Continue until it is in fact empty, and suppose this occurs after $\alpha_{\beta}(x, n, m)$ has been defined for all $\beta<\beta_{0}$. Now we make the following definitions:
(i) $\alpha^{\prime}(x, n, m)=\sup \left\{\alpha_{\beta}(x, n, m) \mid \beta<\beta_{0}\right\} ;$
(ii) $V^{\prime}(x, n, m)=\bigcap\left\{V \in V_{\alpha} \mid \alpha \leqq \alpha^{\prime}(x, n, m)\right.$ and $\left.x \in V\right\}$;
(iii) $\alpha(x, n, m)=\inf \left\{\alpha \mid \operatorname{st}\left(x, V_{\alpha}\right) \subset V^{\prime}(x, n, m)\right\}$;
(iv) $V(x, n, m)=\cap\left\{V \in V_{\alpha} \mid \alpha \leqq \alpha(x, n, m)\right.$ and $\left.x \in V\right\}$.

Claim I. It is true that $\alpha^{\prime}(x, n, m)<\beta_{x}$, where β_{x} is the least ordinal β such that $\left\{\operatorname{st}\left(x, V_{\alpha}\right) \mid \alpha<\beta\right\}$ is a base at x.

To see that Claim I holds, first note that $\alpha_{\beta}(x, n, m)<\beta_{x}$ for all $\beta<\beta_{0}$. For each $\beta<\beta_{0}$, there is an (n, m)-pair $\left(V, V^{\prime}\right) \in V_{\alpha(\beta)} \times V_{\alpha^{\prime}(\beta)}$ for x corresponding to z_{β} with $\alpha^{\prime}(\beta)=\alpha_{\beta}(x, n, m)$ and $\alpha(\beta)>\alpha_{\delta}(x, n, m)$ for all $\delta<\beta$. Now $x \in \bigcap_{\beta<\beta_{0}} g\left(m, z_{\beta}\right)$, so $g(m, x) \subset \bigcap_{\beta<\beta_{0}} g\left(n, z_{\beta}\right)$. We have assumed x is not isolated, so by property (iv) in the definition of (n, m)-pair, it must be true that $\sup \left\{\alpha(\beta) \mid \beta<\beta_{0}\right\}<\beta_{x}$. Since $\alpha(\beta) \leqq \alpha^{\prime}(\beta)=\alpha(x, n, m)<$ $\alpha(\beta+1)$ for all $\beta<\beta_{0}$, it is now clear that $\alpha^{\prime}(x, n, m)<\beta_{x}$.

From Claim I it follows that $V^{\prime}(x, n, m)$ is open, for suppose not. Then $\left\{V \in V_{\alpha} \mid \alpha \leqq \alpha^{\prime}(x, n, m)\right.$ and $\left.x \in V\right\}$ is a base at x. Thus there exists some $V \in V_{\beta}$, with $x \in V \nsubseteq$ st $\left(x, V_{\alpha^{\prime}(x, n, m)}\right)$ and with $\beta+1 \leqq \alpha^{\prime}(x, n, m)$. There exists $U \in U_{\beta}$ with $U \subset V$. Since U_{β} is minimal, there exists $p \in U-$
$\cup\left\{U^{\prime} \in U_{\beta} \mid U^{\prime} \neq U\right\}$. Now $p \in \operatorname{st}\left(x, V_{\alpha^{\prime}(x, n, m)}\right) \subset$ st $\left(x, V_{\beta+1}\right) \subset U^{\prime}$ for some $U^{\prime} \in U_{\beta}$. Since $p \in U^{\prime}$, we must have $U^{\prime}=U$. The contradiction $U \subset V \subsetneq \operatorname{st}\left(x, V_{\alpha^{\prime}(x, n, m)}\right) \subset U$ proves that $V^{\prime}(x, n, m)$ is open. From this it is easy to see that $\alpha(x, n, m)<\beta_{x}$, and reasoning identical to the above shows that $V(x, n, m)$ is open.

Claim II. If $y \in V(x, n, m)$, then $V(y, n, m) \subset V(x, n, m)$.
To prove this claim we need only show that if $y \in V(x, n, m)$, then $\alpha(y, n, m) \geqq \alpha(x, n, m)$. Let us suppose $y \in V(x, n, m)$ and $\alpha(y, n, m)<$ $\alpha(x, n, m)$. Note that every (n, m)-pair for x satisfies conditions (i)-(iii) in the definition of an (n, m)-pair for y. Thus $\alpha_{0}(y, n, m) \leqq \alpha_{0}(x, n, m)$. If $\alpha_{0}(y, n, m)<\alpha_{0}(x, n, m)$, then there is an (n, m)-pair $\left(V, V^{\prime}\right)$ for y which is not an (n, m)-pair for x, where $V^{\prime} \in V_{\alpha_{0}(y, n, m)}$. Thus $x \notin V \cap V^{\prime}$. Since $x \in \operatorname{st}\left(x, V_{\alpha(x, n, m)}\right) \subset$ st $\left(y, V_{\alpha(x, n, m)}\right)$ and st $\left(y, V_{\alpha(y, n, m)}\right) \subset V \cap V^{\prime}$, it must be true that $\alpha(y, n, m)>\alpha(x, n, m)$, contradiction. Thus $\alpha_{0}(y, n, m)=$ $\alpha_{0}(x, n, m)$. Now suppose $\alpha_{\beta}(y, n, m)=\alpha_{\beta}(x, n, m)$ for all $\beta<\beta^{\prime}$. Then by exactly the sane reasoning as above, we can show that $\alpha_{\beta^{\prime}}(y, n, m)=$ $\alpha_{\beta^{\prime}}(x, n, m)$. Thus $\alpha_{\beta}(y, n, m)=\alpha_{\beta}(x, n, m)$ for all $\beta<\beta_{0}$. Hence $\alpha^{\prime}(y, n, m) \geqq$ $\alpha^{\prime}(x, n, m)$. From this it easily follows that $\alpha(y, n, m) \geqq \alpha(x, n, m)$, a contradiction which proves Claim II.

Let $\left\{\left(n_{k}, m_{k}\right) \mid k \in N\right\}$ be an enumeration of $\{(n, m) \in N \times N \mid n \leqq m\}$. For each non-isolated point $x \in X$, define $g^{\prime}(1, x)=V\left(x, n_{1}, m_{1}\right)$. If $g^{\prime}(i, x)$ has been defined for all $i<k$, let

$$
g^{\prime}(k, x)= \begin{cases}g^{\prime}(k-1, x) & \text { if } V\left(x, n_{k}, m_{k}\right) \supset V\left(x, n_{k-1}, m_{k-1}\right) \\ V\left(x, n_{k}, m_{k}\right) & \text { otherwise. }\end{cases}
$$

If x is isolated, define $g^{\prime}(n, x)=\{x\}$ for all $n \in N$. Now suppose $y \in g^{\prime}(k, x)$, $y \neq x$. Let k^{\prime} be the least integer such that $g^{\prime}\left(k^{\prime}, x\right)=g^{\prime}(k, x)$. Then $y \in V\left(x, n_{k^{\prime}}, m_{k^{\prime}}\right)$, so $g^{\prime}(k, y) \subset g^{\prime}\left(k^{\prime}, y\right) \subset V\left(y, n_{k^{\prime}}, m_{k^{\prime}}\right) \subset V\left(x, n_{k^{\prime}}, m_{k^{\prime}}\right)=$ $g^{\prime}(k, x)$. Thus g^{\prime} satisfies property (B). That g^{\prime} satisfies property (A) follows from the fact that if n and m are such that $y \in g(m, x)$ implies $g(m, y) \subset$ $g(n, x)$, then $V^{\prime}(x, n, m) \subset g(n, x)$. Thus X admits a non-archimedean quasimetric, and the proof is finished.
3. It is the purpose of this section to describe an example of a first countable non-archimedean space which is not a γ-space. The space we describe is also a linearly ordered space with a point-countable base. The author is grateful to Peter Nyikos for suggesting that this space may be such an example.

Let A be an uncountable set. The points of the space X are all sequences $\left\{x_{\alpha}\right\}_{\alpha<\beta}$ of elements of A which are of the following type:
(i) $\beta<w_{1}$;
(ii) there exists an $a \in A$ which is repeated infinitely many times in the sequence; and
(iii) if $\gamma<\beta$, then no element of A is repeated infinitely many times in the sequence $\left\{x_{\alpha}\right\}_{\alpha<\gamma}$.
If $x=\left\{x_{\alpha}\right\}_{\alpha<\beta} \in X$, and $\gamma<\beta$, we denote by $x(\gamma)$ the sequence $\left\{x_{\alpha}\right\}_{\alpha<\gamma}$. Let $U(x(\gamma))=\{y \in X \mid y(\gamma)=x(\gamma)\}$. Let

$$
U=\left\{U(x(\gamma)) \mid x=\left\{x_{\alpha}\right\}_{\alpha<\beta} \in X \text { and } \gamma<\beta\right\}
$$

be a base for a topology on X. It is easy to see that if $U(x(\gamma)) \cap U(y(\delta)) \neq \emptyset$, then either $x(\gamma)=y(\gamma)$ or $x(\delta)=y(\delta)$; hence $U(x(\gamma)) \supset U(y(\delta))$ or $U(x(\gamma)) \subset U(y(\delta))$. Thus X is a non-archimedean space. Note also that if $x=\left\{x_{\alpha}\right\}_{\alpha<\beta} \in X$, then the only elements of U which contain x are the sets $U(x(\gamma)), \gamma<\beta$. Thus X has a point-countable base. Finally, let " $<$ " be any linear order on A. If $x=\left\{x_{\alpha}\right\}_{\alpha<\beta}$ and $x^{\prime}=\left\{x_{\alpha}{ }^{\prime}\right\}_{\alpha<\beta^{\prime}}$ are in X, define $x<x^{\prime}$ and only if $x_{\gamma}<x_{\gamma}{ }^{\prime}$, where γ is the least ordinal such that $x_{\gamma} \neq x_{\gamma}{ }^{\prime}$. It is easy to check that the linear order topology induced on X is the same as the topology induced by U.

It remains to prove that X is not a γ-space. By Theorem 1 , we need only show that X does not admit a non-archimedean quasi-metric. Suppose there exists a function $g^{\prime}: N \times X \rightarrow T$ satisfying properties (A) and (B) given in the introduction. For each $x \in X$ and $n \in N$, there is a least ordinal γ such that $U(x(\gamma)) \subset g^{\prime}(n, x)$. Define $g(n, x)=U(x(\gamma))$. It is easy to check that g also satisfies properties (A) and (B).

Let $A^{\prime}=\left\{a^{1}, a^{2}, \ldots\right\}$ be any countably infinite subset of A. Since $x_{0}=\left(a_{n}{ }^{1}\right)_{n \in w}$, where $a_{n}{ }^{1}=a^{1}$ for all n, is an element of X, there exists $m(0) \in w$ such that $U\left(a_{0}{ }^{1}, a_{1}{ }^{1}, \ldots, a_{m(0)}{ }^{1}\right)=g\left(n(0), x_{0}\right)$ for some $n(0) \in N$. Let $s_{0}=\left(a_{0}{ }^{1}, a_{1}{ }^{1}, \ldots, a_{m(0)}{ }^{1}\right)$. (Of course, we can take $n(0)=1$, but this is not necessary.) Similary, there exists $m(1) \in w$ such that $U\left(a_{0}{ }^{1}, a_{1}{ }^{1}, \ldots, a_{m(0)}{ }^{1}\right.$, $\left.a_{m(0)+1}{ }^{n(0)}, \ldots, a_{m(1)}^{n(0)}\right)=g\left(n(1), x_{1}\right)$ for some $n(1) \in N$, where $x_{1}=$ $\left(a_{0}{ }^{1}, \ldots, a_{m(0)}{ }^{1}, a_{m(0)+1^{n(0)}}, a_{m(0)+2^{n(0)}}, \ldots\right.$). Let

$$
s_{1}=\left(a_{0}{ }^{1}, \ldots, a_{m(0)^{1}}, a_{m(0)+1}^{n(0)}, \ldots, a_{m(1)}{ }^{n(0)}\right)
$$

Now suppose $m(\alpha), n(\alpha), s_{\alpha}$ and x_{α} have been defined for all $\alpha<\beta$. Let s denote the sequence such that $s(\gamma)=s_{\alpha}(\gamma)$ for every γ for which $s_{\alpha}(\gamma)$ is defined, and $s(\gamma)$ is not defined if $s_{\alpha}(\gamma)$ is not defined for any $\alpha<\beta$. Suppose that no element of A is repeated infinitely many times in s. We define $m(\beta)$, $n(\beta), s_{\beta}$, and x_{β} as follows:
(i) If β is a limit ordinal, pick an element $a^{\beta} \in A-A^{\prime}$ which does not appear in the sequence s; there exists $m(\beta) \in w$ such that

$$
U\left(s \cap\left(a_{0}, a_{1}, \ldots, a_{m(\beta)}\right)\right)=g\left(n(\beta), x_{\beta}\right)
$$

for some $n(\beta) \in N$, where $x_{\beta}=s^{\cap}\left(a_{n}{ }^{\beta}\right)_{n \in w}$. (If s and t are sequences, $s \cap t$ denotes the sequence s followed by the sequence t.) Let
$s_{\beta}=s \cap\left(a_{0}, a_{1}, \ldots, a_{m(\beta)}\right)$.
(ii) If $\beta=\gamma+1$, then $s=s_{\gamma}$ and $U\left(s_{\gamma}\right)=g\left(n(\gamma), x_{\gamma}\right)$. There exists $m(\beta) \in w$ such that $U\left(s^{\cap}\left(a_{0}^{n(\gamma)}, a_{1}{ }^{n(\gamma)}, \ldots, a_{m(\beta)}^{n(\gamma)}\right)\right)=g\left(n(\beta), x_{\beta}\right)$ for some
$n(\beta) \in N$, where $x_{\beta}=s^{\cap}\left(a_{k}{ }^{n(\gamma)}\right)_{k \in w}$. Let $s_{\beta}=s_{\gamma} \cap\left(a_{0}{ }^{n(\gamma)}, a_{1}{ }^{n(\gamma)}, \ldots, a_{m(\beta)}{ }^{n(\gamma)}\right)$. Continue until the sequence s as defined above contains an element of A which is repeated infinitely many times. By the construction, this element will be an element of A^{\prime}, say a^{p}. This will occur at some stage β^{\prime} of the construction with $\beta^{\prime}<w_{1}$. There exists, then, a sequence γ_{n} converging to β^{\prime} with $U\left(s_{\gamma_{n_{n}}}=\right.$ $g\left(p, x_{\gamma_{n}}\right)$. But $s \in X$, and so $g(p, s) \subset \cap_{n=1}^{\infty} g\left(p, x_{\gamma_{n}}\right)=\{s\}$. This contradiction proves that X does not admit a non-archimedean quasi-metric, hence X is not a γ-space by Theorem 1 .

In a letter to the author, P. Nyikos notes that the above example answers in the negative the following question of Hodel [1]: Is every space with a point-countable base a $w \theta$-space? This is due to the following theorem of Nyikos, which we include here with his permission.

Theorem 2 (Nyikos). Let X be a non-archimedean space. The following are equivalent:
(i) X is a γ-space;
(ii) X is a w-space;
(iii) X is a we-space;
(iv) X is a θ-space.

Proof. From [1] we known that (i) \Rightarrow (ii) \Rightarrow (iii), and (i) \Rightarrow (iv) \Rightarrow (iii). Thus it is sufficient to show (iii) \Rightarrow (i). Suppose X is a w w-space, that is, there exists a function $g: N \times X \rightarrow T$ such that $x \in \cap_{n=1}^{\infty} g(n, x)$, and if $\left\{p, x_{n}\right\} \subset$ $g\left(n, y_{n}\right)$ and $y_{n} \in g(n, p)$ for $n=1,2, \ldots$, then $\left\{x_{n}\right\}_{n=1}^{\infty}$ has a cluster point. We may assume the $g(n, x)$'s are elements of a rank 1 base for X.

Let $X^{\prime}=\{x \in X \mid$ there is a neighborhood of x which is compact $\}$. Since X is hereditarily paracompact, and since compact non-archimedean spaces are metrizable, X^{\prime} is an open metrizable subset of X. Thus there exists a function $g^{\prime}: N \times X^{\prime} \rightarrow T$ satisfying properties (A) and (D), and the $g^{\prime}(n, x)$'s are elements of the rank 1 base for X, with $g^{\prime}(n, x) \subset g(n, x)$.

Suppose $p \notin X^{\prime}$, and fix $n \in N$. Let $\left\{z_{n}\right\}_{h=1}^{\infty}$ be a countable subset of $g(n, p)$ with no cluster point. Suppose that for each $i n \in N$, there exists $y_{m} \in g(m, p)$ with $g\left(m, y_{m}\right) \not \subset g(n, p)$. Then $g\left(m, y_{m}\right) \supset g(n, p)$, and so $\left\{p, z_{m}\right\} \subset g\left(m, y_{m}\right)$ and $y_{m} \in g(m, p)$ for $m=1,2, \ldots$, yet $\left\{z_{m}\right\}_{m=1}^{\infty}$ has no cluster point, contradiction. Thus there exists $m \in N$ such that $y \in g(m, p)$ implies $g(m, y) \subset$ $g(n, p)$. It is easy to verify also that $\{g(n, p)\}_{n=1}^{\infty}$ is a base at p. Thus the function $h: N \times X \rightarrow T$ defined by

$$
h(n, x)= \begin{cases}g^{\prime}(n, x) & \text { if } x \in X^{\prime} \\ g(n, x) & \text { if } x \notin X^{\prime}\end{cases}
$$

satisfies properties (A) and (D), and so X is a γ-space.

References

1. R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263.
2. Ya. A. Kofner, On Δ-metrizable spaces, Math. Notes Acad. Sce. USSR 13 (1973), 168-174.
3. W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240.
4. W. F. Lindgren and P. J. Nyikos, Spaces with bases satisfying certain order and intersection properties, to appear, Pacific J. Math.
5. P. J. Nyikos, Some surprising base properties in topology, in Studies in Topology (New York, Academic Press, 1975).
6. M. E. Rudin, Lectures on set theoretic topology (Regional Conference Series in Mathematics CBMS 23, Amer. Math. Soc., 1975).

Auburn University, Auburn, Alabama

