A NOTE ON QUASI-METRIZABILITY

GARY GRUENHAGE

1. Introduction. Let X be a set. A function d from $X \times X$ into the non-negative real numbers is called a (*non-archimedean*) quasi-metric on X if

- (i) d(x, y) = 0 if and only if x = y, and
- (ii) for all $x, y, z \in X$, $d(x, z) \leq d(x, y) + d(y, z)$
 - $(d(x, z) \leq \max \{ d(x, y), d(y, z) \}).$

A topological space (X, T) is said to be (*non-archimedeanly*) quasi-metrizable if there exists a (non-archimedean) quasi-metric on X compatible with T (i.e., the ϵ -neighborhoods form a base for the topology). Denote by N the set of positive integers, and let $g: N \times X \to T$ be a function such that for each $x \in X, x \in \bigcap_{n=1}^{\infty} g(n, x)$. The above notions can be simply characterized in terms of such a function g (see, e.g., Hodel [1]). Consider the following properties which such a function g could have:

- (A) $\{g(n, x) | n \in N\}$ is a local base at x;
- (B) if $y \in g(n, x)$, then $g(n, y) \subset g(n, x)$;
- (C) if $y \in g(n + 1, x)$, then $g(n + 1, y) \subset g(n, x)$;
- (D) for each x and each n, there exists $m \in N$ such that if $y \in g(m, x)$, then $g(m, y) \subset g(n, x)$.

Of course, first countable spaces are characterized by those spaces which admit a function g satisfying property (A). Non-archimedeanly quasi-metrizable spaces, quasi-metrizable spaces, and the so-called γ -spaces [1] are characterized by the existence of a function g satisfying (A) and (B), (A) and (C), and (A) and (D), respectively [4]. As demonstrated by Lindgren and Fletcher in [3], the class of γ -spaces is the same as the class of co-Nagata spaces and the class of Nagata first countable spaces. For any space, the following implications hold: n.a.-quasi-metrizable \Rightarrow quasi-metrizable $\Rightarrow \gamma$ -space \Rightarrow first countable. Kofner [2] has exhibited a quasi-metrizable space which is not non-archimedeanly quasi-metrizable. However, it is not known whether every γ -space is quasi-metrizable.

A base *B* for a space *X* is an *ortho-base* if whenever $B' \subset B$ and $x \in \bigcap B'$, then either $\bigcap B'$ is open or *B'* is a local base at *x*. In [4], Lindgren and Nyikos ask whether any of the above implications reverse in the presence of an orthobase. To give a partial answer to this question, we consider the class of protometrizable spaces, i.e., the paracompact spaces with an ortho-base. We show that the first two implications do reverse in the class of proto-metrizable spaces.

Received April 30, 1976.

We give an example to show that the third implication does not reverse, however, even for non-archimedean spaces. Recall that X is a *non-archimedean* space if there is a base \mathscr{B} for X which has rank 1 (i.e., if $B, B' \in \mathscr{B}$ and $B \cap B' \neq \emptyset$, then either $B \subset B'$ or $B' \subset B$). Non-archimedean spaces are ultraparacompact and \mathscr{B} is an ortho-base [5]. Our example is also a linearly ordered space with a point-countable base which is not quasi-metrizable, so it also answers a question of Heath [6].

2. It is the purpose of this section to prove the following theorem :

THEOREM 1. If X is a proto-metrizable space, then the following are equivalent:

- (i) X admits a non-archimedean quasi-metric;
- (ii) X is quasi-metrizable;
- (iii) X is a γ -space.

Before we embark on the proof of this theorem, we shall state another characterization of proto-metrizable spaces due to Nyikos [5].

Let X be a topological space, and let γ be any ordinal number. A collection $\{U_{\alpha}\}_{\alpha < \gamma}$ of open collections is called a *proto-uniformizing family* if

- (i) $\bigcup U_{\alpha} = \bigcup U_{\alpha+1}$ for every $\alpha < \gamma$;
- (ii) if $\beta < \alpha < \gamma$, then U_{α} star-refines U_{β} , i.e., $\{st(x, U_{\alpha})|x \in X\}$ is a refinement of U_{β} ; and
- (iii) for every $x \in X$, $\{st(x, U_{\alpha}) | \alpha < \gamma\}$ is a base at x.

X is *proto-metrizable* if and only if there exists a proto-uniformizing family for X.

LEMMA 1. Let X be proto-metrizable, and let O be an ortho-base for X. There exists a proto-uniformizing family $\{U_{\alpha}\}_{\alpha < \gamma}$, where each U_{α} is minimal (i.e., for each $U \in U_{\alpha}$, $U_{\alpha} - \{U\}$ is not a cover of $\bigcup U_{\alpha}$), and collections $V_{\alpha} \subset O$, $\alpha < \gamma$, such that for each α , $U_{\alpha+1}$ star-refines $V_{\alpha+1}$, and $V_{\alpha+1}$ star-refines U_{α} ; also if $V \in V_{\alpha}$, then there exists $U \in U_{\alpha}$ with $U \subset V$.

Proof. Let $V_1' = O$, and let U_1 be a minimal star-refinement of O. Let $V_1 = \{V \in V_1' | \text{there exists } U \in U_1 \text{ such that } U \subset V \}.$

Suppose U_{α} and V_{α} have been constructed for all $\alpha < \beta$. If $\beta = \beta' + 1$, we can use the hereditary paracompactness of X to find a subset $V_{\beta}' \subset O$ which star-refines $U_{\beta'}$. Let U_{β} be a minimal star-refinement of V_{β}' such that if $st(x, U_{\beta}) \subset U \in U_{\beta'}$, then either $st(x, U_{\beta}) \neq U$, or U is degenerate. Let $V_{\beta} = \{V \in V_{\beta'}| \text{ there exists } U \in U_{\beta} \text{ such that } U \subset V\}.$

If β is a limit ordinal, let

$$D_{\beta} = \left\{ \operatorname{Int} \left(\bigcap_{\alpha < \beta} \operatorname{st} (x, U_{\alpha}) \right) \middle| x \in X \right\} - \left\{ U \in \bigcup_{\alpha < \beta} U_{\alpha} | U = \{x\} \text{ for some } x \in X \right\}.$$

GARY GRUENHAGE

Using the fact that for each $\alpha < \beta$ and $x \in \bigcup U_{\alpha+1}$, there exists $V \in V_{\alpha+1}$ such that $\operatorname{st}(x, U_{\alpha+1}) \subset V \subset \operatorname{st}(x, U_{\alpha})$, and that O is an ortho-base, it is easy to see that if $x \notin \bigcup D_{\beta}$, then $\{\operatorname{st}(x, U_{\alpha}) | \alpha < \beta\}$ is a base at X. Let V' be a subset of O which star-refines D_{β} . Let U_{β} be a minimal star-refinement of $V_{\beta'}$, and let $V_{\beta} = \{V \in V_{\beta'} | \text{ there exists } U \in U_{\beta} \text{ such that } U \subset V\}$. We continue until $D_{\gamma} = \{\emptyset\}$ for some ordinal γ . It is easy to check that $\{U_{\alpha}\}_{\alpha < \gamma}$ and $\{V_{\alpha}\}_{\alpha < \gamma}$ satisfy the desired properties.

Proof of Theorem 1. It is clear that $(i) \Rightarrow (ii) \Rightarrow (iii)$. We shall prove $(iii) \Rightarrow (i)$.

Suppose X, $\{U_{\alpha}\}_{\alpha < \gamma}$, and $\{V_{\alpha}\}_{\alpha < \gamma}$ are as in Lemma 1, and suppose also that $g: N \times X \to T$ satisfies properties (A) and (D). Without loss of generality, we can assume $g(n, x) \supset g(n + 1, x)$ for all $x \in X$ and $n \in N$. Call an ordered pair $(V, V') \in V_{\alpha} \times V_{\alpha'}$ an (n, m)-pair of x corresponding to z if

(i) $x \in V \cap V'$,

(ii) $V \subset g(n, z)$ and $V' \subset g(m, z)$,

(iii) $y \in g(m, z)$ implies $g(m, y) \subset g(n, z)$, and

(iv) if $(V'', V''') \in V_{\beta} \times V_{\beta'}$ satisfies (i)-(iii), then $\alpha \leq \beta$ and $\alpha' \leq \beta'$.

Fix $x \in X$, x not isolated, and integers n and m, with $n \leq m$. Define $\alpha_0(x, n, m) = \inf \{\alpha' < \gamma | \text{ there is an } (n, m)\text{-pair } (V, V') \text{ for } x \text{ with } V' \in V_{\alpha'}\}$, providing this set is non-empty. If $\alpha(x, n, m)$ has been defined for all $\beta < \beta'$, define $\alpha_{\beta'}(x, n, m) = \inf \{\alpha' < \gamma | \text{ there is an } (n, m)\text{-pair } (V, V') \text{ for } x \text{ with } (V, V') \in V_{\alpha} \times V_{\alpha'}, \text{ and } \alpha > \alpha_{\beta} (x, n, m) \text{ for all } \beta < \beta'\}$, providing this set is non-empty. Continue until it is in fact empty, and suppose this occurs after $\alpha_{\beta}(x, n, m)$ has been defined for all $\beta < \beta_0$. Now we make the following definitions:

(i) $\alpha'(x, n, m) = \sup \{\alpha_{\beta}(x, n, m) | \beta < \beta_0\};$

(ii) $V'(x, n, m) = \bigcap \{ V \in V_{\alpha} | \alpha \leq \alpha'(x, n, m) \text{ and } x \in V \};$

(iii) $\alpha(x, n, m) = \inf \{\alpha | \text{st} (x, V_{\alpha}) \subset V'(x, n, m)\};$

(iv) $V(x, n, m) = \bigcap \{ V \in V_{\alpha} | \alpha \leq \alpha(x, n, m) \text{ and } x \in V \}.$

Claim I. It is true that $\alpha'(x, n, m) < \beta_x$, where β_x is the least ordinal β such that $\{\operatorname{st}(x, V_{\alpha}) | \alpha < \beta\}$ is a base at x.

To see that Claim I holds, first note that $\alpha_{\beta}(x, n, m) < \beta_x$ for all $\beta < \beta_0$. For each $\beta < \beta_0$, there is an (n, m)-pair $(V, V') \in V_{\alpha(\beta)} \times V_{\alpha'(\beta)}$ for x corresponding to z_{β} with $\alpha'(\beta) = \alpha_{\beta}(x, n, m)$ and $\alpha(\beta) > \alpha_{\delta}(x, n, m)$ for all $\delta < \beta$. Now $x \in \bigcap_{\beta < \beta_0} g(m, z_{\beta})$, so $g(m, x) \subset \bigcap_{\beta < \beta_0} g(n, z_{\beta})$. We have assumed x is not isolated, so by property (iv) in the definition of (n, m)-pair, it must be true that $\sup \{\alpha(\beta) | \beta < \beta_0\} < \beta_x$. Since $\alpha(\beta) \leq \alpha'(\beta) = \alpha(x, n, m) < \alpha(\beta + 1)$ for all $\beta < \beta_0$, it is now clear that $\alpha'(x, n, m) < \beta_x$.

From Claim I it follows that V'(x, n, m) is open, for suppose not. Then $\{V \in V_{\alpha} | \alpha \leq \alpha'(x, n, m) \text{ and } x \in V\}$ is a base at x. Thus there exists some $V \in V_{\beta}$, with $x \in V \not\subseteq \text{st}(x, V_{\alpha'(x,n,m)})$ and with $\beta + 1 \leq \alpha'(x, n, m)$. There exists $U \in U_{\beta}$ with $U \subset V$. Since U_{β} is minimal, there exists $p \in U - C$

362

 $\bigcup \{U' \in U_{\beta} | U' \neq U\}$. Now $p \in \text{st}(x, V_{\alpha'(x,n,m)}) \subset \text{st}(x, V_{\beta+1}) \subset U'$ for some $U' \in U_{\beta}$. Since $p \in U'$, we must have U' = U. The contradiction $U \subset V \subsetneq \text{st}(x, V_{\alpha'(x,n,m)}) \subset U$ proves that V'(x, n, m) is open. From this it is easy to see that $\alpha(x, n, m) < \beta_x$, and reasoning identical to the above shows that V(x, n, m) is open.

Claim II. If $y \in V(x, n, m)$, then $V(y, n, m) \subset V(x, n, m)$.

To prove this claim we need only show that if $y \in V(x, n, m)$, then $\alpha(y, n, m) \geq \alpha(x, n, m)$. Let us suppose $y \in V(x, n, m)$ and $\alpha(y, n, m) < \alpha(x, n, m)$. Note that every (n, m)-pair for x satisfies conditions (i)-(iii) in the definition of an (n, m)-pair for y. Thus $\alpha_0(y, n, m) \leq \alpha_0(x, n, m)$. If $\alpha_0(y, n, m) < \alpha_0(x, n, m)$, then there is an (n, m)-pair (V, V') for y which is not an (n, m)-pair for x, where $V' \in V_{\alpha_0(y,n,m)}$. Thus $x \notin V \cap V'$. Since $x \in \text{st}(x, V_{\alpha(x,n,m)}) \subset \text{st}(y, V_{\alpha(x,n,m)})$ and $\text{st}(y, V_{\alpha(y,n,m)}) \subset V \cap V'$, it must be true that $\alpha(y, n, m) > \alpha(x, n, m)$, contradiction. Thus $\alpha_0(y, n, m) = \alpha_0(x, n, m)$. Now suppose $\alpha_\beta(y, n, m) = \alpha_\beta(x, n, m)$ for all $\beta < \beta'$. Then by exactly the sane reasoning as above, we can show that $\alpha_{\beta'}(y, n, m) \geq \alpha'(x, n, m)$. Thus $\alpha_\beta(y, n, m) = \alpha_\beta(x, n, m)$ for all $\beta < \beta_0$. Hence $\alpha'(y, n, m) \geq \alpha'(x, n, m)$. From this it easily follows that $\alpha(y, n, m) \geq \alpha(x, n, m)$, a contradiction which proves Claim II.

Let $\{(n_k, m_k)|k \in N\}$ be an enumeration of $\{(n, m) \in N \times N | n \leq m\}$. For each non-isolated point $x \in X$, define $g'(1, x) = V(x, n_1, m_1)$. If g'(i, x) has been defined for all i < k, let

$$g'(k, x) = \begin{cases} g'(k - 1, x) & \text{if } V(x, n_k, m_k) \supset V(x, n_{k-1}, m_{k-1}) \\ V(x, n_k, m_k) & \text{otherwise.} \end{cases}$$

If x is isolated, define $g'(n, x) = \{x\}$ for all $n \in N$. Now suppose $y \in g'(k, x)$, $y \neq x$. Let k' be the least integer such that g'(k', x) = g'(k, x). Then $y \in V(x, n_{k'}, m_{k'})$, so $g'(k, y) \subset g'(k', y) \subset V(y, n_{k'}, m_{k'}) \subset V(x, n_{k'}, m_{k'}) = g'(k, x)$. Thus g' satisfies property (B). That g' satisfies property (A) follows from the fact that if n and m are such that $y \in g(m, x)$ implies $g(m, y) \subset g(n, x)$, then $V'(x, n, m) \subset g(n, x)$. Thus X admits a non-archimedean quasimetric, and the proof is finished.

3. It is the purpose of this section to describe an example of a first countable non-archimedean space which is not a γ -space. The space we describe is also a linearly ordered space with a point-countable base. The author is grateful to Peter Nyikos for suggesting that this space may be such an example.

Let A be an uncountable set. The points of the space X are all sequences $\{x_{\alpha}\}_{\alpha < \beta}$ of elements of A which are of the following type:

- (i) $\beta < w_1$;
- (ii) there exists an $a \in A$ which is repeated infinitely many times in the sequence; and

GARY GRUENHAGE

(iii) if $\gamma < \beta$, then no element of A is repeated infinitely many times in the sequence $\{x_{\alpha}\}_{\alpha < \gamma}$.

If $x = \{x_{\alpha}\}_{\alpha < \beta} \in X$, and $\gamma < \beta$, we denote by $x(\gamma)$ the sequence $\{x_{\alpha}\}_{\alpha < \gamma}$. Let $U(x(\gamma)) = \{y \in X | y(\gamma) = x(\gamma)\}$. Let

$$U = \{ U(x(\gamma)) | x = \{ x_{\alpha} \}_{\alpha < \beta} \in X \text{ and } \gamma < \beta \}$$

be a base for a topology on X. It is easy to see that if $U(x(\gamma)) \cap U(y(\delta)) \neq \emptyset$, then either $x(\gamma) = y(\gamma)$ or $x(\delta) = y(\delta)$; hence $U(x(\gamma)) \supset U(y(\delta))$ or $U(x(\gamma)) \subset U(y(\delta))$. Thus X is a non-archimedean space. Note also that if $x = \{x_{\alpha}\}_{\alpha < \beta} \in X$, then the only elements of U which contain x are the sets $U(x(\gamma)), \gamma < \beta$. Thus X has a point-countable base. Finally, let "<" be any linear order on A. If $x = \{x_{\alpha}\}_{\alpha < \beta}$ and $x' = \{x_{\alpha'}\}_{\alpha < \beta'}$ are in X, define x < x'and only if $x_{\gamma} < x_{\gamma'}$, where γ is the least ordinal such that $x_{\gamma} \neq x_{\gamma'}$. It is easy to check that the linear order topology induced on X is the same as the topology induced by U.

It remains to prove that X is not a γ -space. By Theorem 1, we need only show that X does not admit a non-archimedean quasi-metric. Suppose there exists a function $g': N \times X \to T$ satisfying properties (A) and (B) given in the introduction. For each $x \in X$ and $n \in N$, there is a least ordinal γ such that $U(x(\gamma)) \subset g'(n, x)$. Define $g(n, x) = U(x(\gamma))$. It is easy to check that g also satisfies properties (A) and (B).

Let $A' = \{a^1, a^2, \ldots\}$ be any countably infinite subset of A. Since $x_0 = (a_n^1)_{n \in w}$, where $a_n^1 = a^1$ for all n, is an element of X, there exists $m(0) \in w$ such that $U(a_0^1, a_1^1, \ldots, a_{m(0)}^{-1}) = g(n(0), x_0)$ for some $n(0) \in N$. Let $s_0 = (a_0^1, a_1^1, \ldots, a_{m(0)}^{-1})$. (Of course, we can take n(0) = 1, but this is not necessary.) Similarly, there exists $m(1) \in w$ such that $U(a_0^1, a_1^1, \ldots, a_{m(0)}^{-1})$, $a_{m(0)+1}^{n(0)}, \ldots, a_{m(1)}^{n(0)}) = g(n(1), x_1)$ for some $n(1) \in N$, where $x_1 = (a_0^1, \ldots, a_{m(0)}^1, a_{m(0)+1}^{n(0)}, \ldots)$. Let

$$s_1 = (a_0^1, \ldots, a_{m(0)}^1, a_{m(0)+1}^{n(0)}, \ldots, a_{m(1)}^{n(0)}).$$

Now suppose $m(\alpha)$, $n(\alpha)$, s_{α} and x_{α} have been defined for all $\alpha < \beta$. Let s denote the sequence such that $s(\gamma) = s_{\alpha}(\gamma)$ for every γ for which $s_{\alpha}(\gamma)$ is defined, and $s(\gamma)$ is not defined if $s_{\alpha}(\gamma)$ is not defined for any $\alpha < \beta$. Suppose that no element of A is repeated infinitely many times in s. We define $m(\beta)$, $n(\beta)$, s_{β} , and x_{β} as follows:

(i) If β is a limit ordinal, pick an element $a^{\beta} \in A - A'$ which does not appear in the sequence s; there exists $m(\beta) \in w$ such that

$$U(s \cap (a_0, a_1, \ldots, a_{m(\beta)})) = g(n(\beta), x_\beta)$$

for some $n(\beta) \in N$, where $x_{\beta} = s \cap (a_n^{\beta})_{n \in w}$. (If s and t are sequences, $s \cap t$ denotes the sequence s followed by the sequence t.) Let

 $s_{\beta} = s \cap (a_0, a_1, \ldots, a_{m(\beta)}).$

(ii) If $\beta = \gamma + 1$, then $s = s_{\gamma}$ and $U(s_{\gamma}) = g(n(\gamma), x_{\gamma})$. There exists $m(\beta) \in w$ such that $U(s \cap (a_0^{n(\gamma)}, a_1^{n(\gamma)}, \ldots, a_{m(\beta)}^{n(\gamma)})) = g(n(\beta), x_{\beta})$ for some

364

QUASI-METRIZABILITY

 $n(\beta) \in N$, where $x_{\beta} = s \cap (a_k^{n(\gamma)})_{k \in w}$. Let $s_{\beta} = s_{\gamma} \cap (a_0^{n(\gamma)}, a_1^{n(\gamma)}, \ldots, a_{m(\beta)}^{n(\gamma)})$.

Continue until the sequence s as defined above contains an element of A which is repeated infinitely many times. By the construction, this element will be an element of A', say a^p . This will occur at some stage β' of the construction with $\beta' < w_1$. There exists, then, a sequence γ_n converging to β' with $U(s_{\gamma n_n} = g(p, x_{\gamma_n})$. But $s \in X$, and so $g(p, s) \subset \bigcap_{n=1}^{\infty} g(p, x_{\gamma_n}) = \{s\}$. This contradiction proves that X does not admit a non-archimedean quasi-metric, hence X is not a γ -space by Theorem 1.

In a letter to the author, P. Nyikos notes that the above example answers in the negative the following question of Hodel [1]: Is every space with a point-countable base a $w\theta$ -space? This is due to the following theorem of Nyikos, which we include here with his permission.

THEOREM 2 (Nyikos). Let X be a non-archimedean space. The following are equivalent:

- (i) X is a γ -space;
- (ii) X is a $w\gamma$ -space;
- (iii) X is a wθ-space;
- (iv) X is a θ -space.

Proof. From [1] we known that (i) \Rightarrow (ii) \Rightarrow (iii), and (i) \Rightarrow (iv) \Rightarrow (iii). Thus it is sufficient to show (iii) \Rightarrow (i). Suppose X is a $w\theta$ -space, that is, there exists a function $g: N \times X \to T$ such that $x \in \bigcap_{n=1}^{\infty} g(n, x)$, and if $\{p, x_n\} \subset g(n, y_n)$ and $y_n \in g(n, p)$ for $n = 1, 2, \ldots$, then $\{x_n\}_{n=1}^{\infty}$ has a cluster point. We may assume the g(n, x)'s are elements of a rank 1 base for X.

Let $X' = \{x \in X | \text{ there is a neighborhood of } x \text{ which is compact} \}$. Since X is hereditarily paracompact, and since compact non-archimedean spaces are metrizable, X' is an open metrizable subset of X. Thus there exists a function $g' : N \times X' \to T$ satisfying properties (A) and (D), and the g'(n, x)'s are elements of the rank 1 base for X, with $g'(n, x) \subset g(n, x)$.

Suppose $p \notin X'$, and fix $n \in N$. Let $\{z_n\}_{n=1}^{\infty}$ be a countable subset of g(n, p) with no cluster point. Suppose that for each $m \in N$, there exists $y_m \in g(m, p)$ with $g(m, y_m) \not\subset g(n, p)$. Then $g(m, y_m) \supset g(n, p)$, and so $\{p, z_m\} \subset g(m, y_m)$ and $y_m \in g(m, p)$ for $m = 1, 2, \ldots$, yet $\{z_m\}_{m=1}^{\infty}$ has no cluster point, contradiction. Thus there exists $m \in N$ such that $y \in g(m, p)$ implies $g(m, y) \subset g(n, p)$. It is easy to verify also that $\{g(n, p)\}_{n=1}^{\infty}$ is a base at p. Thus the function $h: N \times X \to T$ defined by

$$h(n, x) = \begin{cases} g'(n, x) & \text{if } x \in X' \\ g(n, x) & \text{if } x \notin X' \end{cases}$$

satisfies properties (A) and (D), and so X is a γ -space.

References

1. R. E. Hodel, Spaces defined by sequences of open covers which guarantee that certain sequences have cluster points, Duke Math. J. 39 (1972), 253-263.

GARY GRUENHAGE

- 2. Ya. A. Kofner, On Δ -metrizable spaces, Math. Notes Acad. Sce. USSR 13 (1973), 168-174.
- 3. W. F. Lindgren and P. Fletcher, Locally quasi-uniform spaces with countable bases, Duke Math. J. 41 (1974), 231-240.
- 4. W. F. Lindgren and P. J. Nyikos, Spaces with bases satisfying certain order and intersection properties, to appear, Pacific J. Math.
- 5. P. J. Nyikos, Some surprising base properties in topology, in Studies in Topology (New York, Academic Press, 1975).
- M. E. Rudin, Lectures on set theoretic topology (Regional Conference Series in Mathematics CBMS 23, Amer. Math. Soc., 1975).

Auburn University, Auburn, Alabama